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Abstract—In this paper we consider a novel class of Krylov
projection methods computed from the Lanczos biconjugate A-
Orthonormalization procedure for the solution of dense complex
non-Hermitian linear systems arising from the Method of Moments
discretization of Maxwell’s equations. We report on experiments on
a set of model problems representative of realistic radar-cross section
calculations to show their competitiveness with other popular Krylov
solvers, especially when memory is a concern. The results presented
in this study will contribute to assess the potential of iterative Krylov
methods for solving electromagnetic scattering problems from large
structures enriching the database of this technology.

1. INTRODUCTION

The quest of robust integral solvers for the Maxwell’s equations is a
critical component of the simulation in many realistic applications,
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such as the Radar Cross Section (RCS) calculation of arbitrarily
shaped objects like aircrafts, the design of radars and antennas,
the study of sources of brain activity in biomagnetic and bioelectric
inverse problems and many others. Boundary integral equations
reformulate the standard Maxwell’s equations in the frequency domain
and compute the electric and the magnetic currents induced on the
surface of the object whereas differential equation methods based
on conventional finite differences, finite elements or finite volume
techniques solve for the scattered fields. They require a simple
description of the surface of the target by means of triangular facets
(see an example of discretization in Figure 1), simplifying considerably
the mesh generation especially in the case of moving objects. Rapid
advances in computer technology and the introduction of novel
algorithms with limited computational and memory requirement are
giving a vigorous impulse to the development of boundary element
techniques for solving electromagnetic (EM) scattering problems in
two and three dimensions. From a linear algebra point of view,
the bottleneck of the computation is the solution of large dense
linear systems of equations generated by the Method of Moments
(MoM) discretization of the integral equation for a given value
of frequency [24]; MoM techniques are considered in many recent
EM studies, see e.g., [9, 16, 27, 37, 53]. Out-of-core dense direct
methods based on variants of Gaussian elimination can achieve
reduced algorithmic complexity by solving for blocks of right-hand
sides simultaneously [1, 7]. However, the memory cost of direct
methods may limit the size of the tractable problem to a few hundred
thousands unknowns on current computer systems. On the other
hand, iterative Krylov methods only require matrix-vector (M-V)
multiplications and can solve the problems of space. A straightforward

Figure 1. Example of surface discretization in an integral equation
context. Each unknown of the problem is associated to an edge in
the mesh. The geometry represents the ogive of a missile and has size
2.5m. Courtesy of EADS-CCR Toulouse.
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implementation of Krylov methods requires O(n2) memory storage,
where n is the number of unknows, yelding a solution for one excitation.
The Multilevel Fast Multipole Algorithm (MLFMA) [10, 11, 26, 50]
can speedup the M-V product operation required at each iteration
down to O(n log n) algorithmic and memory complexity depending
on the specific problem and implementation. Recent efforts to
implement multipole techniques efficiently on distributed memory
parallel computers have resulted in competitive application codes
provably scalable to several million discretization points, e.g., the FISC
code developed at University of Illinois [49–51], the INRIA/EADS
integral equation code AS ELFIP [54, 55], the Bilkent University
code [14, 15], urging the quest of robust iterative algorithms for this
problem class.

