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Abstract—Numerical results are presented for single-mode guidance,
which is based on photonic band gap (PBG) effect, in one-dimensional
planar all-dielectric light-guiding systems. In such systems there may
be two kinds of light-speed point (the intersection of a mode-dispersion
curve and the light line of guiding region ambient medium): One
is the intrinsic light-speed point that is independent of the guiding
region width, and the other is the movable light-speed point that varies
with the guiding region width. It is found that the intrinsic light-
speed point plays an important role to form the single-mode regime
by destroying the coexistence of the lowest guided TM and TE modes
that are born with a degeneration point. A mode-lost phenomenon is
exposed and this phenomenon suggests a way of how to identify PBG-
guided fundamental modes. Quasi-cutoff-free index-guided modes in
the PBG guiding structures are examined, which appear when the
higher-index layers are adjacent to the guiding region and the guiding
region width is small. The transverse resonance condition is derived
in the Maxwell optics frame, and it is shown that there is a significant
revision to the traditional one in the ray optics model. A sufficient
and necessary condition for intrinsic light-speed points is given, which
provides strong support to the numerical results.

1. INTRODUCTION

In all-dielectric light-guiding systems, single-mode propagation of
light by photonic band gap (PBG) effect [1, 2] has aroused extensive
interest [3–9]. Such single-mode guidance was first demonstrated by
experiments for two-dimensional (2D) honeycomb PBG fibers [3], and
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subsequently it was also predicted in an analysis of an all-dielectric
coaxial waveguide [4]. Planar periodically stratified uniform medium
inserted with an empty channel, called Bragg reflection waveguide [10],
is the simplest 1D PBG all-dielectric light-guiding system, and it has
been investigated in various approaches [10–17]. In such a symmetric
guiding system, however, the possibility of single-mode guidance has
never been reported due to the coexistence attribute of guided TM and
TE modes [17].

In a typical PBG planar light-guiding system, as shown in Fig. 1,
two symmetric bilayer periodical dielectric structures perform as PBG
mirrors to confine light in the guiding region that has a lower refractive
index [10, 11]. The light line of the guiding region ambient medium,
which is often used in an analysis of dispersion curves, is defined
by ω/c = kz/n0 on the kz-ω/c plane, where ω (> 0) is the angular
frequency, c is the vacuum light speed, kz is the axial wave number,
and n0 is the guiding region refractive index. A light-speed point is
defined as the intersection of a mode-dispersion curve and the light
line, and at this point the wave phase velocity vph = ω/kz is equal to
the light speed c/n0. There may be two kinds of light-speed points in
the planar guiding structures. One is termed to be “intrinsic” light-
speed point, which does not move on the kz-ω/c plane when the guiding
region width changes; the other is termed to be “movable” light-speed
point, which moves when the guiding region width is adjusted.

Figure 1. One-dimensional all-dielectric PBG light-guiding system,
consisting of a guiding region and two symmetric half-infinite bilayer
periodical structures. Λ1 (> 0) and Λ2 (> 0) are, respectively,
the thickness of the first and second layers; n1 and n2 are their
corresponding refractive indices. The structure period is Λ = Λ1 + Λ2,
and the width and refractive index of guiding region are, respectively,
Λ0 and n0.

A single-mode regime refers to a frequency range within which
there is only one non-degeneration guided mode, that is, single-
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polarization single-mode [18]. According to the band area where the
single-mode frequency range is located, the single-mode regime can be
divided into two kinds in the planar PBG guiding systems. The first
kind of single-mode regime is defined as the single-mode frequency
range that is located within the PBG reflector’s band or the band part
above the light line of the guiding region ambient medium (called “light
line” for short in all of what follows unless specified); namely reflector-
band single-mode regime [confer Fig. 2(c)]. The second kind of single-
mode regime is defined as the single-mode frequency range that is
extended over the full band, no matter above or below the light line;
namely full-band single-mode regime (confer Fig. 5). The reflector-
band single-mode regime is a conditional single-mode frequency range,
where the other modes out of the reflector’s band need to be suppressed
by controlling the polarization and/or location of exciting source, while
the full-band single-mode regime is a complete single-mode frequency
range, where no other modes can be existent in principle. Apparently,
the full-band single-mode regime has a narrower frequency range.

A cutoff-frequency difference of lowest two adjacent modes is
often used to judge a single-mode regime. Recently, a mode analysis
approach based on the transverse resonance condition [17] has been
developed and it can be used for examining the mode cutoff frequencies,
but it is only applicable to the fast-wave modes wholly above the
light line, because all the slow-wave modes below the light line, no
matter how close to the light line a slow-wave mode is, are artificially
“cut off”, although those “cutoff” modes may be existent strongly,
and some of those slow-wave modes have been suggested for particle
acceleration [19, 20]. Accordingly, this approach [17] is not suitable for
identifying a real cutoff-frequency difference of two adjacent modes.
Moreover, due to the complexity of the distribution of dispersion curves
for PGB guiding structures, usually one cannot predict under what
conditions the cutoff-frequency difference has a maximum employable
frequency range and how well the light field can be confined in the
guiding region for this range. To reliably explore the existence of single-
mode guidance, it is necessary to examine the evolution of the complete
mode structure and the field distributions of potentially usable modes
by using a field-solution method.

The planar all-dielectric light-guiding system [10, 11] actually
is a transversely periodical boundary-value problem in classical
electromagnetic theory, where two perfect conducting planes of the
parallel-plate waveguide are replaced by two symmetric periodic
structures. Usually, PBG-guided TM and TE modes are born in
pairs with a degeneration point, and the fundamental modes cannot
be separated if the parameters of the periodic structures and guiding
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region are not properly taken. In this paper, extending our previous
work [21], we would like to present numerical results from a field-
solution method, showing the existence of single-mode regime in the
planar all-dielectric guiding system [10, 11].

Unlike 2D and 3D PBG structures where pure numerical
simulations are needed, the planar guiding system is easier to handle,
and may provide a deep insight of physics. Asymptotic analysis
indicates that the large-radius cylindrical Bragg fiber is analogous to a
planar structure [19] and a better understanding of the physics in the
planar structure has a fundamental importance. In this study, through
examining the single-mode guidance we present some new fundamental
properties of the planar PBG guiding structure, which include: (1)
Mode degeneration points, (2) mode-lost phenomenon, and (3) the
revised transverse resonance condition in Maxwell optics model.
These fundamental properties are helpful in further understanding the
physics of PBG guiding structures, and also play a significant role
in the understanding of numerical results in a number of previous
publications.

The paper is organized as follows. In Section 2, classifications of
planar light-guiding systems and electromagnetic modes are described.
In Section 3, numerical results with theoretical analysis are presented,
and finally in Section 4, some conclusions and remarks are given.

