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Abstract—The paper deals with the evaluation of the far-field
radiated emissions from high-speed interconnects when the frequencies
are such that the distribution of the currents along the traces is no
longer of TEM-type. Instead of a computationally expensive numerical
full-wave model, here a generalized transmission line model is used
to obtain the current distributions. This full-wave transmission line
model is derived from an integral formulation and is here extended
to include in efficient way the layered media Green’s Functions.
The proposed tool is successfully benchmarked to references given in
literature and case-studies of practical interest are carried out, referring
to a coupled microstrip, driven either by differential and common mode
currents. This analysis highlights the existence of a transition range
where the error made by evaluating the emission using the classical
transmission line current distribution is still negligible. Here a rule
of thumb is derived which provides a simple criterion to estimate this
extension of the range of validity of the classical transmission line.

1. INTRODUCTION

The study of the unwanted radiated emissions from PCB interconnects
is a classical topic which has been deeply investigated in the past.
Usually such interconnects have been described within the frame
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of the circuit and/or the transmission line model. Due to the
increasing signal frequencies, microstrip interconnects may exhibit
non-negligible unwanted radiation which must be properly considered
in the design and verification of high speed circuits (e.g., [1, 2]).
For electrically short interconnects many semi-analytical models and
simple formulas are available for the upper bounds of differential and
common mode radiated emissions (e.g., [1, 3]). In nowadays high-
speed PCBs operating in the GHz range some of the above models
are inadequate and some of the classical results of the EMC analysis
have to be revised. High-order effects have to be taken into account,
related to finite size, discontinuities, parasitic modes and dielectric
behavior. These effects are, in principle, catched only through a full-
wave analysis. This kind of analysis could be performed through a full
numerical model derived from any of the available numerical methods,
like Finite Elements [4], Method of Moments [5] or Partial Element
Equivalent Circuit [6]. For these applications integral approaches
to Maxwells equations are widely used, because of their advantages
over differential formulations: limited discretization region, naturally
imposed regularity conditions and easy field-to-circuit coupling, e.g.,
[7, 8]. The key point for an accurate evaluation of the fields is
the use of the proper Green’s function of the structure. Under
reasonable approximations, for layered media it is possible to give
closed form expressions to the Green’s functions in spectral domain
(e.g., [9]), but their evaluation in the frequency domain has a high
computational cost (e.g., [10]). As a consequence, although a highly
efficient implementation of these models may be obtained, the solution
of the full-wave electromagnetic problem is computationally expensive
and provides a low qualitative insight in the solution, since all the above
effects are combined. Therefore, many authors have proposed hybrid
approaches able to couple the accuracy of the full-wave models to the
simplicity of the Transmission Line (TL) one [11–13]. An example of
this approach is given in [13], where the radiated far field emitted by a
differentially-driven microstrip is computed assuming that the current
distribution along the traces is the TL model solution, i.e., assuming
the propagation along the line to be of TEM type.

Following this stream, in this paper the Authors extend a recently
proposed full-wave transmission line model in order to evaluate the
far-field radiated emissions from PCBs when the frequencies are such
that the propagation along the traces is no longer of TEM type. The
starting point is the Enhanced Transmission Line (ETL) model [14–
17], which provides the full wave current distribution in the frequency
ranges of interest. This model has been presented in [14] and [16] for
coupled microstrip with homogeneous dielectrics. A first attempt to
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extend the model to inhomogeneous dieletrics is given in [17].
Section 2 is devoted to the integral formulation used for the far-

field emission evaluation. A semi-analytical evaluation of the Green’s
functions is proposed, in order to obtain an accurate and efficient
inclusion of the layered media. The approximated Green’s Functions
are then included in the ETL model for coupled microstrips, as shown
in Section 3. The ETL model is then used to evaluate the full-wave
current distribution along the traces. In Section 4, first a benchmark
test is reported, then a case study is carried out, referring to a
symmetric coupled microstrip. One of the results of this analysis is
a practical criterion to establish an upper frequency bound to which
the TL currents may still be used with negligible errors.

