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Abstract—When compared to the over-simplified classical skin-effect
model, the accurate classical relaxation-effect modelling approach
for THz structures at room temperature can be mathematically
cumbersome and not insightful. This paper introduces various
interrelated electrical engineering concepts as tools for characterizing
the intrinsic frequency dispersive nature of normal metals at room
temperature. This engineering approach dramatically simplifies the
otherwise complex analysis and allows for a much deeper insight to
be gained into the classical relaxation-effect model. For example, it
explains how wavelength can increase proportionally with frequency
at higher terahertz frequencies. This is the first time that such an
approach has been developed for the modelling of intrinsic frequency
dispersion within a metal. While the focus has been on the
characterization of normal metals (magnetic and non-magnetic) at
room temperature, it is believed that the same methodology may
be applied to metals operating in anomalous frequency-temperature
regions, superconductors, semiconductors, carbon nanotubes and
metamaterials.

1. INTRODUCTION

The accurate characterization of frequency dispersion within normal
metals at room temperature was first introduced over a century
ago, by Drude [1, 2], and its robustness has been tested in recent
years for normal metals at room temperature from dc to terahertz
frequencies [3–7]. For example, it has been used to validate
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measurements [3], alternative frequency dispersion models [4, 5] and
commercial electromagnetic simulation software [6]. However, when
compared to the over-simplified classical skin-effect model, the accurate
classical relaxation-effect modelling approach for THz structures
at room temperature can be mathematically cumbersome and not
insightful. This paper introduces various interrelated electrical
engineering concepts as tools for characterizing intrinsic frequency
dispersion models.

Given an angular frequency ω = 2πf , where f is the frequency
of the driving electromagnetic fields, and the phenomenological
temperature-dependent scattering relaxation time for the free electrons
(i.e., mean time between collisions) τ , with normal metals at room
temperature, a microwave engineer more often adopts the classical
skin-effect model, where ωτ ¿ 1, without quantifying the resulting
errors at terahertz frequencies. Conversely, the physicist may adopt the
accurate classical relaxation-effect model, but then make simplifying
assumptions (e.g., ωτ ¿ 1 or ωτ À 1), again without quantifying
the resulting errors at terahertz frequencies. For normal metals that
avoid anomalous frequency-temperature regions of behaviour, this
paper addresses all values of ωτ and even allows accurate simplifying
assumptions to be made in the region from dc to ωτ = 2.

2. EQUIVALENT TRANSMISSION LINE MODELLING

The analogy between the characteristics of electromagnetic waves as
they propagate within a homogenous material and down a transmission
line can be seen by comparing the vector Helmholtz equations (for an
unbounded plane wave as it travels in one-dimensional space) with
those of the telegrapher’s equations.

With the former, for a uniform electromagnetic plane wave
travelling at normal incidence to the surface of a semi-infinite half
space, the intrinsic impedance ηI of a homogeneous material and the
corresponding propagation constant have the general forms given by:

ηI =

√
jωµ

σ + jωε
=

√
(ωµoµ′′r) + jω (µoµ′r)

(σ′ + ωεoε′′r) + jω
(−σ′′

ω + εoε′r
) [Ω] (1)

γ≡ jωµ

ηI
=

√
jωµ (σ + jωε)

=

√
[(ωµoµ′′r)+jω (µoµ′r)]

[
(σ′+ωεoε′′r)+jω

(−σ′′

ω
+εoε′r

)] [
m−1

]
(2)

where the relative magnetic permeability µr = µ/µo ≡ µ′r − jµ′′r , µo is
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the magnetic permeability of free space; relative electric permittivity
due to molecular and atomic resonances, εr = ε/εo ≡ ε′r−jε′′r , εo is the
electric permittivity of free space; and intrinsic bulk conductivity due
to free charge carriers, σ ≡ σ′−jσ′′. With the latter, the characteristic
impedance Zo and propagation constant γ for a uniform transmission
line with infinite length have the general forms given by:

Zo =

√
R + jωL

G + jωC
[Ω] (3)

γ ≡ R + jωL

Zo
=

√
(R + jωL) (G + jωC) [m−1] (4)

The direct mathematical relationship between the constitutive terms
in (1) and (2) and distributed-element parameters in (3) and (4) is well
known, for example given by Kraus [8]. As a result, electromagnetic
wave propagation within a homogeneous material can be represented
by the textbook equivalent one-dimensional uniform transmission line
(or distributed-element) model shown in Fig. 1, terminated by the
secondary line parameter characteristic impedance Zo.

