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Abstract—In this work, we consider the problem of obtaining a
capacitive image by scanning a “one-dimensional” surface of a closed
conductor of arbitrary geometry. To solve our problem we propose a
novel integral numerical method. The method is applied to different
geometries by considering deterministic surfaces as complex as those
with a fractal structure and random rough surfaces with Gaussian
statistics. We find that the images obtained by simulating a prototype
of a capacitive microscope, strongly depend on the interaction between
the object and the probe. Despite this interaction, important
information can be obtained regarding the statistical properties of the
random roughness of the object surface.

1. INTRODUCTION

During the last two decades some research has been focused on
considering the possibility of using capacitance as a variable to develop
a scanning microscope that takes into account this physical quantity
to measure capacitive images of different systems [1–7]. Until now
some important results have been obtained by following a similar
analysis applied to other microscopes like the scanning near field

Corresponding author: F. Villa-Villa (fvilla@cio.mx).
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optical microscope (SNOM) [8] or the atomic force microscope [9], that
are based on the scanning of a sharp tip in the vicinity of the surface
under observation in the scale of a few tens of nanometers. In the
case of capacitance microscopy, it is established a potential difference
(a bias voltage) between the probe and the object. This constitutes a
simple electrostatic capacitive system. Then, the capacitance can be
measured for different relative positions between both conductors (the
probe and the sample) and in this way a capacitive image is obtained.

At a small scale, the surfaces of physical objects present some
roughness and some times it is convenient to model them by using the
concept of random roughness with a given statistical properties. We
are interested in considering a problem of capacitance microscopy that
involves objects whose surfaces present a random roughness [10, 11].
In reference [10], Bruce et al. propose a system of open surfaces
composed of two planes, one of them having some roughness. In
reference [11] the authors consider the problem of analyzing the
statistical parameters of random rough surfaces by using two different
configurations: one with a plane probe and other with a plane having
a Gaussian tip. It is worth to mention that to seek for an image and
their statistical properties, they use an integral numerical method that
involves periodic Green functions with open surfaces. This method is
limited to non reentrant random rough surfaces (surface profiles defined
by single-valued functions). The use of random surfaces is well known
in the light scattering theory, where the models are limited to consider
one-dimensional surfaces, that is the system has a cylindric symmetry
along a given direction.

The idea of scanning a metallic tip across a surface of
some nanometers to get a capacitive image of a sample has
been applied successfully to measure the doping concentration in
semiconductors [12–14]. On the other hand, during the last few years
electrical capacitance tomography has been the subject of some study
to get capacitive images of macroscopic volumetric objects with idea
of monitoring and controlling industrial processes. In this case the
object is put inside of a cylinder which has some electrodes on the
curved wall that are set to a given electrostatic potential to determine
for example the dielectric permittivity function on the surface of the
object by measuring the capacitance of the system [15–18]. By taking
the ideas from both capacitive systems, we will consider in this work
a model to obtain capacitive images by scanning a closed conductor
with a one-dimensional surface of arbitrary geometry. This problem
involves the solution of Laplace’s equation when boundary values for
the electrostatic potential are specified. There exits different numerical
methods to solve this equation and some of the most known employ
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numerical relaxation [19]. This consists in a finite difference method
that uses a point mesh to approximate numerically the derivatives
appearing in Laplace’s equation. The grid is used to span the space in
a given domain. These methods would require huge computer resources
in the case of random surfaces; besides, it could be a difficult problem
to define a proper mesh of points in the case of deterministic surfaces
with a complex geometry such as a fractal geometry.

To solve our problem we propose a novel integral numerical
method that can be applied to those cases. This method is based on
some ideas coming from the light scattering theory [20, 21] and some
differential geometry concepts. The experience from the scattering
theory shows that the integral methods are the most proper tools to
consider random rough surfaces or surfaces with a fractal structure.

Concerning the possibility of extending our method to consider
the three-dimensional case, we can say that it is quite possible if
deterministic surfaces are involved [16]. However, as we are particularly
interested in the problem of random surfaces; it is worth mentioning
that in such case the problem becomes computationally prohibitive.