2. RADIATION FIELDS FROM PCB TRACES

Let us consider the microstrip of Fig. 1, of total length l, made by two
signal conductors above a dielectric layer and a PEC ground plane. Let
us assume the signal and ground trace to be ideal conductors and the
slab to be made by ideal dielectric with dielectric constant ε, magnetic
permeability µ and thickness h. Let Js and σs indicate the superficial
current and charge densities. In the frequency domain the magnetic
vector potential A and the electric scalar potential ϕ may be computed
at any position as follows:

A (r) = µ0

∫∫

S

GA

(
r, r′

) · Js

(
r′

)
dS, (1)

ϕ (r) =
1
ε0

∫∫

S

Gϕ

(
r, r′

)
σs

(
r′

)
dS, (2)

(a) (b)

Figure 1. A coupled microstrip interconnect: (a) Cross-section; (b)
references for the evaluation of the radiated electric field.
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where GA and Gϕ are the Green’s functions defined for the domain
of interest, ε0 and µ0 are the vacuum space dielectric constant and
magnetic permeability, S represents the union of all the surfaces Sk.
The electric field is then given by

E = −iωA−∇ϕ, (3)

in the following the Lorenz gauge is assumed. The evaluation of the
Green function’s is performed following the stream of what done in [16].
The GA is in general dyadic, but if the conductors thickness is negligible
and the current density may be assumed to be mainly directed along
the longitudinal axis (x-axis), it reduces to the xx component Gxx

A
only. A way to reduce the computational cost of the Green’s functions
is their decomposition in two parts:

• the quasi-static terms GA,qs and Gϕ,qs

• the dynamic terms GA,dyn and Gϕ,dyn

The first terms dominate the local range interactions, whereas the
second ones dominate the far field zone. Similar decompositions are
used in [21]. In this paper, we consider microstrip dimensions of the
order of mm and frequencies up to 10 GHz. For these frequency and
size ranges, according to the criterion given in [18], in evaluating the
current distributions along the microstrip line we may approximate
the complete Green’s Functions with their quasi-static terms. This
approximation reduces dramatically the computational cost, since
the quasi-static terms may be evaluated analytically. The numerical
computation of the dynamic parts, instead, would require a complex
fitting procedure leading to at least around 10 cylindrical waves
(Hankel functions), e.g., [18, 19].

Therefore, in the following we adopt the analitical approximations
for the Green’s Functions:

GA(ρ; z, z′) ≈ GA,qs =
1
4π

e−ik0r

r
− 1

4π

e−ik0r1

r1
, (4)

Gϕ(ρ; z, z′) ≈ Gϕ,qs =
1 + K

4π

e−ik0r

r
+

K2 − 1
4π

∞∑

n=1

Kn−1 e−ik0rn

rn
, (5)

where ρ is the distance in the plane xy, z and z′ are, respectively, the
horizontal positions of the observe and the source, k0 = ω

√
ε0µ0 is the

vacuum space wavenumber and

r =
√

ρ2 + (z − z′)2, rn =
√

ρ2 + d2
n (6)

dn = z + z′ + 2nh, K =
1− εr

1 + εr
. (7)
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In the far field zone, instead of computing the complete Green’s
functions, the parallel ray far field approximation is used because the
trace widths are small with respect to the wavelength, i.e., k0wi ¿
1, i = 1, 2. In this condition, according to [13], the far electrical field
radiated from the n-th microstrip trace can be computed as follows:

E (rn) =
iωµ0

4π

e−ik0rn

rn
Fxn

l∫

0

In(x)eikxxdx+Fzn

h∫

0

(
In (0)−In(l)eikxl

)
cos(k0υnz)eikzzdz


,(8)

where a local coordinate system (rn, θ̂n, φn) is defined, centered at one
end of each trace, In is the current on the n-th microstrip

Fxn = (Ry − 1) cos θn cosφn θ̂ + (Rh − 1) sinφn φ̂, (9)

Ry =
1− i υn

εr cos θn
tan(k0υnh)

1 + i υn
cos θn

tan(k0υnh)
, (10)

Rh =
1 + i υn

cos θn
cot(k0υnh)

1− i υn
cos θn

cot(k0υnh)
, (11)

Fzn =
(Ry + 1) sin θn

εr cos (k0υnh)
θ̂, (12)

υn =
√

εr − sin2 θn. (13)

If the dielectric is electrically thin compared to the wavelength (i.e., if
h ¿ λ), Equation (8) becomes

E(rn)=
iωµ0

4π

e−ik0rn

rn


Fxn

l∫

0

In(x)eikxxdx+Fzn

(
In(0)−In(l)eikxl

)
h


, (14)

The total electrical field is E =
2∑

n=1
E (rn). If the propagation along

the microstrip is of TEM type the current distribution along the trace
is provided by the TL solution and Equation (14) may be analytically
evaluated [13].