The equivalent primary line (i.e., distributed-element) parameters
for this generic case are given by the following:

R ≡ ωµoµ
′′
r [Ω/m] ; L ≡ µoµ

′
r [H/m] ;

G ≡ σ′ + ωεoε
′′
r [S/m] ; C ≡ −σ′′

ω
+ εoε

′
r [F/m]

It will now be shown that be-spoke elementary lumped-element
circuits can be synthesized to represent various intrinsic frequency
dispersion models for a normal metal at room temperature. For
the elementary lumped-element circuits to be valid, the distance of
propagation ∆z must be very much shorter than the wavelength λ of
the electromagnetic wave within the metal. The resulting transmission

µ µ

ε ε

R
L

G C
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L
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∆z<<λ

∞

Freef space Homogeneous material at room temperature

Figure 1. Generic equivalent transmission line model for a
homogeneous material at room temperature showing distributed-
element parameters.
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line model analogy is useful for giving a pedagogical insight into the
behaviour of the electromagnetic waves as they try to propagate into
a normal metal at room temperature. In addition, it can be used as
a general predictive model for characterizing both the reflection and
transmission characteristics of the metal.

2.1. Classical Skin-effect Modelling

With the over-simplified classical skin-effect model, familiar to
microwave engineers, electron scattering relaxation and displacement
current terms are ignored (i.e., ωτ ∼= 0 and ωεo

∼= 0, respectively) and
for normal metals at room temperature the constitutive parameters
are represented by the following: µ → µo; ε → εo

∼= 0; σ → σo,
where σo is the bulk conductivity at dc. As a result, the characteristic
impedance Zoo is now given by the well-known textbook expression
for the classical skin-effect model surface impedance ZSo (associated
variables for this model are indicated by the suffix “o”):

Zoo =

√
Ro+jωLo

Go+jωCo

and γo ≡Ro+jωLo

Zoo
=

√
(Ro+jωLo) (Go+jωCo)

Zoo ⇒ηIo =
√

jωµo

σo
⇒ ZSo ≡ (RSo + jXSo) [Ω/square]

(5)

where XSo ≡ RSo; RSo ≡ <{ZSo} =
√

ωµo

2σo
[Ω/square]; LSo ≡

={ZSo}
ω =

√
µo

2ωσo
[H/square].

Therefore, the distributed-element parameters for the classical
skin-effect model become:

Ro = 0; Lo = µo; Go = σo; Co = εo
∼= 0

µ Lo

∆z<<λ

µo

∞

so

Rsoσo σo

o

Figure 2. Equivalent transmission line model for the classical skin-
effect model.
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The equivalent one-dimensional uniform transmission line model of
Fig. 1 simplifies to that shown in Fig. 2. It is interesting to note that
these parameters are frequency invariant, but with σo ∝ τ there is a
strong temperature dependence.

2.2. Classical Relaxation-effect Modelling

With the accurate classical relaxation-effect model, more familiar
with physicists, displacement current can still be ignored at terahertz
frequencies but scattering relaxation cannot be and so the constitutive
parameters are represent by the following: µ → µo; ε → εo

∼=
0; σ → σR = σo

1+jωτ . The intrinsic frequency behavior of the bulk
conductivity has exactly the same form as the transfer function of a
first-order Butterworth (maximally-flat) R-C low-pass filter (having
a monotonically changing magnitude frequency characteristic with
−20 dB per decade roll off response, beyond its −3 dB cut-off frequency
at fτ = 1/(2πτ), where the time constant for this filter is τ = RC). The
characteristic impedance ZoR is now given by the classical relaxation-
effect model surface impedance ZSR (associated variables for this
model are indicated by the suffix “R”):

ZoR =

√
RR + jωLR

GR + jωCR

and γR ≡ RR + jωLR

ZoR
=

√
(RR + jωLR) (GR + jωCR)

ZoR⇒ηIR
∼=

√√√√ jωµo[
σo

1+(ωτ)2

]
+jω

[
−τσo

1+(ωτ)2

] ⇒ ZSR ≡ (RSR+jXSR)

(6)

where RSR ≡ <{ZSR} = RSo
(1+ξ ωτ) ; LSR ≡ ={ZSR}

ω = RSo
ω (1 + ξ ωτ).