Many integral formulations for surface scattering and hybrid
surface/volume discretizations yield non-Hermitian linear systems that
cannot be solved using the Conjugate Gradient (CG) algorithm. The
GMRES method [43] (or sometimes its flexible variant FGMRES [41])
is broadly used in application codes due to its robustness and
smooth convergence, see e.g., the experiments reported in [6, 35]
for solving very large boundary element equations involving million
discretization points. On the other hand, iterative methods based
on Lanczos biconjugation, such as BiCGSTAB [56] and QMR [20]
can be cheaper in terms of memory requirements but may converge
more slowly especially on realistic geometries [6, 36]. Choice of
algorithm depends mostly on the specific application context and
on the selected computer architecture. In this paper, we consider
a novel class of Krylov projection methods based on the recently
developed Lanczos A-orthonormalization procedure for solving dense
complex non-Hermitian linear systems arising from the discretization
of EM scattering problems expressed in an integral formulation. The
first solver is named Biconjugate A-Orthogonal Residual (BiCOR).
Two variants of BiCOR are also considered, which do not require
multiplication by the Hermitian of A and may be well suited to use
in combination with multipole techniques. They are the Conjugate
A-Orthogonal Residual Squared (CORS) method and the Biconjugate
A-Orthogonal Residual Stabilized (BiCORSTAB) method, see [29]. To
the best of our knowledge, we are the first to report on this class
of Krylov methods and to analyse their performance for solvoing the
Maxwell’s equations. The paper is structured as follows. In Section 2,
we briefly introduce the Lanczos biconjugate A-orthonormalization
procedure and the CORS, BiCOR, BiCORSTAB algorithms. In
Section 3, we describe the integral equation context considered in
this paper. In Section 4, we illustrate some numerical experiments
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on a set of model problems arising in RCS calculation from complex
structures and we analyse their performance against other popular
algorithms derived from both Arnoldi orthogonalization and Lanczos
biconjugation. Finally, in Section 5, we draw some conclusions arising
from this study.

2. LANCZOS BICONJUGATE
A-ORTHONORMALIZATION FOR LINEAR SYSTEMS

Krylov subspace methods search for approximate solutions of the linear
system

Ax = b, A ∈ Cn×n non-Hermitian, x, b ∈ Cn, (1)

in Krylov subspaces of increasing dimension. Denoting by Ki(A; v) ≡
span{v, Av, . . . , Ai−1v} the Krylov subspace of dimension i generated
by A and v, the approximation xm at step m belongs to x0 + Km(A; v);
v is typically chosen to be the (normalized) residual vector r0 = b−Ax0.
We may write

xm = x0 + Vmym, (2)

where the columns of Vm are the basis vectors of Km(A; v), and
ym ∈ Cn is the vector of coefficients of the linear combination. Krylov
subspaces contain very good information about x because they are
intimately related to the inverse of A, see e.g., [28]. Various methods
differ in the way Vm and ym are computed. In the Ritz-Galerkin
approach, xm is computed such that b − Axm⊥Km(A; r0), leading
to methods such as FOM and CG. The minimum residual approach
minimizes ‖b−Axm‖2 over Km(A; r0) leading to e.g., GMRES,
MINRES. In the Petrov-Galerkin approach, the residual rm = b−Axm

is orthogonal to other suitable m-dimensional subspaces, like e.g.,
in the popular Bi-CG and QMR algorithms. Finally, the minimum
error approach minimizes the error ‖x− xm‖2 over the subspace
AHKm(AH ; r0), like in SYMMLQ and GMERR. See e.g., [12, 42].

In [29], a novel family of iterative Krylov methods for solving
complex non-Hermitian linear systems is introduced. The approximate
solution is searched in the Krylov subspace Km(A, r0) by applying a
Petrov-Galerkin approach and imposing the residual be orthogonal to
the constraints subspace AHKm(AH , r∗0). The shadow residual r∗0 is
chosen to be equal to P (A)r0, with P (t) an arbitrary polynomial of
certain degree with respect to the variable t (a default choice of r∗0 =
Ar0 will be adopted in this study if not otherwise clarified). The basis
vector representations for the subspaces Km(A, r0) and AHKm(AH , r∗0)
are computed by means of the Biconjugate A-Orthonormalization
procedure. Starting from two vectors v1 and w1 chosen to satisfy
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certain conditions, the method ideally builds up a pair of biconjugate
A-orthonormal bases for the dual Krylov subspaces Km(A; v1) and
Km(AH ; w1). It can be seen as an extension to complex non-Hermitian
matrices of the A-biorthogonalization process introduced by Sogabe
in [47]. We summarize the pseudocode in Algorithm 1. Throughout
the paper, we denote by an overbar (“-”) the conjugate complex of a
scalar, vector or matrix, and by the superscript “T” the transpose of
a vector or matrix. Moreover, the standard Hermitian inner product
of two complex vectors u, v ∈ Cn is defined as

〈u, v〉 = uHv =
n∑

i=1

ūivi.