3. CURRENT DISTRIBUTIONS

The full-wave current distributions along the traces of the microstrip in
Fig. 1 may be obtained numerically with different approaches (MoM,
FEM, BEM techniques), which usually do not provide qualitative
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insight in the solution. An elegant alternative is given by the use of
generalized TL models, which extend to full-wave ranges the validity
of the classical TL solutions. An enhanced transmission line (ETL)
model able to describes the conditions analyzed in this paper has been
proposed by the Authors in [14–17]. Let us denote with I(x), V(x),
Q(x) and Φ(x) the vectors of the current, voltage, electrical charge and
magnetic flux distributions, per unit length (p.u.l.), along the line. The
ETL model is given by the following equations:

dI (x)
dx

+ iωQ (x) = 0, −dV (x)
dx

= iωΦ (x) , (15)

Φ(x) = µ0

l∫

0

HI(x− x′)I(x)dx′, (16)

V(x) =
1
ε0

l∫

0

HQ(x− x′)Q(x)dx′. (17)

In the Standard Transmission Line (STL) model, relations (16)
and (17) are replaced by the usual local relations

Φ(x) = LI(x), V(x) = C−1Q(x), (18)
being L and C the p.u.l. inductance and capacitance matrices, re-
spectively. Therefore the ETL model differs from the STL in the spa-
tial dispersion introduced by the convolutions in Equations (16), (17),
whose kernels are given by the matrices:

H ip
I (ζ) =

1
ci

∮

li

dsi

∮

lp

GA

(
si, s

′
p; ζ

)
Fi

(
s′p

)
ds′p, (19)

H ip
Q (ζ) =

1
ci

∮

li

dsi

∮

lp

Gϕ

(
si, s

′
p; ζ

)
Fi

(
s′p

)
ds′p, (20)

with p, i = 1, 2. Here lm, cm and sm (with m = p, i) are respectively
the cross-section contour of the generic conductor, its length and a
curvilinear abscissa along it.

This approach is possible when the characteristic transverse
dimensions of the conductors are electrically short, (i.e., when (t ¿ λ))
and the characteristic dimensions of the terminal devices are small
compared to the interconnect length. Assuming the dielectric thickness
h (see Fig. 1) as the characteristic dimension in the cross section,
the above condition sets the highfrequency validity limit for the ETL
model:

kh ≈ 5, (21)
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being k the wavenumber, which could be expressed in terms of the
propagation velocity c:

k =
ω

c
, (22)

When the frequency goes to zero and the interconnect length goes to
infinity, this model reduces to the STL one. The upper frequency
bound for the STL is given by [17]:

kh ≈ 0.1 (23)

For lower frequencies, the solutions obtained from STL and ETL
models agree. For the evaluation of the emissions it is useful to recast
the problem in terms of differential and common mode components,
usually denoted as mixed-mode variables. To this purpose let us define
the differential model variables as follows:

Id (x) ≡ I1 (x)− I2 (x)
2

, Vd (z) ≡ V1 (x)− V2 (x) , (24)

Qd (x) ≡ Q1 (x)−Q2 (x)
2

, Φd (x) ≡ A1 (x)−A2 (x) , (25)

and the common mode variables as:

IC (x) ≡ I1 (x) + I2 (x) , VC (x) ≡ V1 (x) + V2 (x)
2

, (26)

Qc (x) ≡ Q1 (x) + Q2 (x) , Φc (x) ≡ A1 (x) + A2 (x)
2

. (27)

The mixed-mode STL model is simply given by:

dIM (x)
dx

= −iωCMVM ,
dVM (x)

dx
= −iωLMIM (x), (28)

where the common and differential mode voltage VM (x) and current
vectors IM (x) and are defined according to Equations (24)–(27) and
the p.u.l. mixed mode matrices, are given by

CM = ACB−1, LM = BLA−1, (29)

being

A =
[

1/2 −1/2
1 1

]
, B =

[
1 −1

1/2 1/2

]
. (30)

In the general case, the differential and common modes propagate
with different velocities and characteristic impedances. The velocities
cCM and cDM may be computed as 1/

√
λk, k = 1, 2, where λk are

the eigenvalues of the matrix LMCM . This approach is rigorous for
symmetric interconnects, like in our case-study, since the common
and differential modes are decoupled. For asymmetric interconnects
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this procedure gives approximated values of the velocities. In the
following we use the velocity c = min {cCM , cDM} for evaluating the
frequency ranges. From condition (23), the frequency f0 above which
the propagation could no longer be described by the STL model is:

f0 ≈ 0.0159
c

h
. (31)

Note that the ETL model itself may be easily recast in terms of these
mixed-mode variables, as shown in [16].

