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Abstract—We consider how an electromagnetic field propagating to
a target alters the radar cross section of the target relative to an
observer. We derive the optimum high-frequency path for the fields
using the calculus of variations and by using a realistic refractive
index profile for the atmosphere obtain closed form solutions. It is
found that the predicted nulls and peaks in the radar cross section
of a scattering object relative to an observer are shifted from those
normally expected from just the isolated object. Hence, for predictive
purposes at least, radar cross section results need to incorporate the
effects of atmospheric propagation.

1. INTRODUCTION

The radar cross section (RCS) σ [1–3] of many objects is routinely
determined by experimental measurements inside laboratories or
anechoic chambers. These measurements give the σ profile for
the isolated object alone without any regard as to what effect the
surrounding medium has on the results. One objective is to understand
the RCS signature of the object so that one can try to manipulate
it according to specific needs. In order to make a more informed
theoretical prediction of the RCS of flying platforms in particular,
the effects due to the medium they operate in needs to be taken
into account. For instance, the perceived RCS of an aircraft will
differ from its static profile measured on the ground due to the fact
that the atmospheric refractive index changes important parameters.
If we are interested in devising means of reducing the RCS of an
aircraft, we need to know what the perceived electromagnetic signature
is for a radar system on the earth’s surface relative to the position
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of the aircraft at a certain height. This allows one to understand
variations in the RCS for operational advantages. The purpose of
this paper is to look at some of these issues and see if in fact
there is any important variation that needs to be accounted for in
general prediction studies. The realistic scenario considered here is
solved in closed form and avoids numerical computations. It is shown
that the RCS is dependent on the radar (observer) location and this
dependence comes about because of the refractive index profile of the
atmosphere. The non-linear trajectories of the fields to the scattering
target are determined in the high-frequency limit using the calculus of
variations [4–7] in order to find the optimal path. This approach is
analogous to Fermat’s principle of least time. The resulting equations
must be evaluated numerically for most cases, however we show that
it is possible to solve the differential equation analytically. From
these results we discuss other scattering parameters of interest. The
method presented can be used to model and predict more complicated
scenarios involving ducts, multi-path and bi-static propagation effects
as well as improving the results in time difference of arrival (TOA)
calculations of radar signals. Overall, the results are important for
the correct characterisation of target heights and distances as well
as general phase effects in signal propagation. In most problems
concerning scattering, the effect that the propagating medium has on
the scattering object for electromagnetic waves traveling from a source
at a distance is neglected due to the complexity involved in determining
the actual trajectories of the fields. In the case of the latter, ray
tracing methods are used for the determination of such paths but
these involve numerical and computationally intensive algorithms [8–
12]. On the other hand the same applies for calculations involving the
solution of Maxwell’s equations. Analytic methods using asymptotic
techniques and ray transfer matrix analysis have been presented [13]
but these approaches are mathematically too difficult to implement
for general atmospheric profiles. In what follows we will show that,
via the use of the calculus of variations, it is possible that a simple
equation can be derived for application in atmospheric propagation
and scattering problems concurrently without the need to perform
any overly complex computations for the propagation and scattering
independently. Thus for most atmospheric profiles, the solutions can be
obtained analytically which can then be used in scattering calculations.
In cases where the solutions cannot be solved analytically, a simple
numerical integration can be used instead.



Progress In Electromagnetics Research, PIER 101, 2010 279

2. EXTREMUM OF THE ELECTROMAGNETIC FIELD
PATHS

We consider the case where an electromagnetic field propagates
to a scattering object in a non-homogeneous medium such as the
atmosphere. It would appear that there are many possible paths that
can be considered. However in reality, for a given refractive index,
there is only one optimal path considered by the fields and to determine
it requires calculating such a trajectory as an extremum over all the
possible paths that can be taken. Hence, in order to determine this
path we start with the optimal distance traversed by the fields and
define it as s:

ds2 =
2∑

i=1

2∑

j=1

rijdxidxj = r11(dx)2 + (r12 + r21)dxdy + r22(dy)2 (1)

where dx1 = dx and dx2 = dy. We define rij to be a square
two-dimensional refractive index matrix that dictates how the fields
propagate in the medium (atmosphere). If the fields are propagating
in the atmosphere then the paths are modified from the linear form
by the refractive index. Typically, there are no variations in the
refractive index with range x so we set x = x0 to be a constant and
since the actual variation is with height we assume that the refractive
index changes with y thus we have a refractive index with arguments:
n(x0, y(x)). This also implies that since there is variation with height
the fields are affected by the elevation θ while the azimuth φ is constant.
Note that, since the azimuth angle is not important in this analysis,
the symbol φ will from this point on, be used as shown in Fig. 1. From
these assumptions, we define the refractive index matrix as,

rij =
(

n2(x0, y(x)) 0
0 n2(x0, y(x))

)
(2)

where in what follows we will omit x0 for brevity reasons. We also note
that the off-diagonal terms of the matrix are zero because there is no
‘coupling’ or variation in the refractive index with range and height,
but only in height. Equation (1) now becomes

s =
∫ √

r11 + r22

(
dy

dx

)2

dx (3)

Substituting the components of the refractive index matrix (2) into (3)
we have

s =
∫

n(y(x))

√
1 +

(
dy

dx

)2

dx (4)
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Figure 1. Shown is the curved path the fields actually propagate
along compared to the normal method of assuming linear trajectories.
The curved path is due to the refractive index of the atmosphere. As a
result, the angle of radiation from the origin φ0 in not the same as the
incident angle at the scattering object φ — see also Fig. 2. The angle
θ is the elevation but we are more interested in the angles φ0 and φ in
the analysis.

In order to find the optimal path that the field propagates along we
have to solve for the extremum of (4). Let

L = n(y(x))

√
1 +

(
dy

dx

)2

(5)

From the calculus of variations we make use of the well known Euler-
Lagrange equation in order to derive a differential equation that gives
the extremum for the path taken by the fields or put another way, we
derive the trajectory of least time, also known as Fermat’s principle.
Thus we have,

∂L

∂y
− d

dx

(
∂L

∂(dy/dx)

)
= 0 (6)

Using (5) we can evaluate the first term in (6) which becomes

∂L

∂y
=

∂n(y(x))
∂y

√
1 +

(
dy

dx

)2

(7)

The second remaining term in the Euler-Lagrange equation can now
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be determined, so once again by the use of (5) we have

d

dx

(
∂L

∂(dy/dx)

)

=

[
1+

(
dy

dx

)2
]−3/2 {

∂n(y(x))
∂y

[(
dy

dx

)2

+
(

dy

dx

)4
]
+n(y(x))

d2y

dx2

}
(8)

Combining (7) and (8) and simplifying gives the result

d2y

dx2
− 1

n(y(x))
∂n(y(x))

∂y

[
1 +

(
dy

dx

)2
]

= 0 (9)

The solution of (9) gives the so called path of least action of the fields
propagating in the atmosphere with refractive index n(y(x)) and as it
stands is a very complicated expression to solve, especially in closed-
form. Fortunately (9) can be factored to the form

d

dx


 1

n(y(x))

√
1 +

(
dy

dx

)2

 = 0 (10)

Integrating (10) we have

∫
d

dx


 1

n(y(x))

√
1 +

(
dy

dx

)2

 dx = α (11)

where we notice that the left-hand side is its own anti-derivative while
α is the integration constant. Re-arranging (11) we finally have

dy

dx
=

√
α2n2(y(x))− 1 (12)

The solution of (12) gives the optimum variation of the fields with
height y as a function of the range x for a given refractive index profile.
Equation (12) has solution as given by

y(x) = y0 +
∫ x

x0

dx
√

α2n2(y(x))− 1 (13)