2. CLASSIFICATIONS OF PLANAR LIGHT-GUIDING
SYSTEMS AND ELECTROMAGNETIC MODES

In the planar guiding systems, there are two types of modes, TM and
TE modes, and they only have three non-zero field components: Ex,
Ez, and Hy for TM modes, and Hx, Hz and Ey for TE modes. The
PBG light-guiding systems guide light at electromagnetic modes in
stop bands (band gaps). Similar to the refractive index guidance in
conventional optical fibers, the PBG guidance is another form of total
internal reflection [21]. General speaking, the mode structure in such
a dielectric system is quite complicated. But it is much simplified if we
divide all modes into two main groups. One is the fast-wave mode of
which dispersion curves lie within the light cone formed by the guiding
region ambient medium (confer Fig. 2), and the other is the slow-wave
mode of which dispersion curves lie outside the light cone. In the
guiding region, fast-wave mode fields are distributed in the form of
standing wave in the transverse (x-) direction, while slow-wave mode
fields vary exponentially. Although the planar light-guiding system
may propagate both fast and slow waves, only the fast-wave modes are
defined as PBG-guided modes in this paper, because only in such a
case all the transverse wave numbers both in the guiding region and
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periodic structures are real and the periodic structures perform as real
mirrors in a usual meaning.

As it is well known, the definition of mode order in regular
metallic waveguide systems is based on the sequence of zeros of a
proper function or its derivative, depending on the kind of boundary
condition [22]. In the planar bilayer guiding systems [11], besides mode
types (TM and TE), the mode property depends on the arrangement
of the layer’s wave impedance (µ/ε)1/2 in the periodic structures, with
µ and ε the layer’s permeability and permittivity respectively, because
the PBG mirrors with different wave impedance arrangements behave
themselves with different kinds of boundary conditions. Based on this,
the planar guiding systems, where all layers of the periodic structures
have the same permeability so that the wave impedance arrangement
can be described by their refractive index arrangement, can be divided
into two kinds. The first kind of planar guiding system is the one
where the refractive index n1 of the first layer (adjacent to the guiding
region) is larger than the second one n2 (confer Fig. 1); called first kind
of index arrangement. The second kind is the one where n1 is smaller
than n2 (confer Fig. 6); called second kind of index arrangement.

For the first kind of planar light-guiding system, the number of
zeros of Ex in the guiding region is used to define the mode order for
TM modes, while the number of zeros of ∂Hx/∂x is used to define the
mode order for TE modes. For the TMmn mode, with m the mode
order and n the stop band order, Ex has m zeros and it has the same
parity as m; namely, Ex is an even (odd) function of x when m is even
(odd). For the TEmn mode, Hx has m extremums (peaks), and it has
an opposite parity to m; namely, Hx is an odd (even) function of x
when m is even (odd).

For the second kind of planar light-guiding system, the number of
zeros of ∂Ex/∂x in the guiding region is defined to be the mode order
for TM modes, while the number of zeros of Hx is defined to be the
mode order for TE modes. For the TMmn mode, Ex has m extremums
in the guiding region and it has a parity opposite to the one of m. For
the TEmn mode, Hx has m zeros and it has the same parity as m.

It should be noted that, between the mode order definition
given here and the one given by Li and Chiang [17], there are
important differences. (i). The definition given here does not have
any dependence on the guiding region width and the band locations.
Especially, there is no minus mode order assigned, which is more
consistent with the traditional custom; the same TM-mode definition is
given for all band locations, including above and below the Brewster’s
line. (ii). The mode-order definition for the second kind of planar
guiding structures is also assigned.
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Brewster’s point deformed the band structure and twisted
dispersion curves. For the convenience of description, the part of the
first TM-stop band between the Brewster’s point and the kz = 0 line
is called “main first TM stop band” (confer Fig. 5), and the main first
TM stop band plus the first TE stop band is called “main first stop
band”. The main first stop band is the most interesting part and it
has a relatively simple mode structure.

In the zeroth stop band, the transverse wave number of the
lower-index layer of the bilayer unit cell is imaginary, leading to
traditional total internal reflection. Accordingly, the zeroth stop band
is virtually an index-guiding band, and it has a mode structure which is
essentially different from the main first stop band, but, to some extent,
similar to the one in the (index-guiding) single channel dielectric
waveguide [11, 18]. When the higher-index layers are adjacent to the
guiding region and the guiding region width is small, the planar PBG
guiding system may present complicated “mixing PBG-index-guided”
mode structures, with some unfamiliar slow-wave modes appearing
in the zeroth stop band (confer Fig. 2), because in such a case the
guiding system looks like, in a macro scale, a large dielectric slab with a
refractive index peak at the central part — A macro-effect of refractive-
index distribution [18]. When the guiding region width is large enough,
almost all slow-wave modes will disappear. An informative numerical
example for a pure PBG-guided TE-mode structure is demonstrated
in [21], where all modes are fast-wave modes, located above the
light line of the guiding region ambient medium, or within the PBG
reflector’s band.

PBG-guided mode dispersion curves shift down towards the low
frequency side when the guiding region width increases [21]. It has been
shown analytically that, no matter for a fast- or slow-wave mode, the
decaying field in the periodic structure is characterized by a decaying
factor multiplied by a periodic function that has double the period of
the structure if the band order is odd, or has the same period as the
one of the structure if the band order is even [21]. It was also shown
by Li and Chiang [17] that, for the fast-wave mode field component,
the number of the zeros per period in the periodic structures is equal
to the band order.

Suppose that φL and φR are the arguments of the reflection
coefficients of the left and right PBG mirrors (see Fig. 1), and φ0 =
2k

(0)
x Λ0 is the round-trip shift phase in the guiding region for a guided

TMmn or TEmn mode, where the transverse wave number k
(0)
x is real

(> 0) for PBG-guided modes. The round-trip shift phase φ0 satisfies
the inequality 2(m + 1)π > φ0 ≥ 2(m− 1)π for m ≥ 1, or 2π > φ0 ≥ 0
for m = 0, because the phase difference between two adjacent zeros
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or extremums is π. Thus the mode order m is closely related to the
transverse resonance phase defined by φL − φR + φ0 in the Maxwell
optics model, resulting from the fact that φL − φR + φ0 satisfies the
transverse resonance condition φL − φR + φ0 = mTR(2π), where the
integer mTR can be (m − 1), m, or (m + 1) for m ≥ 1, and 0 or
1 for m = 0, with φR = −φL (see Appendix A). One important
difference between the boundary conditions on the metallic mirror and
the dielectric PBG mirror is in that the tangential (normal) component
of the electric (magnetic) field on the metallic mirror must be equal to
zero, while the field components on the dielectric PBG mirror do not
have such an independent-of-frequency locked relation with the zero
or extremum. In other words, the dielectric PBG mirror is a kind of
dispersive reflector. That is why the transverse resonance condition
and the mode order are not one-to-one corresponding [21], which also
has been confirmed by computations.

3. NUMERICAL RESULTS WITH THEORETICAL
ANALYSIS

In this section, two kinds of light-speed points in the planar PBG
guiding structures are presented and it will be seen why the lowest two
guided TM and TE modes can possess different kinds of light-speed
points. By combining the numerical results with theoretical analysis,
it will be seen how the lowest two modes can be separated to form
a single-mode regime, and it will be also seen why quasi-cutoff-free
(index-guided) all-slow-wave modes may appear when the higher-index
layers are adjacent to the guiding region. Some other slow-wave modes
appearing during the evolution of mode structures are presented as
well.