ξ =
√√

u−4 + u−2 + u−1 − u−1 and u = (ωτ) (7)

Note that the uniquely-defined variable ξ in (7) can greatly simply
analytical expressions. From (6), the distributed-element parameters
for the classical relaxation-effect model become:

RR = 0; LR = µo; GR =
σo

1 + (ωτ)2
;

CR =
−τσo

1 + (ωτ)2
+ εo

∼= −τσo

1 + (ωτ)2

The resulting equivalent one-dimensional uniform transmission line
model of Fig. 1 can now be represented by the new model shown in
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Fig. 3(a). It is interesting to note that there is now a strong dependence
with both temperature and frequency for the shunt elements and the
complete distributed-element model. As an alternative solution, the
elementary lumped-element circuit in Fig. 3(a) can be reconfigured,
such that the negative distributive shunt capacitance is transformed
into an equivalent positive distributive shunt inductance:

LSHUNT R ≡ −1
ω2CR∆z2

=
1 + (ωτ)2

ω2τσo∆z2
[H/m] (8)

The resulting alternative distributed-element model is shown in
Fig. 3(b). By inspection, it can be seen that Fig. 3(b) represents a
more realistic model, as the negative shunt capacitance in Fig. 3(a) is
avoided.

(b)

(a)

Figure 3. Equivalent transmission line models for the classical
relaxation-effect model.

Table 1. Circuit-based simulation results for gold at room
temperature (with ωτ = 1, depth l = λR, ∆z = λR/400 = 1.067 [nm]).

Equivalent

Transmission 

Line model

Elementary Lumped-element Circuit Values ZIN [ ] τ pR 

[fs/λR] 

from (9)

RR . ∆z 

[ ] 

LR

[fH] 

GR

[mS] 

CR

[fF] 

LSHUNT_R

[pH]

ZT = ZSR

Fig. 3(a) 1.341 24.1 −0.654  0.4607 + j1.137 170.491 

Fig. 3(b)  1.341 24.1  1.126 0.4607 + j1.137 170.491

_
_ _

_

. ∆z . ∆z . ∆z . ∆z 

Ω

Ω
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Figure 4. Calculated values of surface impedance for gold at room
temperature.

The surface impedance for gold at room temperature (having
σo = 4.517 ∗ 107 [S/m], τ = 27.135 [fs], µr = 0.99996 ∼= 1 [3]) is shown
in Fig. 4, for different intrinsic frequency dispersion models. When
compared to the classical skin-effect model, with reference to Fig. 2, it
can be deduced that the introduction of the shunt inductance accounts
for the higher values of surface inductive reactance [6]. Moreover,
using network analysis, it can be shown that the shunt inductance also
accounts for the lower values of surface resistance [6]. Here, the shunt
inductive reactance effectively couples more energy into the following
section and, therefore, less energy is dissipated in the preceding section.

It is important to note that while many variations of the generic
equivalent transmission line model in Fig. 1 can be synthesized, either
by combining (1) with (3) or (2) with (4), they are only limited
to predicting either the surface impedance or propagation constant,
respectively. In contrast, Fig. 3 represents two models that have
been synthesized using both the combination of (1) with (3) and (2)
with (4), and can therefore be used as a general predictive model for
characterizing both reflection and transmission characteristics.