Algorithm 1 Biconjugate A-Orthonormalization Procedure.
1: Choose v1, ω1, such that 〈ω1, Av1〉 = 1
2: Set β1 = δ1 ≡ 0, ω0 = v0 = 0 ∈ Cn

3: for j = 1, 2, . . . do
4: αj = 〈ωj , A (Avj)〉
5: v̂j+1 = Avj − αjvj − βjvj−1

6: ω̂j+1 = AHωj − ᾱjωj − δjωj−1

7: δj+1 = |〈ω̂j+1, Av̂j+1〉|
1
2

8: βj+1 =
〈ω̂j+1, Av̂j+1〉

δj+1

9: vj+1 =
v̂j+1

δj+1

10: ωj+1 =
ω̂j+1

β̄j+1

11: end for

The following proposition states some useful properties of
Algorithm 1. For a detailed proof, see [29].
Proposition 1 If Algorithm 1 proceeds m steps, then the right and
left Lanczos-type vectors vj , j = 1, 2, . . . , m and wi, i = 1, 2, . . . , m
form a biconjugate A-orthonormal system in exact arithmetic, i.e.,

〈ωi, Avj〉 = δi,j , 1 ≤ i, j ≤ m.

Furthermore, denote by Vm = [v1, v2, . . . , vm] and Wm =
[w1, w2, . . . , wm] the n × m matrices and by Tm the extended
tridiagonal matrix of the form

Tm =
[

Tm

δm+1e
T
m

]
,
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where

Tm =




α1 β2

δ2 α2 β3

. . . . . . . . .
δm−1 αm−1 βm

δm αm




,

whose entries are the coefficients generated during the algorithm
implementation, and in which α1, . . . , αm, β2, . . . , βm are
complex while δ2, . . . , δm positive. Then with the Biconjugate
A-Orthonormalization Procedure, the following four relations hold

AVm = VmTm + δm+1vm+1e
T
m (3)

AHWm = WmTH
m + β̄m+1ωm+1e

T
m (4)

WH
m AVm = Im (5)

WH
m A2Vm = Tm (6)

From Proposition 1, a family of Krylov methods for linear systems
based on Algorithm 1 can be designed along the following lines. Recall
that we consider an oblique projection method onto Km(A, v1) and
orthogonally to Lm = AHKm(AH , ω1) where v1 = r0

‖r0‖2 and ω1 is
chosen arbitrarily such that 〈ω1, Av1〉 6= 0. But ω1 is often chosen to
be equal to Av1

‖Av1‖22
subjecting to 〈ω1, Av1〉 = 1. Run Algorithm 1 m

steps and seek an mth approximate solution from the affine subspace
x0 + Km (A, v1) of dimension m, by imposing the Petrov-Galerkin
condition

b−Axm⊥Lm,

which can be mathematically written in matrix formulation as
(
AHWm

)H
(b−Axm) = 0, (7)

where Wm is defined in Proposition 1. Since the approximate solution
can be represented as in (2), where Vm is defined in Proposition 1 and
ym ∈ Cm contains the coefficients of the linear combination, by simple
substitution and computation with Eqs. (6)–(7), a tridiagonal system
for solving ym is resulted as

Tmym = βe1,

where Tm is formed in Proposition 1, and β = ‖r0‖2. The whole
iterative scheme is sketched in Algorithm 2.

The BiCOR method is derived by imposing the biorthogonality
and biconjugacy conditions, and taking the strategy of reducing the
number of M-V multiplications by introducing an auxiliary vector
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Algorithm 2 Two-sided Biconjugate A-Orthonormalization method.
1: Compute r0 = b−Ax0 for some initial guess x0 and set β = ‖r0‖2.
2: Start with v1 = r0

β and choose ω1 such that 〈ω1, Av1〉 = 1, (for
example, ω1 = Av1

‖Av1‖22
)

3: Generate the Lanczos-type vectors v1, v2, . . . , vm and
ω1, ω2, . . . , ωm as well as the tridiagonal matrix Tm by running
Algorithm 1 m steps.