A necessary condition of the existence of significant single-mode
guidance regime is that the parameters of periodic structures are taken
so that an intrinsic light-speed point can be created on the TM01

mode within the main first TM stop band for the first kind of guiding
structure (Fig. 1). To this end, the dielectric constants for the bilayer
periodic structure in this numerical example are taken to be 21.2 and
2.6, corresponding to the refractive indices n1 = 4.6 and n2 = 1.6 [4].
The guiding region medium is taken to be empty (n0 = 1). In such a
case, the TM01-mode dispersion curve intersects the light line, as shown
in Fig. 2(a). This intersection point is an intrinsic light-speed point
and it is independent of the width of the guiding region. Consequently,
when the guiding region width increases, the intrinsic light-speed point
does not move and the whole TM01-mode dispersion curve only can
rotate around the intrinsic light-speed point and keeps itself getting
close to the light line; at the same time the whole TE01-mode curve is
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moving toward the allowed band, as seen in Fig. 2(b). For a proper
guiding region width, about 1.5 times the index period, almost the
whole TE01-mode curve is “lost” into the allowed band and a frequency
range of single-mode guidance in the reflector’s band is formed, as seen
in Fig. 2(c). However, if the width is too large, new modes are coming
out from the top stop band boundary so that the single-mode regime
disappears, as seen in Fig. 2(d).

From Fig. 2, two important conclusions can be drawn. (i). Guided
TM and TE modes in the main first stop band are born in pairs with
an identical frequency at kz = 0 (degeneration point) when the guiding
region width increases. The degeneration point comes from the fact
that, for a general planar PBG guiding structure no matter whether it
is symmetric, TM and TE modes at this point are both corresponding
to perpendicularly incident waves (TEM waves with respect to the x-
propagation direction) and they are completely the same physically,
except for a 90-degree difference of the fields in space [21]; in other
words, the two perpendicularly-incident TEM waves satisfy the same
wave equation and the same boundary conditions, thus leading to the
same dispersion equation and, of course, the same eigen frequencies as
long as they exist. (ii). By a proper choice of the system’s parameters,
the evolution of mode-curve distributions under the influence of the
intrinsic light-speed point may result in a unique dispersion curve to
live in a certain frequency range above the light line, that is, a reflector-
band single-mode regime.

One might question: Why is the intrinsic light-speed point
required? Computations show that, in the planar guiding structure
where the light line is below the Brewster’s line, there will be no
intrinsic light-speed point within the main first TM stop band, and
the TM01 mode will be “lost” into the allowed band with the TE01

mode together as the guiding region width increases, resulting in
that always at least one TM mode and one TE mode coexist at
the same frequency within the reflector’s band. This phenomenon
also can be clearly identified from the distributions of TE- and TM-
mode dispersion curves shown in the Figs. 7 and 9 of the recently
published work by Li and Chiang [17]. [In both their Figs. 7 and 9,
TE and TM modes have the same frequencies or V -values at b = −0.8
(corresponding to kz = 0). When b < −0.8 in their Fig. 7, k2

z < 0
must hold, leading to an imaginary kz, and no guided TE modes should
exist, that is, the parts of curves for b < −0.8 are not physical.]

To get a better understanding of why the intrinsic light-speed
point is “intrinsic”, let us take a look of its origin and feature. The
intrinsic light-speed point originates from the equation (t11 − σ)(t22 −
σ)/t12 = 0 or t21 = 0, where t11, t12, t21, and t22 denote the
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Figure 2. Evolution of mode structure with increase of the width
of guiding region. Left side of the kz = 0 line: TM mode; right
side: TE mode; kz > 0 for the both sides. White: Stop band; gray:
Allowed band. Periodic structure’s parameters: n1 = 4.6, n2 = 1.6;
Λ1 = 0.3µm, Λ2 = 2.15 µm; guiding region refractive index: n0 = 1.
(a) Λ0 = 0.02µm (0.008Λ), (b) Λ0 = 1µm (0.41Λ), (c) Λ0 = 3.6µm
(1.47Λ), and (d) Λ0 = 9.8µm (4Λ). The thickness ratio of the two
layers is taken so that the intrinsic light-speed point (ITS-LSP, solid
circle) is reasonably close to the top boundary of the first stop band to
improve the bandwidth of single-mode guidance. The zero-dispersion
point (ZDP, cross) shifts towards the low frequency side with the
increase of the guiding region width Λ0. The dashed box in (c) shows
the reflector-band single-mode regime. Properties of mode structure
in the PBG reflector’s band of the main first stop band: (i). Only
the fundamental TM01 and TE01 modes exist when Λ0 is small as
seen in (a) and (b); (ii). Every pair of guided TM and TE modes is
born with the same frequency at kz = 0 (degeneration point); (iii).
The fundamental TE01 mode completely disappears when Λ0 is large
enough as seen in (d) — Called “mode-lost phenomenon”; (iv). All
PBG-guided mode curves shift down towards the low-frequency side
as Λ0 increases.

elements of the real eigenmatrix T for a half-infinite bilayer periodic
structure (see Appendix B). It can be analytically shown that for
a planar bilayer periodic guiding system, a sufficient and necessary
condition for the discrete roots of t21 = 0 on the light line to satisfy
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their dispersion equation independently of the guiding region width is
|t11| > 1 (Appendix B).

Suppose Min(n1, n2) > n0 holds for the planar guiding structure;
that is, the guiding region has a lower refractive index. Inserting the
light-line expression kz = n0ω/c into t

(TM)
21 = 0 and t

(TE)
21 = 0, we

obtain
n10

n20

tan(n10k0Λ1)
tan(n20k0Λ2)

=
{ −ε(1)

/
ε(2), (TM mode)

−µ(1)
/
µ(2), (TE mode)

, (1)

where tan(n20k0Λ2) 6= 0, n10 =
√

n2
1 − n2

0, n20 =
√

n2
2 − n2

0, k0 = ω/c,
and ε(i) and µ(i) (i = 1, 2) are, respectively, the dielectric permittivity
and permeability in the bilayer unit cell. (In the following analysis,
µ(1) = µ(2) is assumed.) Obviously, the discrete frequency roots of
Eq. (1) are independent of the guiding region width. For the first kind
of index arrangement, only the TM-mode roots of Eq. (1) can make
| t11| > 1 hold, and these roots automatically satisfy their dispersion
equation independently of the guiding region width. Accordingly, all
the points (kz = n0ω/c, ω/c) in the kz-ω/c plane, corresponding to
the TM-mode discrete frequency roots, are intrinsic light-speed points.
To ensure that a root of Eq. (1) is located within the main first
TM stop band, the light line must be above the Brewster’s line to
pass through the main TM stop band (confer Fig. 5). That means
that n1/n0 > (1 + n2

1

/
n2

2)
1/2, or n1/n0 > n2

/
(n2

2 − n2
0)

1/2 must hold,
because the light line is given by k0/kz = 1/n0 while the Brewster’s
line [11] is given by k0/kz = (n2

1 + n2
2)

1/2
/
(n1n2). The intrinsic light-

speed point only can be found on the lowest even mode in a stop band,
and at this point the electromagnetic field in the guiding region has
a distribution with Ez = 0 and Hz = 0, that is, a TEM distribution.
Guided TM01 mode is the lowest even mode in the main first TM stop
band, and it can have the intrinsic light-speed point.