(a) (b)

Figure 2. Benchmark test: Radiation diagrams for (a) 0.08 GHz,
l\λ = 0.05 and (b) 4.94GHz, l/λ = 3.
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Figure 3. Case-study: STL and ETL solutions for the differential and
common mode input impedances.
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(a) (b)

(c)

Figure 4. Case-study, radiation diagrams: (a) 5 GHz, STL and ETL;
(b) 9 GHz, ETL; (c) 9 GHz, STL.

4. RESULTS

The accuracy and consistency of the distribution of currents provided
by the ETL model has been deeply analyzed in [17]. Therefore in the
following the solution obtained by using the ETL current distribution
will be assumed as the full-wave solution. Here a benchmark test is
carried out with the only purpose to validate the procedure (8)–(14)
leading to the far-field computation. The test case is taken from [13]
and refers to a single-trace microstrip with w = 0.51 cm, h = 0.775mm
a total length of 10.16 cm, εr = 4.6. Let us assume the boundary
conditions: I(x = 0) = 1 [a.u.] and I(x = l) = 0. In Fig. 2,
we show the radiation diagram computed at 0.08 GHz and 4.94GHz:
these conditions correspond to those analyzed in ([13]), reported as
l\λ = 0.05, l\λ = 3 and ρL = 1. A satisfactorily agreement between
Fig. 2 and the results shown in ([13]) is obtained. Similar results may
be obtained for the other cases analyzed in this reference.

Let us now investigate the case-study of a symmetric microstrip
with typical dimensions [20]: w = w1 = w2 = 0.1mm, h = 1 mm, a
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total length of 10 mm, ideal conductors and εr = 4.4. Fig. 3 shows
the input impedance of the coupled line, computed for a differential
mode and for a common mode feeding at x = 0 (the terminations at
x = l are left open). Condition (31) provides an upper frequency limit
for the STL solution which is 2.7GHz. However, Fig. 3 suggests that
the STL solution may be used for higher frequencies, since it deviates
from the full-wave one only when approaching the first resonances.
Let us refer to the emitted fields computed at a distance of 3 m (far-
field region). Fig. 4 shows the radiation diagrams evaluated at 5 and
9GHz, assuming a differential mode feeding: IDM (x = 0) = 1mA (the

Figure 5. Radiated field in the plane x-z at 5 GHz (differential mode).

Figure 6. Radiated field in the plane x-z at 9 GHz (differential mode).
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terminations at x = l are left open). At 5 GHz the approximated
solution obtained by using the STL current distribution along the
traces agree with the full-wave one (Fig. 4(a)), whereas some differences
may be observed at 9 GHz (Figs. 4(b) and 4(c)). In order to appreciate
better these differences, let us cut the radiation diagrams in the plane
x-z, as in Figs. 5, 6. Now the difference at 9 GHz between the two
solution is more evident.

The same behavior may be observed for the common-mode
(ICM (x = 0) = 1mA), see Figs. 7, 8.

Figure 7. Radiated field in the plane x-z at 5 GHz (common mode).

Figure 8. Radiated field in the plane x-z at 9 GHz (common mode).
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The above results confirm that the STL solution may be used
also in non-TEM ranges if the frequency is enough far from the
resonances. The resonance frequencies in a coupled microstrip as the
one in Fig. 1 are in general different for the two modes, since their
velocities are different. Once again, assuming c = min {cCM , cDM} the
first resonance for a line of length l occurs at

fr =
c

2l
. (32)

Therefore we propose the following simple rule of thumb: compute
the frequencies f0 and fr: if f0 < fr we can keep on using the STL
solution for frequencies up to fr. For the analyzed case-study we have
f0 = 2.7GHz and fr = 8.6GHz. Note that fr is strongly influenced by
the line length. If we assume l = 30mm we get fr = 2.9GHz, hence
limiting the range where we can still use the STL solution. Fig. 9 shows
the radiated field in the x-y plane solution at 3 GHz for the differential
mode: it is evident that for this frequency we can no longer use the
STL solution.
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Figure 9. Radiated field in the plane x-z at 3 GHz (differential mode,
length l = 30 mm).

5. CONCLUSIONS

In this paper, the far field emission from high-speed PCB interconnects
is evaluated by means of an hybrid model, which conjugates the
simplicity of the transmission line model to the accuracy of a full-wave
solution. Indeed the current distributions along the traces are obtained
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from a generalized transmission line model, which is here enhanced by
means of an efficient inclusion of the layered Green’s Functions. Using
these currents, the far field emission is computed by using the parallel
ray far field approximation. Among the other results, a simple criterion
is established, to check whether the classical transmission line solution
may be still adopted although in non-TEM frequency ranges.
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