For example, with gold at room temperature, at ωτ = 1 and with
a depth l = λR, it can be shown through general material calculations
that ZSR =

√
jωµ/σR = 0.4608+j1.1124 [Ω/square], γR = jωµ/ZSR =√

jωµσR = 35.532 + j14.719 [µm−1], λR = 2π/={γR} = 426.898 [nm]
and transit time propagation delay τpR = ={γR}· l/ω → 1/fτ = 2πτ =
170.494 [fs/λR]. Using commercial circuit simulation software (AWR’s
Microwave Office R©), as expected, the reflection characteristic of input
impedance ZIN for 400 cascaded elementary lumped-element circuit
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sections, terminated at the far end with an impedance ZT = ZSR,
is equal to ZSR. Also, the corresponding transmission characteristic
of propagation delay per unit wavelength can be calculated from the
following circuit-based equations.

τpR =
l

vpR
→ λR

vpR
=

1
f

[s/λR]

where λR =
2π

={γR|Fig. 3}
; vpR =

ω

={γR|Fig. 3}
γR|Fig. 3 =

√
jωLR(GR + jωCR)

=

√
jωLR

(
GR − j

1
ωLSHUNT R∆z2

)
≡

√
jωµσR

(9)

The results from this circuit-based approach are given in Table 1 and
these can be compared with the previous materials-based calculations.
It can be seen that there is excellent agreement, which further improves
as λR/∆z increases.

2.3. Simple Relaxation-effect Modelling

Because of limitations found with some electromagnetic simulation
software (i.e., not being able to utilize the imaginary part of bulk
conductivity), the results from the simple relaxation-effect model are
generated instead of those from the intended classical relaxation-
effect model [6]. With this erroneous simple relaxation-effect model,
the constitutive parameters can be represent by the following: µ →
µo; ε → εo

∼= 0; σ → σR ′ = σo

1+(ωτ)2
. As a result, the characteristic

impedance is now given by the simple relaxation-effect model surface
impedance ZSR′ (associated variables for this model are indicated by
the suffix “R′”):

ZoR′ =

√
RR′ + jωLR′

GR′ + jωCR′

and γR′ ≡ RR′ + jωLR′

ZoR′
=

√
(RR′ + jωLR′) (GR′ + jωCR′)

ZoR′⇒ηIR′ ∼=
√

jωµo

σR′
=

√√√√ jωµo[
σo

1+(ωτ)2

] ⇒ ZSR′ ≡ (RSR′+jXSR′)

(10)
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Figure 5. Equivalent transmission line model for the simple
relaxation-effect model.

Therefore, from (10), the distributed-element parameters for the simple
relaxation-effect model become:

RR′ = 0; LR′ = µo; GR′ =
σo

1 + (ωτ)2
; CR′ = 0

The resulting equivalent one-dimensional uniform transmission line
model of Fig. 1 is represented by the model shown in Fig. 5. Once
again, there is a strong dependence with both temperature and
frequency for the shunt element and the complete distributed-element
model.

When compared to the classical skin-effect model, with reference
to Fig. 2, it can be seen that the simple relaxation-effect model is
similar, but the shunt conductance is lower and now also frequency
dependent. Obviously, the lower shunt conductance will account for the
higher surface resistance found in Fig. 4 [6]. Moreover, using network
analysis, it can be shown that the lower values of shunt conductance
in Fig. 5 will increase coupling into the following section. As a result,
more inductance will be seen by the preceding stage and this accounts
for the higher surface inductive reactance found in Fig. 4 [6].

When compared with the classical relaxation-effect model, it can
be seen that the simple relaxation-effect model is similar, but with the
shunt inductance removed from the elementary lumped-element circuit.
Since the simple relaxation-effect model is inherently erroneous it will
not be considered further.