As mentioned in Section 1, there is another kind of light-speed
points that depend on the guiding region width — Movable light-speed
points; they are obtained by inserting kz = n0ω/c into the dispersion
equations and excluding those roots of Eq. (1) (if applicable). At such
a point, the field in the guiding region has a TM (Hz = 0) or TE
(Ez = 0) distribution, instead of TEM distribution. The movable
light-speed point for each TM- and TE-stop band only can be found
on the lowest odd mode. Guided TM11 and TE01 modes are the lowest
odd modes in the main first stop band, and they both can have the
movable light-speed point.

It is seen from the above that the intrinsic light-speed point is
a common root of t21 = 0 and the dispersion equation, while the
movable light-speed point is only the root of the dispersion equation.
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The condition t21 = 0 requires that the eigenvalue of the periodic
structure takes a special form (σ = t11 or t22), while the dispersion
equation rules the property of a guided mode; thus the intrinsic light-
speed point can be taken as a “resonance” point, at which the guided
mode displays an unusual feature.

To sum up, the fundamental TM01 (even) and TE01 (odd) modes
are the most interesting modes. TM01 mode can intersect the light line
only at the intrinsic light-speed point, while TE01 mode can intersect
the light line only at the movable light-speed point.

Now we can easily understand how the mode coexistence can
be destroyed. At first the TM01 and TE01 modes are born with a
degeneration point and both intersect the light line. The light-speed
point on the TM01-mode curve is an intrinsic light-speed point, and it
does not move when the guiding region width increases, as if the mode
curve were nailed up in the main first TM stop band and the intrinsic
light-speed point behaved like an “axis of rotation”. However, the light-
speed point on the TE01-mode curve is a movable light-speed point, and
the whole TE01-mode curve is movable so that it can be “lost” into the
allowed band. The TM01-mode curve is nailed up while the TE01-mode
curve is not, resulting in the destruction of the coexistence of TM01

and TE01 modes when the guiding region width is properly adjusted.
Obviously, if the “axis of rotation” (intrinsic light-speed point) were
not produced within the main TM stop band, the TM01-mode curve
would be rotated out of the main TM stop band.

It should be point out that the single TM-mode guidance in the
symmetric structure presented here is different from the single TE-
mode guidance in an asymmetric slab waveguide structure, where
two different PBG mirrors without a common first TM-stop band are
employed, no intrinsic light-speed point is required, and no restriction
is put on the guiding region width [23]; the two single-mode operations
are based on different mechanisms.

In numerical calculations, all dispersion curves were classified
with the mode order definitions given in this paper, and the field
distributions in periodic structures were confirmed to be consistent
with the analytic theory given in [21]. It is seen from Fig. 2(a)
that there are two all-slow-wave mode dispersion curves (TM00 and
TE10, both are lowest modes and even; no TE00 mode) along the
top boundary of the zeroth TM-TE stop band, which have never been
exposed [10–17]. Their appearance can be taken to be a result from the
macro-effect of refractive index distribution, as mentioned previously,
when considering that the vacuum guiding region width is so small
compared with the two adjacent high-index layers (0.02/0.6) so that
they behave as an averaged high-index core macroscopically. This can



76 Wang

explain why these modes look like the cutoff-free fundamental modes
in the traditional single-channel dielectric waveguide [11, 18], and also
can explain why they disappear when the guiding region width is large
enough, as seen in Figs. 2(c)–(d).

As shown in Fig. 2(a), TM01- and TE01-dispersion curves are
divided into two parts by the light line. The parts within the light cone
are of fast-wave modes, while the parts out of the light cone are of slow-
wave modes. It should be pointed out that the slow-wave mode still
agrees with the definitions of mode order and parity. Accordingly, only
low-order mode curves (m = 0 and 1) may intersect the light line while
high-order mode curves (m ≥ 2), which are of all-fast-wave modes,
never intersect the light line or extend out of the light cone, resulting
from the fact that the high-order mode fields at least have two zeros
or extremums in the guiding region while the slow-wave mode fields
only can have one zero or extremum due to the property of hyperbolic
functions.

It is seen from Fig. 2(c) that, along the bottom boundary of the
first TE stop band, the residual TE01 mode looks like overlapping with
the newly emerging TE11 mode. However the two mode curves never
intersect because they have different parities; in other words, there is
no degeneration between the modes of the same type. A small increase
in the guiding region width has little effect on the existence of the two
slow-wave modes, while too large an increase will bring about new
fast-wave modes coming out from the top band edge, resulting in a
smaller single-mode regime instead. These TE slow-wave modes have
different polarizations from the one of TM01 mode, and they are far
below the light line, with most of their EM energy weakly localized in
the periodic structures; thus they cannot be excited by the way that
is used for launching the guided TM01 mode.

As shown in Fig. 2(c), there is also a zero-dispersion point (group
velocity extremum) in the TM01 single-mode regime, like in the all-
dielectric coaxial waveguide case [4]. The normalized group velocity
and phase velocity around the zero-dispersion point is shown in Fig. 3.
It is seen that the zero-dispersion point has a maximum group velocity
of 0.83 and it has a frequency lower than the one of the light-speed
point. From (i)-point to (iii)-point, the relative wavelength range is
over 20% while the change of group velocity is only about 4%, showing
that the single-mode guidance has a wide frequency range.

Computations for different planar guiding structures show that
the zero-dispersion point can be at any side of the intrinsic light-speed
point, or they can overlap each other (confer Fig. 5), depending on
the structure’s parameters. When the guiding region width increases,
the zero-dispersion point shifts towards the low-frequency side, as seen
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in Fig. 2, for example. When the zero-dispersion point and intrinsic
light-speed point overlap, the TM01 mode has a TEM field distribution
in the guiding region, without any dispersion of group velocity.

A well-recognized implicit assumption for a loss-free waveguiding
system is that the energy velocity of a guided wave is equal to its
group velocity. The group velocity is calculated from the dispersion
equation that is decided by boundary conditions [22], while the energy
velocity is evaluated from EM field distributions [19]; they are both
structure parameters. This equivalency of energy velocity and group
velocity is confirmed in the planar light-guiding system, also shown
in Fig. 3. It should be indicated that, only the whole structure’s
energy velocity, instead of the unit cell’s energy velocity [24], is equal to
the group velocity, because the periodicity of the planar light-guiding
system is defected by the guiding region. The whole structure’s,
unit cell’s, and guiding region’s energy velocities are related through
βen = (β(cell)

en + β
(guid)
en ξ)

/
(1 + ξ), where ξ is the ratio of the stored

energy in the guiding region to the one in all the two half-infinite
periodic structures. The more strongly the EM energy is localized in
the guiding region, the larger the ratio ξ is, leading to the structure’s
energy velocity being closer to the guiding region’s energy velocity.
(Note: Only the whole structure’s energy velocity in the above three
is physical.)
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Figure 3. Normalized-to-vacuum-light-speed group velocity βgr,
energy velocity βen, and phase velocity βph for the fundamental TM01

mode in single-mode regime. Sample βen-points calculated from light-
field distributions excellently fit the βgr-curve. (i)- and (iii)-points have
the same group velocity. (ii)-point overlaps the zero-dispersion point
ZDP.