2. THEORY

Let us consider a metallic cylindric object with a transverse arbitrary
section from which we can obtain a topography. If we now enclose the
“sample” with a metallic concentric cylindric object that serves as a
“probe” but being an extended object, this shell constitutes our probe.

Figure 1. Schematic representation of the system probe-object.



206 Mendoza-Suárez and Villa-Villa

In Fig. 1, we show a scheme of the transverse section of our probe
with an object of irregular geometry. It is worth noticing that the
transverse section of the probe is basically circular in this case, except
for the small rectangular defect lying on it. This “rectangular tip” is
positioned at different angular positions (θp) relative to the object to
obtain an image. At each relative position of the probe and the object,
we have a capacitance per unit length as a function of θp that can be
numerically determined.

It is important to mention that when measuring, at each
configuration the system must be kept static giving it enough time
to get the electrostatic conditions.

To determine the capacitance as a function of the rotation angle
we must solve basically the Laplace’s equation,

∇2ϕ = 0, (1)

where φ is the electrostatic potential in the vacuum region between
both conductors. In this work we consider Gaussian units.

The electrostatic potential ϕ must satisfy certain boundary
conditions. We assume that ϕ has the values ϕ1 and ϕ2 on the surfaces
of the sample and probe respectively (see Fig. 1). To solve the problem
is convenient to use a Green function which is defined as the solution
to the equation,

∇2G
(
~r, ~r ′

)
= −4πδ

(
~r − ~r ′

)
. (2)

It is well known that a possible Green function is given as the
logarithmic function [10, 11]

G
(
~r, ~r ′

)
= −2 ln

( ∣∣~r − ~r ′
∣∣ )

. (3)

The functions ϕ and G satisfy the integral Green’s theorem for two-
dimensional systems

∫∫

S

(
ϕ∇2G−G∇2ϕ

)
da =

∮

Γ1+Γ2

(
ϕ

∂G

∂n
−G

∂ϕ

∂n

)
ds, (4)

where s is the arc length, S is the surface limited by the closed profiles
Γ1, Γ2 (see Fig. 1) and n̂ is the outward normal.

By applying the Gauss theorem we can obtain the charge density

σ1 =
1
4π

∂ϕ

∂n1

∣∣∣∣
Γ1

(5)

An analogous expression can be obtained for the charge density on the
probe surface σ2.
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From Eqs. (4)–(5) and the boundary conditions, we obtain,

0 =
∮

Γ1

Gσ1 ds+
∮

Γ2

Gσ2 ds− ϕ 1

4π

∮

Γ1

∂G

∂n1
ds−ϕ 2

4π

∮

Γ2

∂G

∂n2
ds, (6)

where σ1 and σ2 represent the charge densities on the surfaces with
contours Γ1 and Γ2, respectively; while the normal derivatives of the
Green functions are calculated by taking into account the normal to
each surface n̂1 and n̂2, according to Fig. 1.

From the last expression we can formulate a numerical method
following the outline given in reference [17]. By using this method we
determine the charge density on each surface present in our system.
With these results it is possible to calculate the capacitance on a given
configuration.

To calculate the charge density we use a numerical method that
is analogous to those integral methods formulated for light scattering
by rough surfaces [20, 21]. The only difference here is that the Green
functions are distinct. In this way, the Eq. (6) can be transformed to
the following algebraic equations

bi =
N1∑

j=1

Lijσj(1) +
N1+N2∑

j=1+N1

Lijσj(2), (7)

where σj(1), σj(2) denote the charge densities along the profiles Γ1 and
Γ2, respectively (in the discrete case) and the inhomogeneous term bi,
is given by

bi = ϕ1

N1∑

j=1

Mij + ϕ2

N1+N2∑

j=N1+1

Mij . (8)

In the last two equations the matrix elements Lij and Mij are given by

Lij =−2∆s ln
(
(Xi−Xj)

2 + (Yi−Yj)
2
)