3. KINETIC INDUCTANCE MODELLING

Given a metal strip with a rectangular cross section, having physical
dimensions of length L, width W and thickness T , the associated
geometrical resistance RGo and inductance LGo for this uniform strip
are given by:

RGo =
1
σo

(
L

WT

)
[Ω] and LGo =

1
ωσo

(
L

WT

)
∝ (ωτ)−1 [H] (11)
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With the classical skin-effect model, at high frequencies such that
the thickness dimension corresponds to a uniform current distribution
given by the normal skin depth δSo, these become:

RGo≡RSo

(
L

W

)
when T→δSo

where RSo =
1

σoδSo
[Ω/square] (12)

LGo≡LSo

(
L

W

)
when T→δSo

where LSo =
1

ωσoδSo
=

XSo

ω
[H/square] (13)

The geometrical inductance LGo, corresponds to the internal magnetic
inductance associated with the energy stored in the external magnetic
field. However, with the classical relaxation-effect model, it will be seen
that in addition to LGo, kinetic inductance is created from the inertial
mass of a mobile charge carrier distribution within an alternating
electric field. This additional inductance is normally associated with
superconductors [9, 10]; however, as will be seen here, it can also serve
to give a useful pedagogical insight into how the classical skin-effect
and relaxation-effect models differ, within a normal metal at room
temperature, as well as providing a useful variable for simplifying
analytical expressions.

The force F exerted by an electric field having an intensity E
on an electron with charge e is given by F̂ = e Ê. Therefore, the
time-average momentum of the inertial mass of an electron within a
uniform dc electric field, 〈p̂〉 =

∫ τ
0 F̂ (t) dt = eτ Ê. Also, 〈p̂〉 = m〈v̂d〉,

where m is the mass of the electron and 〈v̂d〉 is the time-average drift
velocity for the inertial mass of an electron. The conduction current
density is Ĵc = Ne 〈v̂d〉 [A/m2], where N is the volume density of free
electrons. Therefore, the well-known expression for the dc case gives
Ĵc = (Ne2τ/m) Ê ≡ σoÊ and so σo = (Ne2τ/m) ∝ τ .

A mobile charge carrier distribution will have an inertial mass that
tries to oppose any change in electromotive force. The kinetic energy
stored by the inertial mass of this electron distribution can be equated
to that stored by a magnetic field and, therefore, represented by an
equivalent geometrical kinetic inductance LGk for the metal strip. The
kinetic energy density EDk is given by EDk = 0.5(Nm)〈vd〉2 [J/m3].
Therefore, the kinetic energy, Ek = EDk(LWT ≡ 0.5LGkI

2, where
the transport current is given by Î = Ne〈v̂d〉(WT ). As a result, the
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following expression for LGk can be extracted:

LGk =
( m

Ne2

)(
L

WT

)
≡ τ

σo

(
L

WT

)
6= f(ωτ) [H] (14)

From (11) and (14), it can now be seen that the geometrical kinetic
inductance is directly proportional to the geometrical inductance for
the uniform metal strip, with the constant of proportionality given by
(ωτ); a term which is directly proportional to the frequency of the
driving electromagnetic fields and inversely proportional to physical
temperature.

∴ LGk≡(ωτ) LGo (15)

LGk≡Lk

(
L

W

)
when T → δo

where Lk =
τ

σoδSo
= τ RSo [H/square] (16)

Here, the kinetic surface inductance Lk is also directly proportional to
the surface inductance from the classical skin-effect model, with the
constant of proportionality given by (ωτ) :

∴ Lk ≡ (ωτ) LSo (17)

It can be easily shown, using (17) with (6) and (8), that both shunt
elements within the elementary lumped-element circuit of Fig. 3(b) are
related to the kinetic series inductance, as given in (18):

GR≡ σo[
1+

(
Lk
LSo

)2
] and LSHUNT R ≡ constant ·

[
1+

(
LSo

Lk

)2
]

(18)

It is interesting to note that, with the classical relaxation-effect model,
the imaginary part of bulk conductivity is also directly proportional to
its real part, with the constant of proportionality given by (ωτ), and,
therefore, also related to the kinetic series inductance:

σ′′R = (ωτ) σ′R and σ′′R =
(

Lk

LSo

)
σ′R (19)

It can be clearly deduced that CR, LSHUNT R, LGk, Lk and σ′′R are all
insignificant when ωτ ¿ 1, i.e., as found with the classical skin-effect
model.