A single-mode regime without an effective light confinement does
not have a practical meaning. Band structure and dispersion-curve
distribution only can be used to check whether a single-mode regime is
formed; however, the quality of light confinement has to be estimated
by examining the field profiles. The field distributions at points (i),
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intrinsic light-speed point (ITS-LSP) is a TEM field distribution in the
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(b) PBG mirror reflection coefficient arguments φL and φR, and round-
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Note: φL and φR = −φL vary with frequency, signifying the dispersion
property of PBG mirrors.
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(ii), and (iii) in Fig. 3 are shown in Fig. 4(a). It is seen that the TM01-
mode light fields are strongly localized in the guiding region, with a
TEM distribution at the light-speed point. The transverse resonance
phase for the TM01 mode around the zero-dispersion point is shown
in Fig. 4(b). For this case, the resonance phase satisfies the transverse
resonance condition φL − φR + φ0 = 2mTRπ with mTR = 0, the same
as the mode order of TM01. Both the phase shift and the mirror phase
compensation are equal to zero after the intrinsic light-speed point,
because the TM01 mode has become a slow wave (imaginary k

(0)
x ). It

also can be seen from Fig. 4(b) that the PBG mirror is of dispersion,
unlike a perfect metallic mirror for which the argument of reflection
coefficient is a constant.

As we have seen, the single-mode regime shown in Fig. 2(c) is
a reflector-band single-mode regime because there are two slow-wave
modes left over along the first TE stop band edge. Computations
show that, the two slow-wave modes can be further pushed into the
allowed band to obtain a full-band single-mode regime by increasing
the layer’s thickness ratio Λ1/Λ2, but leading to the intrinsic light-
speed point shifting towards the low frequency side and a reduction in
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Figure 5. Mode structure for the planar bilayer PBG guiding system
with a full-band single-mode regime. All parameters are the same as
the ones in Fig. 2(c) except for the bilayer-unit-cell thickness radio
Λ1/Λ2, which is increased to 0.6/1.85 here. The dashed box shows the
full-band single-mode regime, and the intrinsic light-speed point (ITS-
LSP) overlaps the zero-dispersion point (ZDP). There are two nearly-
overlapping slow-wave modes below the Brewster’s line (not drawn),
labeled by TM(slow)

01,11 . The main first TM stop band is defined as the
band part between the Brewster’s point and the kz = 0 line. It can
be intuitively seen that, if the light line were not located above the
Brewster’s line, then the light line would not pass through the main
first TM stop band and there would be no intrinsic light-speed point
within the main first TM stop band.
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the single-mode frequency range; reducing by 47% when the thickness
ratio is increased to 0.6/1.85 from 0.3/2.15, as shown in Fig. 5.

The TEM field distribution in the guiding region is an unusual
feature as mentioned before. Mizrahi and Schächter have already
shown such a field distribution existing in the planar and coaxial
guiding systems that are called Bragg reflection waveguides with a
matching layer [25]. For a general guiding system, it is not easy to
obtain an analytical solution. Given below is a qualitative analysis of
why a TEM field distribution in the guiding region may be supported at
discrete frequencies in multi-all-dielectric PBG-mirror guiding systems.

As it is well known from the electromagnetic theory of
guided waves, longitudinally translationally invariant multi-conductor
microwave guiding systems can support TEM waves while hollow
metallic waveguides cannot support any TEM waves [22]. The all-
dielectric PBG guiding systems, which can support TM or TE modes
while have TEM field distributions in the guiding region at discrete
frequencies, can be thought to be evolving from their corresponding
multi-conductor microwave guiding systems by replacing all the
metallic mirrors with PBG dielectric mirrors. For example, by such a
replacement, the 1D planar guiding system [10] can be obtained from a
parallel-plate waveguide, while the all-dielectric coaxial waveguide [4]
can be obtained from a traditional metallic coaxial waveguide. Because
an ideal metallic mirror has no dispersion, the multi-conductor guiding
system may support a TEM wave at any frequency (the light line
and the TEM-wave dispersion curve overlap), while the PBG mirror
is of dispersion (confer Fig. 4) and the PBG guiding system only can
support a TEM field distribution in the guiding region at the frequency
of the light-speed point. The reason why the multi-conductor systems
can support a TEM wave results from the fact that the metal wall can
provide an axial conduction current Ic so that the Maxwell’s equation∮

H⊥ · dl = Ic is observed, where H⊥ is the magnetic field vector of
the TEM mode. In the corresponding PBG light-guiding systems,
there is no conduction current, but a non-zero displacement electric
current Ide =

∫∫
ε∂Ez/∂t dxdy can be supported by the PBG mirror,

where Ez is the axial electric field within the periodic structure (PBG
mirror) surrounded by all the closed magnetic field lines in the guiding
region. Since one of PBG mirrors is required to stand within all the
closed field lines in the guiding region in order to support a TEM field
distribution, the PBG guiding system must be made up of multi-PBG
mirrors. In the first kind of planar guiding system, the fundamental
TM01 mode at the light-speed point can have such a TEM distribution
in the guiding region because Ex of TM01 is an even function; for this
TEM distribution, all the magnetic field lines in the guiding region will
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be closed at the infinity.
However, unlike the perfect conductor mirror within which no

magnetic field can be supported, a PBG mirror may provide a non-
zero displacement magnetic current Idm = − ∫∫

µ∂Hz/∂t dxdy, where
Hz is the axial magnetic field within the PBG mirror surrounded
by all the closed electric field lines in the guiding region, so that
another Maxwell’s equation

∮
E⊥ · dl = Idm is observed. Consequently,

another kind of TEM field distribution can be supported by PBG
guiding systems. In the second kind of planar guiding system, the
fundamental TE01 mode at the light-speed point can have such a
TEM distribution in the guiding region because Hx of TE01 is an
even function. Computations show that the second kind of planar
guiding system has a smaller mode separation, as shown in Fig. 6,
and it is difficult to obtain a significant single-mode regime, which
is qualitatively consistent with the results in the all-dielectric coaxial
waveguide case [4]. It is also seen from Fig. 6 that the intrinsic light-
speed point is on the TE01 mode, because in such a case only the TE-
mode roots of Eq. (1) satisfy their dispersion equation independently
of the guiding region width (see Appendix B).
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Figure 6. Mode structure for the second kind of planar light-guiding
system that has exactly the same parameters as in Fig. 2(b), except
for the index arrangement. The TE01 mode has an intrinsic light-
speed point (ITS-LSP) instead. Compared with Fig. 2(b), this guiding
system has a smaller mode separation, with TM11 (above TM01) and
TE11 (above TE01) coming out from the top boundary and closely
following TM01 and TE01. On the bottom boundary, there is an
emerging all-slow-wave TM11 (below TM01) and it will disappear when
the guiding region width increase further. Note: the first and second
kinds of planar light-guiding systems have the same band structure.

In the above analysis by comparing the all-dielectric guiding
system with the multi-conductor guiding system, an implicit
assumption is used, where the magnetic (electric) field line on the
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PBG mirror surface is parallel to the mirror surface so that any
magnetic (electric) field line within the guiding region is closed. It
can be generally shown that, if one of two adjacent dielectric zones
supports a TEM field distribution while the other supports a TM (TE)
field distribution, then the common dielectric interface behaves as an
electric (magnetic) wall. Accordingly, this assumption is valid.