(1−δij )−2 ∆s ln
(

∆s

2e

)
δij , (9)

and

Mij =
∆s

2π

(
−Y ′

j (Xi −Xj) + X ′
j (Yi − Yj)

)

(Xi −Xj)
2 + (Yi − Yj)

2 (1− δij )

+
(

1
2

+
∆s

4π

(
X ′

j Y ′′
j −X ′′

j Y ′
j

))
δij , (10)

where ∆s is the arc length between two consecutive points of a
sampling (Xj , Yj), along the profiles of the conductors; X ′

j stands for
the first derivative of the parametric function X (s), evaluated at the
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j-th point and X ′′
j represents the second derivative; finally, δij is the

Kroenecker delta.
Once the charge density is obtained for a given configuration, it

is possible to determine the positive charge per unit length induced on
the surface of one of the conductors by direct numerical integration of
the charge density. Finally, the capacitance per unit length is obtained
by the ratio between this charge and the potential difference (assumed
to be positive). Then, the capacitive image of the surface sample is
given as a function of the angular position of the probe C(θp).

An object with a random rough surface can be represented by an
ensemble of deterministic closed profiles (realizations). The statistics
of the realization has the same properties of that corresponding to the
random surface. The numerical generation of the closed realizations
can be done using a method described elsewhere [21]. If a function
r(θ), where 0 ≤ θ < 2π, represents a given profile, let us consider the
following properties: The average profile is a circumference of radius
R, mathematically 〈r(θ)〉 = R.

We define a function

ρ(θ) = r(θ)−R, (11)

where ρ (θ), represents the variation of a radial profile with reference
to a circumference of radius R. The random surface can be modeled
by considering a Gaussian distribution given by

f (ρ) =
1√
2πζ

exp
(
− ρ2

2ζ2

)
, (12)

where ζ represents the standard deviation of the distribution f(ρ).
By defining the angular correlation function as

B(θ, θ′) =
1
ζ2

〈
ρ(θ) ρ(θ′)

〉
. (13)

We assume that this correlation function has a Gaussian form

B
(
θ, θ′

)
= exp

(
−(θ − θ′)2

Θ2

)
, (14)

where Θ stands for the “angular correlation length” and represents the
angular scale of the random roughness.

An ensemble of profiles with the required statistical properties can
be numerically generated from the following expression

ρ(θk) = ζ
+∞∑

j=−∞

(
2∆θ

Θ
√

π

)1/2

exp
(−2 (∆θ)2j2

Θ2

)
Xj+k. (15)
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Here Xj represents Gaussian variables with zero media and standard
deviation equal to one, θk is a discrete value of θ given as θk = k ∆θ
being k = 0, 1, 2, . . . n, where n stands for the number of sampling
points and ∆θ is angular step.

3. NUMERICAL RESULTS

To test our formalism, let us consider the case when the profiles of
the sample and the probe are circumferences of radius r1 = 1 and
r2 = 2 (arbitrary units), respectively; while the potentials of the
conductor surfaces are ϕ1 = 0 and ϕ2 = 1. This case corresponds to
the calculation of capacitance per unit length of a capacitor of cylindric
surfaces of infinite length. The analytical result in this case is given as
0.5(ϕ2 − ϕ1)/ ln(r2/r1) = 0.721, which is very close to that obtained
numerically, 0.7264, by using the proposed formalism. Additionally, in
Fig. 2, we show the electrostatic potential in a given radial direction
in the vacuum region between both conductors. The dashed curve
corresponds to the analytical result ϕ = (ϕ2−ϕ1) ln(r/r1) ln(r2/r1)+ϕ1

and the solid curve is associated to the numerical calculations. It is
important to notice that the agreement is so good that only one curve
can be appreciated.

In Fig. 3, we show the profile Γ2 of the conductor that plays the

Figure 2. Comparison between
the analytical (dashed curve) and
numerical (solid curve) results for
the electrostatic potential as a
function of radial distance.