Now, for the classical relaxation-effect model, the surface
impedance ZSR is given by the following [6]:

ZSR = ZSo

√
1 + jωτ = RSo

(
x + j

1
x

)
(20)
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x =
√√

1 + u2 − u;
1
x

=
√√

1 + u2 + u

From (6), it can be seen that:

ZSR =RSo

[
1

(1 + ξ ωτ)
+ j (1 + ξ ωτ)

]

XSR =XSo + ξ Xk = ωLSR where Xk = ωLk

(21)

Therefore, from (13) and (21), with the classical relaxation-effect
model, the surface inductance LSR can be given by the following
expression:

LSR =LSo + ξLk = LSo (1 + ξωτ)

LSo =µ

(
δSo

2

)
∝ (ωτ)−1/2 and Lk =

τ

σoδSo
∝ (ωτ)+1/2 (22)

In terms of kinetic inductance, it can also be shown that:

RSR =
LSo

(LSo + ξ Lk)

(
Lk

τ

)
and XSR =

(
1 + ξ

Lk

LSo

)(
Lk

τ

)
(23)

Frequency plots of surface reactance for both the classical skin-
effect and relaxation-effect models are shown in Fig. 6(a) for gold at
room temperature. The contribution to the latter from the kinetic
surface inductance is also given. Of major significance, in terms
of further simplifying analytical expressions, it has been found that
the variable ξ = f(ωτ), given by (7), is equal to a constant value
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Figure 6. Calculated values for gold at room temperature: (a) surface
reactance Xs and (b) corresponding surface inductance Ls = Xs/ω.
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a =
(√

1 +
√

2− 1
)

at ωτ = 1. This constant value of a will give
zero error at ωτ = 1 for the calculated values of surface inductance
and reactance, but these errors increase to 2.39% as ωτ increases
to 2. However, it has been found empirically that a constant value
of a = 0.539 will result in a worst-case error of only 0.96% from
dc to ωτ = 2. The result of this approximation is also shown in
Fig. 6. It can be seen that there is an excellent fit between the
results using this approximation and the exact solution using ξ, for
the classical relaxation-effect model for 0 ≤ ωτ ≤ 2. Fig. 6(b) shows
all the corresponding plots for the equivalent surface inductance, given
in (22). Here, the surface inductance associated with energy stored in
the actual external magnetic field decreases as a function of (ωτ)−0.5;
while that associated with kinetic energy stored by the inertial mass
of the electron distribution increases as a function of (ωτ)+0.5. Indeed,
the kinetic surface inductance will dominate the classical skin-effect
surface inductance above ωτ = 1, i.e., at fτ = 1/(2πτ) = 5.865THz
shown in Fig. 6, and therefore kinetic inductance cannot be ignored at
terahertz frequencies.

4. Q-FACTOR MODELLING

As its name suggests, the electrical quality (or Q)-factor usually
represents a useful figure-of-merit by which materials, components or
circuits can be compared in terms of their power loss. This section
adopts this concept for analytical purposes. It has been found that the
Q-factor represents a useful variable for the simplification of algebraic
expressions associated with the mathematical modelling of intrinsic
frequency dispersion within normal metals at room temperature.

4.1. Material Q-factor

Defining the Q-factor for a material Qm is usually reserved for
a dielectric or semiconductor, and represented by the following
expression:

Qm =
1

tan δ
=

∣∣∣∣
<{εr effective}
= {εr effective}

∣∣∣∣ (24)

However, the same concept can be applied to normal metals at room
temperature. Given the following general material relationships for
equivalent conductivity σequivalent = (σ + jωε) ≡ jωεoεr equivalent,
refractive index n = √

µrεr equivalent ≡ n′ − jn′′, surface impedance
ZS =

√
jωµ/σequivalent = ηoµr/n and propagation constant γ =

jωµ/ZS =
√

jωµσequivalent = jω
√

µεoεr equivalent = γon, (where,
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ηo =
√

µo/εo and γo = jω
√

µoεo are the intrinsic impedance and
propagation constant, respectively, for a plane wave in free space), it
can be seen that the following represent equally valid definitions for
the Q-factor of a normal metal at room temperature:

Qm =
<{

n2
}

={n2} =
<{

γ2
}

={γ2} =
={σequivalent}
<{σequivalent} =

−<{
Z2

S

}

={
Z2

S

}

⇒
{ ≡ 0 for Qmo

> 0 for QmR
(25)

4.2. Component Q-factor

Defining the unloaded Q-factor for an electrical component Qc is
usually reserved for a physical passive device or resonant circuit (given
a reactance Xc and equivalent series loss resistance Rc or alternatively
a susceptance Bc and equivalent parallel loss conductance Gc) and
represented by the following:

Qc =
|Xc|
Rc

=
|Bc|
Gc

(26)

However, again, the same concept can be applied to normal metals at
room temperature, since its surface impedance has both resistive and
reactive parts:

Qc =
={n}
<{n} =

<{γ}
={γ} =

={ZS}
<{ZS} ⇒

{ ≡ 1 for Qco

> 1 for QcR
(27)

For a normal metal, Qm and Qc are interrelated by the following
expressions:

Qm =
∣∣∣∣
1−Q2

c

2Qc

∣∣∣∣ and Qc = Qm +
√

1 + Q2
m (28)

For the classical relaxation-effect model, it can be shown that:

QmR ≡ (ωτ) and QcR ≡ 1
x2

= (1 + ξ QmR) 2 (29)

Both material and component Q-factors are plotted in Fig. 7 for gold
at room temperature, where it can be seen that for the classical
relaxation-effect model they simplify greatly to QmR = 1 and QcR =
(1 +

√
2), respectively, at ωτ = 1 and also QcR ≈ 2QmR = 2(ωτ)

when ωτ À 1. It is interesting to note that, with the former
relationship for QcR, when given the measured optical constants
against either frequency, wavelength, wavenumber or energy, ωτ = 1
can be determined when n′′/n′ = (1 +

√
2).
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In terms of surface inductances, it can also be shown that:

QmR ≡
(

Lk

LSo

)
and QcR ≡

(
LSR

LSo

)2

(30)

It will be seen that these Q-factor terms can be very useful for
simplifying analytical expressions. For example, using (29), the
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expression for surface impedance in (21) can be greatly simplified to
the following:

ZSR = RSo

(
1√
QcR

+ j
√

QcR

)
= RSR (1 + j QcR) (31)

Also, the propagation constant per unit wavelength of the electromag-
netic fields as they try to propagate into a normal metal at room tem-
perature is given by the following:

e−γRλR = e−2π γR/={γR} = e−2π(QcR+j) → e−2π(1+
√

2)[Np/λR]
at ωτ = 1 (32)

As another example, with both distributed-element models in Fig. 3,
since ∆z ¿ λR, the unloaded component Q-factor for a single
elementary lumped-element circuit can be shown to be equal to the
material Q-factor as follows:

QcR (∆z ¿ λR) ⇒ |ωCR|
GR

=
1

(GR∆z) (ωLSHUNT R∆z)
= (ωτ) ≡ QmR

(33)

5. MODELLING WITH COMPLEX SKIN DEPTH

For the electromagnetic wave, as it tries to propagate into a normal
metal at room temperature, the relationship between propagation
constant γ, normal skin depth δS , wavelength λ and complex skin
depth δc are shown below:

γ ≡ α [Np/m] + jβ [radians/m]

δS =
1
α

[m] and λ =
2π

β
[m] and δc =

1
γ
≡ δ′c − jδ′′c [m]

(34)

where α and β are the attenuation and phase constants, respectively.
For the classical skin-effect model, these become:

γo ≡ βo(1 + j) where αo = βo

δSo =
1
αo

and λo =
2π

βo
=2πδSo and δco =

1
γo

=
δSo

2
(1− j)

(35)

At low frequencies, normal skin depth for the classical skin-effect model
δSo = 1/(σoRSo) is widely quoted in both textbooks and research
papers. For the classical relaxation-effect model the relationships
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become:
γR ≡ βR(QcR + j) where αR = βRQcR

δSR =
1

αR
= <{δcR}

(
1 +

1
Q2

cR

)
and λR =

2π

βR
= 2πδSR ·QcR

δcR =
1
γR

= <{δco}
(√

QcR − j
1√
QcR

)
= ={δcR} (QcR − j )