For a better understanding of the two kinds of TEM field
distributions in the guiding region at intrinsic light-speed points,
numerical examples are given in Fig. 7. We can see from Fig. 7
that, both the TM01 mode of the first kind of index arrangement and
the TE01 mode of the second kind have a TEM distribution in the
guiding region, respectively; when the index arrangement changes, the
mode parity is also changed. It should be point out that the lowest
mode (TE01) for the first index arrangement, as shown in Fig. 7, is
odd, instead of even as defined by Yeh et al. [10, 11] and West and
Helmy [15], where a large guiding region width has already squeezed

E
x
 a

n
d

 E
z
 (

V
/m

)

-90

0

90

180

TM01

Ex

Ez

1st

n1

n2

x (µm)
-6.0 0.0 6.0

E
x
 a

n
d

 E
z
 (

V
/m

)

-60

0

60

120

Ez

2nd

n2

n1

H
x
 a

n
d

 H
z
 (

A
/m

)

-0.5

0.0

0.5

1.0

TE 01

Hz

n1

n2

Hx

Ex

1st

x (µm)
-6.0 0.0 6.0

H
x
 a

n
d

 H
z
 (

A
/m

)

-0.3

0.0

0.3

0.6

2nd
Hz

n1

n2

Hx

Figure 7. Field distributions of the fundamental TM01 and TE01

modes at light-speed points in two different kinds of planar light-
guiding systems. The system’s parameters are the same as the ones
of Fig. 2(b) and Fig. 6, respectively. The TM01 mode of the 1st kind
of guiding system and the TE01 mode of the 2nd kind are TEM field
distributions in the guiding region. Ex-components of the 1st and 2nd
kinds have opposite parities, and so do Hx-components.
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the real lowest mode out of the first stop band. Note: Hx and Ey have
the same parity for TE modes [21].

Since the planar all-dielectric light-guiding system [10] and
the all-dielectric coaxial waveguide [4] are both dual PBG-mirror
guiding systems, they may support a TEM field distribution in the
guiding region. In contrast, the hollow-core all-dielectric cylindrical
waveguide [26] is a single PBG-mirror guiding system, and it cannot
support any TEM field distribution in the guiding region.

4. CONCLUSIONS AND REMARKS

By carrying out a detailed and systematic study of TM- and TE-
mode structures and field distributions, we have shown the existence
of single-mode guidance in the symmetric 1D all-dielectric PBG
light-guiding system, which was first proposed and analyzed in the
pioneering works [10, 11]. This single TM-mode guidance in the
symmetric structure presented here is different from the single TE-
mode guidance in an asymmetric slab waveguide structure [23]; they
are based on different mechanisms. An intrinsic light-speed point is
found, which plays an important role in destroying the coexistence
of the lowest TM and TE modes that are born with a degeneration
point (see Fig. 2). To get such single-mode guidance, the dielectric
parameters of periodic structures (PBG mirrors) should be taken so
that an intrinsic light-speed point can be created within the main first
TM stop band; this conclusion can be used to qualitatively explain why
the light line should be above the Brewster’s line in the all-dielectric
coaxial waveguide case as shown by Ibanescu and coworkers [4],
although the light-speed point there is not “intrinsic”. Based on a
deep analysis of the dispersion equations, we have proved a sufficient
and necessary condition for intrinsic light-speed points (Appendix B),
which provides strong theoretical support to the numerical results. We
also have exposed a macro-effect of refractive index distribution [18] in
the planar PBG guiding structures, in which quasi-cutoff-free index-
guided modes (TM00 and TE10 in Fig. 2) may appear in the zeroth stop
band when the higher-index layers are adjacent to the guiding region
and the guiding region width is small.

In the main first stop band, all guided TM01 (even), TM11 (odd),
and TE01 (odd) of the first kind of planar guiding structure, and TE01

(even), TE11 (odd), and TM01 (odd) modes of the second kind may
intersect the light line by a properly choice of the parameters of periodic
structures, but only the TM01 (even) mode of the first kind can be used
for single-mode guidance. However, TM11 (odd) mode of the first kind
and TM01 (odd) mode of the second kind could be used for particle
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acceleration [19, 20] or the generation of coherent Cherenkov radiation,
because they have symmetric axial electric fields and can be slow waves,
just like the modes in dielectric-loaded waveguides [27, 28]. As shown
in Fig. 2 for the first kind of planar guiding structure and Fig. 6 for
the second kind, the mode structures include not only TM slow- and
fast-wave modes but also TE slow- and fast-wave modes; accordingly,
to our best knowledge, they are the most complete out of the mode
structures that have ever been reported [17, 23, 25, 29].

It should be pointed out that, in the study of TM modes for control
of radiation pressure on mirrors, Mizrahi and Schächter also found the
intrinsic light-speed point on a TM mode in their matching-layer Bragg
reflection waveguide structure, where the lower-index layers (instead
of the higher-index layers) are adjacent to the guiding region [29],
while such an intrinsic light-speed point is only on the TE mode
in this paper, as shown in Fig. 6. This is because their matching
layer is an additional periodicity defect layer, functioning differently;
our numerical calculations have confirmed that such a matching-layer
structure [29] does not support any significant single-mode regime.

Theoretic analysis often plays a significant role in understanding
the results from computations where numerical errors are inevitable
and sometimes it is very difficult to judge whether a computational
result represents a new physics or is caused by the errors [28]. For
example, because of different parities the dispersion curves of two
adjacent modes of the same type never intersect theoretically, while
they may look like overlapping in computations [confer Fig. 2(c) and
Fig. 5]. Such a phenomenon also can be identified in the illustrations
of dispersion curves for the matching-layer Bragg reflection waveguide
structure [29].

Usually there is some form of mode degeneration in a symmetric
waveguiding system. For example, in the so-called “single-mode fiber”,
two orthogonal “polarizations” of the fundamental mode (HE11) have
a degeneration curve that is cutoff-free [18, 30], while in the symmetric
single channel dielectric waveguide [11], the TM and TE modes have
discrete degeneration points on the light line of cladding medium
(corresponding to the critical angle of total internal reflection) [30].
Interestingly, as shown concisely in this paper, even in a general
planar guiding system, no matter whether it is symmetric, the PBG-
guided TM and TE modes also have degeneration points on the
kz = 0 line that corresponds to perpendicular incidence. (The PBG
guidance can confine the perpendicular incident wave while the index
guidance cannot.) Such degeneration points have been confirmed by
computations and were also implicitly included in the illustrations
of dispersion curves of the recently published research works [17, 23].
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It is worthwhile to indicate that, to our best knowledge, it was Li
and Chiang who first presented both TM- and TE-mode (fast-wave)
dispersion curves at the same time [17], although the planar guiding
structure was proposed over thirty years ago [11].