From this expression we can now obtain the actual optimal (extremum)
distance that the fields travel which becomes

s = α

∫ x

x0

n2(y(x))dx (14)

Equation (14) gives the actual distance that the electromagnetic
field travels to a target compared to the direct line of sight linear
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distance assumed in many situations. Equation (14) has an integrand
containing an arbitrary refractive index profile written as a function
of the optimised field path. What this means is that, depending on
the refractive index profile considered, the actual distance to a target
will vary from the assumed direct line of sight (linear) distance used in
most situations especially in elevated or surface ducts with targets
over the horizon. It is also worth noting that a scattering target
containing a cavity for example, adds to the overall distance the target
is assumed to be at because the fields bounce around inside the cavity
for a distance that varies with initial scattering incident angle φ. The
more complicated the cavity, the more time spent by the fields inside,
hence the target distance varies accordingly. We can see this effect
even for a simple circular cavity of length l which would modify (14)
to

s =
2l

cos(φ)
+ 2α

∫ x

x0

n2(y(x))dx (15)
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Figure 2. The incident scattering angle φ changes (with respect to
the horizon) for a target at any arbitrary point along the distance s
that the fields propagate on. As a consequence the angle of incidence
φ at the scattering object is not the same as the initial radiated angle
φ0. Here we see the predicted angular variation with range x for the
parameters considered in the SBF model of Section 3. In more general
problems, this variation is not necessarily linear as shown here and can
change dramatically in a non-linear way.
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where the factor ‘2’ accounts for the two-way distance, i.e., observer
to target and back. This effect is highly dependent on the structure of
the cavity but also more generally on the incident angle φ as shown for
the parameters considered here in Fig. 2. Fig. 3 shows the additional
distance that is traveled by the fields in such a cavity (this is the
first term in (15)) of length l = 4m. As the cavity aspect angle
changes around the incident scattering angle φ at the cavity entrance,
the target distance as given by (15) is increased even more by the
fact that fields have to travel an additional distance inside the cavity
and all this must be related to the observer at angle φ0. The results
discussed so far indicate that other issues need to be accounted for such
as phase differences due to perturbations in distances and time (time
of arrival TOA) and so on. In any event all of these effects rely on the
most important parameter of all, i.e., the arbitrary refractive index
profile n(y(x)) which means that (13) has to be solved numerically for
any practical study of such effects. In the next section however, we
shall investigate a realistic refractive index model which is extremely
accurate, especially for low altitudes, and will allow us to obtain
solutions in closed form. This is the so called Schelling, Burrows and
Ferrell refractive index model (SBF) [14–16].
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Figure 3. As the cavity rotates around the incident scattering angle
and in relation to an observer with angle φ0 on the ground, the distance
traveled inside the cavity by the fields changes which directly alters
further the correct distance to the target as given by (15). Here we
take the observer angle as φ0 = 0.8 degrees and the cavity structure
is at x = 350 kms. A more complex and/or longer cavity will have a
much greater effect than the case considered here.
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3. OPTIMAL SOLUTIONS BASED ON THE SBF MODEL

The SBF model for the refractive index of the atmosphere has been
shown to be quite accurate for heights of up to 3 km but is less accurate
as the height increases above that [14–16]. However, given its accuracy
for the heights concerned and the fact that it has linear form, it
will be used to obtain analytic solutions which will allow the study
of how the atmosphere affects propagation to a target and therefore,
how it changes the RCS characteristics of that target. Consequently,
if the latter is true for smaller heights, then these effects will be
greater for increased heights or in cases where other atmospheric issues
are important, such as ducts, multi-path and bi-static propagation
respectively. In the SBF approach, the refractive index is defined to
be:

n(y(x)) = n0 (1− βy(x)) (16)

where β is a constant and n0 is the refractive index at the radiating
source of the electromagnetic waves, e.g., close to the earth so that
n0 ≈ 1. Returning to our previous derivation for the optimum path of
the fields we consider the form,

dy

dx
=

√
α2n2(y(x))− 1 (17)