(36)

The various skin depths and wavelengths for gold at room temperature
are plotted in Fig. 8, for the two classical intrinsic frequency dispersion
models. In addition, for comparison, the wavelength in free space has
also been included; highlighting the fact that electromagnetic waves
within gold at room temperature are effectively slowed down by a
factor of approximately 500. It can be seen in Fig. 8 that, with the
classical relaxation-effect model, the normal skin depth is less than
that calculated with the classical skin-effect model, i.e., δSR < δSo,
below ωτ = (1 − ξ)/ξ2 ≈ 1.587 and δSR > δSo above this frequency.
Also, <{δcR} = δSo at ωτ = 1/ξ ≈ 1.855.

Apart from calculating the minimum acceptable thickness of
shielding metal walls and guided-wave structures, complex skin depth
is far more meaningful than the normal skin depth, because it takes
the phase constant into account, as well as being a useful variable for
simplifying analytical expressions.

One striking feature in Fig. 8 is that, well beyond its turning
point at ωτ = 1/

√
3 ∼= 0.5774, the classical relaxation-effect model

wavelength increases proportionally with frequency. This is counter
intuitive but, nevertheless, mathematically correct because it can now
be easily determined that this wavelength is given by the following
expressions:

λR = 2π={δcR}
(
1+Q2

cR

)
=

λo

2

(
1 + Q2

cR√
QcR

)
→ constant ·

(
Lk

Lso

)
∝ ωτ

when ωτ À 1 (37)
Other examples of how exact analytical expressions can be greatly
simplified using complex skin depth terms will now be given. For
instance, the conduction current density Jc(z) for a normal metal at
room temperature decays exponentially with distance z into the metal,
according to the complex exponent term −z/δc, from its surface value
Jc(0) given by:

Ĵc(0) [A/m2] =
ĴS [A/m]

δc [m]
(38)

where JS is the surface current density. As other examples, for the
classical relaxation-effect model, the surface impedance, phase velocity,
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surface inductance and component Q-factor can all be represented
simply by using complex skin depth terms:

ZSR = jωµ δcR = ωµ (={δcR}+ j<{δcR})

and vpR =
ω

βR
= ω

|δcR|2
={δcR} [m/s] (39)

LSR = µ<{δcR} and QcR =
<{δcR}
={δcR} =

(<{δcR}
<{δco}

)2

(40)

A more practical example can be found with the unloaded Q-factor for
an air-filled metal-pipe rectangular waveguide cavity resonator. It can
be shown that, for the special case of a half-height cavity resonator
having equal internal width and length spatial dimensions, with non-
magnetic (i.e., µr = 1) normal metal walls at room temperature, the
unloaded Q-factor QU for the dominant TE101 mode at its resonant
frequency ωoR can be represented by the following:

QuR(ωoR)|TE101
∼= Internal V olume [m3]

Internal Surface Area [m2]·={δcR(ωoR)}[m]
(41)

This expression is both intuitive and elegant. The more general
form of (41), for the relaxation-effect model, was previously reported
without any formal proof [6] and a full derivation has recently been
given [7] using some of the tools outlined in this paper.

6. CONCLUSION

This paper has introduced various interrelated electrical engineering
concepts as tools for characterizing the intrinsic frequency dispersive
nature of normal metals at room temperature. This engineering
approach dramatically simplifies otherwise complex analysis and allows
for a much deeper insight to be gained into the classical relaxation-
effect model. For example, it explains how wavelength can increase
proportionally with frequency at higher terahertz frequencies. While
relatively simple examples have been given here to show how algebraic
expressions can be dramatically simplified, similar benefits can also be
achieved with more complicated analytical problems [7].

This is the first time that such an approach has been developed for
the modelling of intrinsic frequency dispersion within a metal. While
the focus has been on the characterization of normal metals (magnetic
and non-magnetic) at room temperature, it is believed that the same
methodology may also be applied to metals operating in anomalous
frequency-temperature regions, superconductors, semiconductors,
carbon nanotubes and metamaterials.
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