Figure 3. Profiles of the probe
(external contour) and the object
(internal profile).
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role of the probe (external profile). The profile is circular except for
a rectangular “tip” of length 0.7 and 0.14 wide that is used to inspect
the object. In this case, the object Γ1 is perfectly circular (internal
profile).

At this point is important to mention that in the case of the typical
capacitance microscopy the tip used has a triangular or pyramidal
shape. As we are considering a tip that could be used even with a
macroscopic system the probe can be rectangular. We compared the
results obtained by using both tips obtaining better resolution with
the rectangular shape. In any way, with our method we are able to
model probes with any geometry.

The radius of the probe and the object are the same as those used
in the previous example. The image of the object surface is given by
C(θp). In polar coordinates this function results to be as expected, a
circumference (see Fig. 4). So, we want to point out that the presence
of the probe is necessary to get a capacitance image. The value of the
capacitance in this case is 0.7069. Let us compare this result with that
of the previous example 0.7264. As it becomes evident, the capacitance
change is due to a change produced on the probe. This shows that the
image of a given object is dependent on the geometry of the probe and
such fact complicates the interpretation of obtained images.

As another application example, let us consider the case of an
object with circular transverse section having a rectangular defect of
length 0.2 and 0.21 wide. In Fig. 5, we show the contours of our object
and the probe. We keep the same parameters of previous examples.

Figure 4. Object image corre-
sponding to the geometry of Fig. 3
(solid curve).

Figure 5. Transverse sections of
the probe and the object with a
small defect.



Progress In Electromagnetics Research B, Vol. 21, 2010 211

Figure 6. Object image of the set up shown in Fig. 5.

(a) (b)

Figure 7. (a) Electrostatic potential for the system given in Fig. 5.
(b) Electrostatic potential in the case of a cylindric capacitor.

In Fig. 6, we show the image corresponding to this case. It is
worth noticing that from the image it is easy to deduce that the object
has a localized symmetric protuberance. However, from this image, the
exact shape of this defect can not be obtained by a simple operation.

The electrostatic potential corresponding to the system given in
Fig. 5 is shown in Fig. 7(a). We have included the case of the cylindric
capacitor in Fig. 7(b) in order to visually compare the differences
between both cases.

It is worth to observe that the electrostatic potential has
appreciable changes in the vicinity of the probe and object defect only.



212 Mendoza-Suárez and Villa-Villa

We can infer from Fig. 7 that the electric field is quite intense near
the probe surface. The electrostatic potential around the probe and
beyond this near zone becomes perturbed and lowered (comparatively
speaking) in this region.

Since, the resolution is dependent on the distance between the

Figure 8. Objects with Koch triadic prefractal profiles.

Figure 9. Capacitance microscope showing an object whose
transversal section has a fractal structure.



Progress In Electromagnetics Research B, Vol. 21, 2010 213

probe and the object, those structure details that are closer to
the probe are better resolved in the image than those that are
located farther, this effect is known as the shadowing effect in the
literature [11]. Even though the fine structure details are close to the
probe, they can not be perfectly solved. This becomes evident from
the image in the region of the protuberance, where the edges have been
smoothed and the rectangular shape of the defect has been widened.
These results will be useful to understand the image of complex objects
as we will see below.

Let us now consider objects with more complex geometric
structure like those having transversal sections with Koch triadic
prefractal profiles [20] of order 0, 1, 2, 3 and 4 respectively (see Fig. 8
for the four first orders). In these cases the microscope is shown in
Fig. 9.

The effects on the capacitance image of an object with prefractal
geometry are shown in Fig. 10 for different prefractal orders. As
mentioned in the previous paragraph, it is evident that fine structure
can not be resolved clearly.

The corners of the square (order 0, solid curve in Fig. 10)
can be appreciated in the capacitance image and even the vertices

Figure 10. Capacitance image for objects with fractal orders 0 (solid
curve), 1 (dashed curve), 2 (dot-dashed curve), 3 (dotted curve), 4
(dot-dot-dashed curve).
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corresponding to the object of order 1 (dashed curve). Beyond order
1 the prefractal fine structure can not be appreciated, however, it is
important to notice that the curves are displaced to upper capacitance
values as we go to upper fractal orders. So, the microscope is able to
distinguish a difference between the object with fractal structures of
order 4 and 5 (dotted and dot-dot-dashed curves respectively).