For fields radiating from say the origin (x, y) = (0, 0) at an angle φ0 (as
measured from the range axis, i.e., x), then y′(0) = tan(φ0) at x = 0
while y(0) = 0. This allows us to work out the integration constant

α =
1

n0 cos(φ0)
(18)

From this and re-arranging (17) we have:

dx =
cos(φ0)dy√

(1− βy)2 − cos2(φ0)
(19)

From Fig. 1, we notice that the complementary angle θ is related to φ
by θ = π/2− φ, hence we can make use of the trigonometric identity,

1− βy = cos(φ0) sec(θ) (20)

with θ = φ0 at y = 0. Thus,

dy = −cos(φ0)
β

sec(θ) tan(θ)dθ (21)

and √
(1− βy)2 − cos2(φ0) = cos(φ0) tan(θ) (22)
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Then (17) now becomes

dx = −cos(φ0)
β

sec(θ)dθ (23)

and solving this equation for x = 0 when θ = φ0 we have,

x = −cos(φ0)
β

loge

(
sec(θ) + tan(θ)

sec(φ0) + tan(φ0)

)
(24)

Let us define,

γ =
βx

cos(φ0)
− loge (sec(φ0) + tan(φ0)) (25)

then (24) becomes:

sec(θ) +
√

sec2(θ)− 1 = e−γ (26)

which can now be solved for sec(θ) to give,

sec(θ) ≡ cosh(γ) = cosh
(

βx

cos(φ0)
− loge (sec(φ0) + tan(φ0))

)
(27)

Finally, using (20) and these results we obtain the optimised path for
the fields traveling in the atmosphere with refractive index as given by
the SBF model as being:

y(x) =
1
β
− cos(φ0)

β
cosh

(
βx

cos(φ0)
− loge (sec(φ0) + tan(φ0))

)
(28)

If the refractive index was constant for all height values then we would
expect that the paths taken by the fields would be straight lines and
in fact by assuming that n(y) = n0 and using (17) we find exactly
this as we obtain the solution y(x) = tan(φ0)x, with initial conditions
given at (x, y) = (0, 0). Finally, from (28) we can obtain the maximum
height y = y′ of the field trajectories with corresponding range x = x′
before they start to curve downwards-see Fig. 1:

y′(x) = y′(β) =
1− cos(φ0)

β
(29)

and which occurs at the range:

x′ = x′(β) =
cos(φ0)

β
loge (sec(φ0) + tan(φ0)) (30)

From Fig. 1, the angle φ that the trajectory of the field makes with a
target at any arbitrary point is given by

φ = tan−1 (sinh (loge(sec(φ0) + tan(φ0))− xβ sec(φ0))) (31)
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In all of these expressions, the constant β determines the curvature
of the trajectories in the atmosphere. In the SBF model, the value
we choose is β = (4r0)−1 [15], where r0 is the radius of the earth.
In the next section we will make use of these results to see if RCS
predictions are affected by the refractive index at all and whether
correct modeling of the field trajectories are necessary for the correct
prediction of general RCS.

4. RCS PREDICTIONS

The dimensions of the scatterers we will consider are much greater than
the size of the wavelength so in order to obtain the RCS σ we will make
use of the physical optics (PO) limit [17–21]. We consider two types of
targets that are situated at a given height y and range x and determine
the RCS ‘observed’ by a radar at a given angle. Generally it is assumed
that the angle of the observer and the scattering angle at the target are
the same and this would be true if we considered an atmosphere with
no refractive index. However given that the atmosphere has varying
refractive index profiles, the paths of electromagnetic fields in the high-
frequency approximation follow the optimised path as determined in
the previous section. Since the angle of the observer and the scattering
angle are different, we can see what effect this has on the RCS of a
flat plate and a rectangular cavity as measured by an observer on the
ground.