We also have exposed a mode-lost phenomenon, where the
fundamental TE and/or TM modes may disappear when the guiding
region width is large enough. In a sense, the single-mode regime is
realized by taking advantage of the mode-lost phenomenon in such a
way that only the fundamental TE mode is allowed to be “lost” while
the fundamental TM mode remains, as shown in Fig. 2. Unfortunately,
this mode-lost phenomenon has puzzled the community for a long
time. For example, in some publications [10, 11, 15], the defined
“lowest mode” turned out to be not really the lowest, while in some
others [17], different fundamental-mode definitions were adopted for
different guiding region widths. Since the PBG-guided mode dispersion
curves shift down towards the low frequency side as the guiding region
width increases [21] and the mode-lost phenomenon may appear, it
is a good idea to identify and track the lowest modes starting from
an enough small guiding region width. Because of the PBG-mirror’s
dispersion property [confer Fig. 4(b) and Fig. A1], we suggest that the
mode-order definition be related to the parity of the lowest mode. If
the lowest mode is even (odd), the number of zeros (extremums) in the
guiding region is used to define the mode order. However the parity of
the lowest mode of the same type may change from one stop band to
another. For the sake of simplicity, a unified way of defining TM- or
TE-mode order is adopted in this paper, which is based on fitting the
PBG-guided modes in the main first stop band.

We have shown in the Maxwell optics frame that, for a symmetric
planar guiding structure the two PBG-mirror reflection coefficients
are conjugate complex numbers (see Appendix A), while they are
taken to be exactly the same in the ray optics model [17]. This
unexpected result has significantly revised the traditional transverse
resonance condition, which was first introduced by Li and Chiang to
study the dispersion relation for fast-wave modes in the planar guiding
structure [17]. As shown by theoretical analysis and confirmed by
computations in the paper, the mode order and the revised transverse
resonance condition are not one-to-one corresponding.

Because the mode properties strongly depend on the distributions
of refractive index, the classifications of the planar bilayer PBG guiding
systems and the definitions of the electromagnetic modes presented
in this paper may not be suitable for other bilayer PBG guiding
structures, such as the asymmetric slab waveguide structure where two
different PBG reflectors (mirrors) are employed [23], and the matching-
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layer Bragg reflection waveguide structure where the matching layer,
inserted between the guiding region and a quarter-wave stack periodic
structure, is usually an additional periodicity defect layer for providing
an extra degree of freedom to operate some specified mode at a
designed frequency and phase velocity [25].

APPENDIX A. TRANSVERSE RESONANCE
CONDITION

In this appendix, the transverse resonance condition is derived and
analyzed in the Maxwell optics frame, where all properties of light are
governed by Maxwell’s equations. Suppose that the x-component of
the electric fields for a pure TM-mode standing wave in the guiding
region can be written as [21]

E(x) = a0e
−ik

(0)
x x + b0e

+ik
(0)
x x

= 2 |a0| e+i 1
2
(θb+θa) cos

{
k(0)

x (x−xc)+
1
2

[
2k(0)

x xc+(θb−θa)
]}

, (A1)

where a0 = |a0| eiθa and b0 = |b0| eiθb with |b0| = |a0|, and xc =
(xL + xR)/2 is the guiding region center with xL and xR, respectively,
the left and right PBG-mirror locations.

The general reflection coefficient at any x in the guiding region is
defined as

Γ(x) = b0e
ik

(0)
x x/a0e

−ik
(0)
x x = cosφ(x) + i sinφ(x), (A2)

with its argument given by

φ(x) = 2k(0)
x x + (θb − θa). (A3)

Inserting x = xL for the left mirror and x = xR for the right mirror
into Eq. (A3), we obtain the arguments φL and φR.

If the structure is symmetric with respect to xc, from Eq. (A1) we
have 2k

(0)
x xc+(θb−θa) = 2sπ for even distributions, and 2k(0)

x xc+(θb−
θa) = (2s+1)π for odd distributions, with s an integer. Without loss of
generality, we suppose that (i). 2k

(0)
x xc +(θb− θa) = 0 for even modes,

leading to b0/a0 = exp[−ik
(0)
x (xL+xR)], and (ii). 2k

(0)
x xc+(θb−θa) = π

for odd modes, leading to b0/a0 = − exp[−ik
(0)
x (xL + xR)]. For the

even-mode case with (θb−θa) = −k
(0)
x (xL+xR), we have φL = −k

(0)
x Λ0

and φR = +k
(0)
x Λ0 where Λ0 = (xR − xL) is the guiding region

width. For the odd-mode case with (θb − θa) = −k
(0)
x (xL + xR) + π,

we have φL = −k
(0)
x Λ0 + π and φR = +k

(0)
x Λ0 + π. No matter
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for even or odd modes, the two mirror reflection coefficients are
conjugate, that is, Γ(xL) = Γ(xR)∗. In computations, however, the
arguments φL and φR are obtained from the expression Γ(xL,R) =
cosφL,R+i sinφL,R = cos(k(0)

x Λ0)∓i sin(k(0)
x Λ0) for the even mode case,

and − cos(k(0)
x Λ0)± i sin(k(0)

x Λ0) for the odd mode case, by calling an
intrinsic function, DATAN2(y, x) in Fortran math library for example,
which only gives the values from −π to π. Since the above two pairs
of conjugate complex numbers are symmetric with respect to the real
axis and the intrinsic function DATAN2(y,−1) is not continuous at
y = 0, we have φL = −φR (see Fig. 4 and Fig. A1) except for
Γ(xL,R) = −1 that leads to φL = φR = DATAN2(0,−1) = π. (If
Λ0 6= 0, Γ(xL,R) = −1 may take place only at discrete frequencies.)
Since φL = φR = π and (φL = π, φR = −π) are equivalent in math,
theoretically (not in computations) φL = −φR always holds in the sense
of ignoring a difference of an integer time 2π. It should be emphasized
that this conclusion is independent of the choice of a coordinate system
and it is surprisingly different from the traditional idea in the ray optics
that the two arguments should be exactly the same (including the sign)
due to the symmetry [17].

Since the round trip shift phase is defined by φ0 = 2k
(0)
x (xR−xL)

while the left- and right-mirror arguments are given by φL,R =
2k

(0)
x xL,R +(θb−θa) from Eq. (A3), we find that the original transverse

resonance condition φL − φR + φ0 = 0 is a natural result of Maxwell’s
equations, no matter whether the system is symmetric. However the
rule of counting φL and φR in practical calculations makes it equal to
an integer time 2π, that is, φL − φR + φ0 = mTR(2π), which can be
taken to be a generalization of the dispersion equation of a parallel-
plate waveguide [31]. It is seen that this transverse resonance condition
shows a revision to the traditional one in the ray-optics model [23].
When the PBG structure is symmetric, leading to φR = −φL as
mentioned above, the transverse resonance condition can be written
as 2φL + φ0 = mTR(2π) or −2φR + φ0 = mTR(2π), another revised
version of the one in [17].