Since the capacitance depends on the geometric structures as
a whole, the method is sensitive to the presence of fine structure
around the object. So, the instrument could be capable of detecting
contamination on the surface of a real object, for instance.

As a last example let us consider an object having a random
rough surface with a Gaussian statistics. In Fig. 11, it is shown
the object (internal profile) that represents one realization of an
ensemble associated to the object surface. We took in this work an
ensemble of 1000 realizations that was appropriate to obtain stable
results. The surface statistics is characterized by two parameters: the
height standard deviation and the angular correlation length. These
parameters have the values 1/30 and 10◦, respectively. Despite this
standard deviation seem to be small, the profile of a given realization
can deviate considerably from the average circumference in some
directions.

In Fig. 12, we show the corresponding image obtained by this
microscope. The image has some similarities to the object itself. It is
worth to observe that some fine details of the structure are lost due to
the effects mentioned in the previous example.

Considering the Gaussian statistics of the random surface we can

Figure 11. One realization of
object surface.

Figure 12. Image of the object
surface given in Fig. 9.
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Figure 13. Comparison of the Gaussian probability density (dashed
curve) with that determined numerically (solid curve).

ask about the possibility of extracting some information regarding the
statistical properties of the ensemble of images. We can just conjecture
that the statistics of this ensemble should be Gaussian. To conclude
something about this conjecture, let us consider Fig. 13, where we show
two curves, the first one corresponds to the probability density (solid
curve) associated to a radial direction of the images when represented
in polar coordinates. This probability density is averaged over 180
discrete values that we considered for θp = 0◦, 2◦, . . . 358◦. With the
data of this curve we obtained an average of 0.708 and a standard
deviation of 0.009. The second graphics (dashed curve) constitutes a
Gaussian distribution with these parameters. We can notice the good
agreement of both curves.

In a similar fashion in Fig. 14, we show the comparison between the
correlation function (averaged over θ′) numerically determined (solid
curve) from the ensemble of images and the function (dashed curve)

BC(θ) = a + b exp
(
− θ2

Θ2
c

)
, (16)

where a = 0.928, b = 0.072 and Θc = 17.454◦. This is not by
far a Gaussian function, however, a translation and rescaling of this
function, gives us a function similar to that given in Eq. (14) with
θ′ = 0.

We can conclude from our comparison that in this case we don
not have a perfect Gaussian statistics. However, attributing these
rescale and translation parameters in part to the configuration of the
microscope itself, in principle it is possible to deduce the Gaussian
character of the random surface.
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Figure 14. Comparison of the correlation function with that
determined numerically (solid curve).

4. CONCLUSION

We conclude that with our model, we are able to obtain images from
objects with closed surfaces that can be deterministic or random as
well. The images were obtained by graphing the capacitance of a
system of two concentric conductors of cylindric shape (probe and
object) at different angular positions of the probe. We found that, in
the case of simple objects the resolution of the images strongly depend
on the shadowing effect.

If the object is of complex topography like that of a random
rough surface, the image is also complex but preserves the general
details depending on the shadowing. Even though the statistics of
the surface object is Gaussian we found that the statistics of the
capacitance images is not perfectly Gaussian. Particularly referring
to the angular correlation function of the images ensemble, it has an
essentially Gaussian shape but displaced and rescaled.

To obtain the relation between the height standard deviation and
the angular correlation length of the ensemble of images and those
corresponding to the ensemble of object realizations is a complex task
that deserves a future work.
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21. Mendoza-Suárez, A., U. Rúız-Corona, and R. Espinosa-Luna,
“Effects of wall random roughness on TE and TM modes in a
hollow conducting waveguide,” Opt. Comm., Vol. 238, 291–299,
2004.