It should be emphasised that because of the reciprocity in the
results we can assume that instead of having the radar (observer) at
ground level and the plate and cavity at a given height (e.g., aircraft
hull or engine intake), we can also assume that the results hold for
a radar at a height y scanning a flat plate or rectangular target at
ground level (e.g., vehicle or missile pods). For a rectangular flat plate
the RCS is given by [22, 23]:

σ =
4πa2b2

λ2
cos2(φ)

[
sin(ka sin(φ))

ka sin(φ)

]2

(32)

where the wave number is k = 2π/λ and φ is the incident angle to the
plate with respect to the observer. We will assume that the plate is
rotated around φ while the observer is fixed, while we note that this
could also be the other way around. Here we take a and b as being the
physical side dimensions of the flat plate and λ is the wavelength. The
RCS for a rectangular cavity of side lengths a, b and depth c can be
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obtained from [22, 23]:

σ =
4πc2

λ2

∣∣∣a cos(φ)sinc(ka sin(φ))eikb cos(φ)) (33)

+b sin(φ)sinc(kb cos(φ))eika sin(φ)
∣∣∣
2

The theoretical RCS values obtained from (32) and (33) neglect
polarisation since in the PO approach the theory does not include
polarisation dependence. It is also worth noting that for small
scattering angles in particular (32) and (33) are in excellent agreement
with experimental results and GTD/UTD calculations [22]. Figs. 4
and 5 respectively show the RCS predicted for scattering from a
plate and rectangular cavity structure. The results show that the
SBF atmospheric model predicts changes in the radar cross section
of targets at a given height and range, even when the initial radiating
angle of the electromagnetic waves is small. Specifically, the assumed
maxima or minima in the scattering profiles are shifted due to the fact
that the scattering angle at the target is not the same as the initial
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Figure 4. Physical optics scattering limit for a flat plate of side
dimensions a = 2 m and b = 2 m respectively. The frequency is at
f = 12GHz and the observer angle is at φ0 = 0.8 deg. As the plate is
rotated around φ the expected RCS profile is changed compared to the
normal direct linear path (dashed) due to the angle of observer and
scattering angle being different as a consequence of the refractive index
of the propagating medium. Position of scatterer is at x = 350 km.
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Figure 5. RCS σ in the physical optics limit for a rectangular cavity
with side dimensions a = 1 m, b = 1m and depth of c = 4 m at a
frequency of f = 12GHz. The dashed profile is the RCS of the cavity
for a linear atmosphere which corresponds to the same angles for both
observer on the ground and scattering angle at cavity. The atmospheric
refractive index alters the RCS as shown by the solid profile since the
observer angle (here taken as φ0 = 0.8 deg.) is not the same as the
scattering angle at the cavity. Position of scatterer is at x = 350 km.

radiating angle. Hence, a target can practically minimize it’s RCS
characteristics and falsify its actual signature via knowledge of the
effect that the atmospheric profile has on the scattering parameters.
Modeling such scattering under realistic scenarios incorporating the
effects of the propagating medium is paramount for general RCS
reduction or signature transformation purposes. For example in the
understanding of how one might reduce the RCS of an air platform as
observed by a sensor on the ground requires the inclusion of an analysis
such as the one presented in this paper. Evidently these effects are even
more pronounced for situations pertaining to RCS predictions due to
ducts and multipath scattering. At the same time, phase effects, time
variations, true target heights and distances can be predicted by such
an analysis.
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5. CONCLUSION

Analysis shows that for predictive RCS we require a proper
understanding of the effects of atmospheric propagation. Using the
Euler-Lagrange equation we have derived a differential equation that
can be solved for general cases of refractive index. These results enable
us to derive scattering parameters which show that there is variation of
the RCS for a plane and cavity struture respectively at a given height
and range due to atmospheric refraction. Closed-form solutions were
obtained for the Schelling-Burrows-Ferrel atmospheric model.
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