As indicated in the previous work [21] and as shown by theoretical
analysis in this work, the transverse resonance condition and the mode
order are not one-to-one corresponding. Such a supporting numerical
example is shown in Fig. A1, where the TE31-mode dispersion curve
was given in [21]. From Fig. A1, it is seen that φ0 on the whole TE31-
mode curve changes from 6.38π to 5.94π. Because the change range in
φ0 is small, the guiding region always contains three extremums (confer
Fig. 2 of [21]).
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Figure A1. Profiles of φL, φR, and φ0, and the transverse resonance
conditions for TE31 mode with the mode order m = 3 and the
band order n = 1 [21]. φ0 changes from 6.38π to 5.94π through
6π. φL = −φR except for at φ0 = 6π. At φ0 = 6π (dashed line),
φL = φR = π, resulting from the discontinuity of the Fortran intrinsic
function DATAN2(y,−1) at y = 0. After the dashed line, φL and
φR exchange the sign. Note: (i). On the left of the dashed line,
φL−φR +φ0 = 8π with mTR = 4; (ii). At φ0 = 6π, φL−φR +φ0 = 6π
with mTR = 3; (iii). On the right of the dashed line, φL−φR+φ0 = 4π
with mTR = 2. The mode order m = 3 corresponds to three possible
transverse resonance conditions with mTR = 4, 3, or 2.

APPENDIX B. SUFFICIENT AND NECESSARY
CONDITIONS FOR INTRINSIC LIGHT-SPEED POINTS

In this Appendix, criterions for intrinsic light-speed points are
presented for a symmetric planar bilayer periodic guiding system
(confer Fig. 1). Regardless of even or odd modes [10, 11, 15], the TM-
and TE-mode dispersion equations in such a system can be uniformly
written in the real form of D(ω/c, kz) ≡ p11p22 − p12p21 = 0, where

p11 = cosφ0 − (t11 − σL)
t12

χ(0)

k
(0)
x

sinφ0, (B1)

p12 = −t12 cosφ1 − (t11 − σR)
χ(1)

k
(1)
x

sinφ1, (B2)

p21 = −k
(0)
x

χ(0)
sinφ0 − (t11 − σL)

t12
cosφ0, (B3)

p22 = −t12
k

(1)
x

χ(1)
sinφ1 + (t11 − σR) cos φ1, (B4)
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with χ = ε for TM mode and χ = µ for TE mode, the transverse
wave number k

(i)
x = (ω2ε(i)µ(i) − k2

z)
1/2, and φi = k

(i)
x Λi, (i = 0,

1, 2). The eigenvalue appearing in above Eqs. (B1)–(B4), satisfying
(t11 − σ)(t22 − σ) − t12t21 = 0, is chosen by following the physical
condition |σL| > 1 for the left mirror and σR = σ−1

L for the right
mirror [11], and the eigenmatrix elements tij (i, j = 1, 2) are given by

t11 = cosφ1 cosφ2 − χ(1)

k
(1)
x

k
(2)
x

χ(2)
sinφ1 sinφ2, (B5)

t12 =
χ(1)

k
(1)
x

sinφ1 cosφ2 +
χ(2)

k
(2)
x

cosφ1 sinφ2, (B6)

t21 = −k
(1)
x

χ(1)
sinφ1 cosφ2 − k

(2)
x

χ(2)
cosφ1 sinφ2, (B7)

t22 = cosφ1 cosφ2 − k
(1)
x

χ(1)

χ(2)

k
(2)
x

sinφ1 sinφ2. (B8)

It can be analytically shown [32] that, for the planar bilayer
periodic guiding system, a sufficient and necessary condition for the
discrete roots of t21 = 0 to be intrinsic light-speed points is |t11| =
[cos2(n20k0Λ2) + η sin2(n20k0Λ2)]1/2 > 1, where η = (ε(1)/ε(2))2τ for
TM mode, and η = (µ(1)/µ(2))2τ for TE mode, with τ = n2

20/n2
10.

Furthermore, the electromagnetic fields at the intrinsic light-speed
point have a TEM distribution in the guiding region. One might
question: Are all intrinsic light-speed points, that are existent, included
in the roots of t21 = 0? The answer is yes [32]. However, not necessarily
all the roots of t21 = 0 can be intrinsic light-speed points; those
roots, which also satisfy sin(n20k0Λ2) = 0 or tan(n20k0Λ2) = 0 so
that | t11 | > 1 cannot be fulfilled, are not intrinsic light-speed points.
Usually such situations take place for some particular bilayer guiding
structures; a quarter-wave stack guiding structure, for example.

What is happening if n1 = n0 or n2 = n0 (one of the layers of
the unit cell has the same refractive index as the guiding region) [17]?
When n1 = n0 or n2 = n0, we have η sin2(n20k0Λ2) = 0; consequently,
| t11 | > 1 cannot be fulfilled, and there is no intrinsic light-speed
point in such cases. In the following, with additional assumptions of
Min(n1, n2) > n0 and µ(1) = µ(2) imposed, an equivalent criterion
to judge the intrinsic light-speed point is given, which can be directly
derived from the above one. This criterion seems to be more convenient
for practical applications.

Suppose that Min(n1, n2) > n0 and µ(1) = µ(2) hold in a planar
bilayer periodic guiding system. This criterion states:
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(i). For TM mode, a sufficient and necessary condition for the
roots of t

(TM)
21 = 0 with tan(n20k0Λ2) 6= 0 to be intrinsic light-speed

points is

n1 > Max

(
n2,

n2n0√
n2

2 − n2
0

)
, (B9)

or

n1 < Min

(
n2,

n2n0√
n2

2 − n2
0

)
, (B10)

(ii). For TE mode, a sufficient and necessary condition for the
roots of t

(TE)
21 = 0 with tan(n20k0Λ2) 6= 0 to be intrinsic light-speed

points is
n1 < n2. (B11)

For the first kind of index arrangement (n1 > n2), only Eq. (B9)
can be fulfilled (n1 = 4.6, n2 = 1.6, and n0 = 1, for example), and only
TM-mode intrinsic light-speed points may exist, and further more, they
must be within the main TM stop bands (as shown in Fig. 2), because
Eq. (B9) requires that n1/n0 > n2/(n2

2 − n2
0)

1/2 hold, that is, the light
line be above the Brewster’s line. Inversely, if the light-line is below
the Brewster’s line (n1 = 1.45, n2 = 1.3, and n0 = 1, for example),
Eq. (B9) cannot be fulfilled and there is no any intrinsic light-speed
point to be produced.

For the second kind of index arrangement (n1 < n2), Eq. (B11)
is directly satisfied and the roots of t

(TE)
21 = 0 with tan(n20k0Λ2) 6= 0

are TE-mode intrinsic light-speed points. But, whether Eq. (B10) is
fulfilled depends on the choice of dielectric parameters. For example,
when n1 = 1.6, n2 = 4.6, and n0 = 1, Eq. (B10) cannot be fulfilled
although Eq. (B11) is satisfied, and there is no TM-mode intrinsic
light-speed point, as shown in Fig. 6. But Eq. (B10) and Eq. (B11)
can be fulfilled at the same time by a proper choice of parameters
(n1 = 1.3, n2 = 1.45, and n0 = 1, for example) so that both TE- and
TM-mode intrinsic light-speed points can exist; however, in such a
case, due to the requirement of n1/n0 < n2/(n2

2 − n2
0)

1/2 by Eq. (B10),
the light line is below the Brewster’s line and the intrinsic light-speed
point in the TM stop band is located out of the main TM stop band.

In conclusion, whether the intrinsic light-speed point can exist
and what kind of intrinsic light-speed point may exist, depend on the
choice of dielectric parameters in the periodic structure and the guiding
region.
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