4: Compute ym = T−1
m (βe1) and xm = x0 + Vmym

recurrence [29]. We sketch a pseudocode of BiCOR in Algorithm 3.
One iteration requires one M-V product by A and one by AH . Indeed
the M-V products by AH may be tricky to implement with some
implementations of MLFMA. Therefore two variants of the BiCOR
method which require M-V products only by A, namely the CORS
and the BiCORSTAB methods, are considered in this study. They
may also make BiCOR more effective in certain circumstances. The
CORS method is mathematically equivalent to CRS [48] but can
lead to considerably smoother convergence behavior, as well as to the
CGS [52] and SCGS methods [47], and may be amazingly competitive
with the BiCGSTAB method. However, like the CGS, SCGS, and
CRS methods, it is based on squaring the residual polynomial. In
cases of irregular convergence, this may lead to substantial build-
up of rounding errors and worse approximate solutions, or possibly
even overflow. The pseudocode for the preconditioned CORS method
with a left preconditioner M can be represented by the Algorithm 4.
A more smoothly converging variant of the BiCOR method, the
BiCORSTAB method, is developed as an attempt to remedy this
difficulty and to cure to some extent some of the numerical problems
that plague the CORS method without giving up the attractive speed
of convergence of CORS. The BiCORSTAB method is a polynomial
product variant of the BiCOR method, which is adapted easily
from the BiCGSTAB method [17, 42, 56]. The pseudocode for the
left preconditioned BiCORSTAB algorithm is shown in Algorithm 5.
Compared to the BiCGSTAB method, the convergence behaviour of
the BiCORSTAB method in certain cases is much smoother so that it
sometimes produces much more accurate residual vectors (and, hence,
better approximate solutions). And it may even converge considerably
faster than the BiCGSTAB method. However, in each iteration the
BiCORSTAB method requires two more additional operations for
vector updates [29].
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Algorithm 3 Left preconditioned BiCOR method.
1: Compute r0 = b−Ax0 for some initial guess x0.
2: Choose r∗0 = P (A)r0 such that 〈r∗0, Ar0〉 6= 0, where P (t) is a

polynomial in t. (For example, r∗0 = Ar0).
3: for j = 1, 2, . . . do
4: solve Mzj−1 = rj−1

5: if j=1 then
6: solve MHz∗0 = r∗0
7: end if
8: ẑ = Azj−1

9: ρj−1 =
〈
z∗j−1, ẑ

〉

10: if ρj−1 = 0, method fails
11: if j = 1 then
12: p0 = z0

13: p∗0 = z∗0
14: q0 = ẑ
15: else
16: βj−2 = ρj−1/ρj−2

17: pj−1 = zj−1 + βj−2pj−2

18: p∗
j−1

= z∗j−1 + β̄j−2p
∗
j−2

19: qj−1 = ẑ + βj−2qj−2

20: end if
21: q∗

j−1
= AHp∗

j−1

22: solve MHu∗j−1 = q∗j−1

23: αj−1 = ρj−1/
〈
u∗j−1, qj−1

〉

24: xj = xj−1 + αj−1pj−1

25: rj = rj−1 − αj−1qj−1

26: z∗j = z∗j−1 − ᾱj−1u
∗
j−1

27: check convergence; continue if necessary
28: end for

3. THE INTEGRAL EQUATION CONTEXT

We consider the following reformulation of the standard Maxwell’s
problem for EM scattering in the frequency domain:

Find the surface current~j such that for all tangential test functions
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Algorithm 4 Left preconditioned CORS method.
1: Compute r0 = b−Ax0 for some initial guess x0.
2: Choose r∗0 = P (A)r0 such that 〈r∗0, Ar0〉 6= 0, where P (t) is a

polynomial in t. (For example, r∗0 = Ar0).
3: for j = 1, 2, . . . do
4: solve Mzj−1 = rj−1

5: r̂ = Azj−1

6: ρj−1 = 〈r∗0, r̂〉
7: ifρj−1 = 0, method fails
8: if j = 1 then
9: e0 = r0

10: solve Mze0 = e0

11: d0 = r̂
12: q0 = r̂
13: else
14: βj−2 = ρj−1/ρj−2

15: ej−1 = rj−1 + βj−2hj−2

16: zej−1 = zj−1 + βj−2zhj−2

17: dj−1 = r̂ + βj−2fj−2

18: qj−1 = dj−1 + βj−2 (fj−2 + βj−2qj−2)
19: end if
20: solve Mq = qj−1

21: q̂ = Aq
22: αj−1 = ρj−1/ 〈r∗0, q̂〉
23: hj−1 = ej−1 − αj−1qj−1

24: zhj−1 = zej−1 − αj−1q
25: fj−1 = dj−1 − αj−1q̂
26: xj = xj−1 + αj−1 (2zej−1 − αj−1q)
27: rj = rj−1 − αj−1 (2dj−1 − αj−1q̂)
28: check convergence; continue if necessary
29: end for

~jt, we have∫

Γ

∫

Γ
G(|y − x|)

(
~j(x) ·~jt(y)− 1

k2
divΓ

~j(x) · divΓ
~jt(y)

)
dxdy

=
i

kZ0

∫

Γ

~Einc(x) ·~jt(x)dx. (8)

We denote by G(|y − x|) = eik|y−x|
4π|y−x| the Green’s function

of Helmholtz equation, Γ the boundary of the object, k the
wave number and Z0 =

√
µ0/ε0 the characteristic impedance

of vacuum (ε is the electric permittivity and µ the magnetic
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Algorithm 5 Left preconditioned BiCORSTAB method.
1: Compute r0 = b−Ax0 for some initial guess x0.
2: Choose r∗0 = P (A)r0 such that 〈r∗0, Ar0〉 6= 0, where P (t) is a

polynomial in t. (For example, r∗0 = Ar0).
3: for j = 1, 2, . . . do
4: r̂ = Arj−1

5: ρj−1 = 〈r∗0, r̂〉
6: if ρj−1 = 0, method fails
7: if j = 1 then
8: p0 = r0

9: q0 = r̂
10: else
11: βj−2 = (ρj−1/ρj−2)× (αj−2/ωj−2)
12: pj−1 = rj−1 + βj−2 (pj−2 − ωj−2qj−2)
13: qj−1 = r̂ + βj−2 (qj−2 − ωj−2q̂j−2)
14: end if
15: solve Mp̂ = pj−1

16: q̂j−1 = Aqj−1

17: αj−1 = ρj−1/ 〈r∗0, q̂j−1〉
18: s = rj−1 − αj−1qj−1

19: check norm of s; if small enough: set xj = xj−1 +αj−1p̂ and stop
20: solve Mŝ = s
21: t = r̂ − αj−1q̂j−1

22: ωj−1 = 〈t, s〉 / 〈t, t〉
23: xj = xj−1 + αj−1p̂ + ωj−1ŝ
24: rj = s− ωj−1t
25: check convergence; continue if necessary

for continuation it is necessary that ωj−1 6= 0
26: end for

permeability). Given a continuously differentiable vector field ~j(x)
represented in Cartesian coordinates on a 3D Euclidean space as
~j(x1, x2, x3) = jx1(x1, x2, x3)~ex1 +jx2(x1, x2, x3)~ex2 +jx3(x1, x2, x3)~ex3 ,
where ~ex1 , ~ex2 , ~ex3 are the unit basis vectors of the Euclidean space,
we denote by div~j(x) the divergence operator defined as

div~j(x) =
∂jx1

∂x1
+

∂jx2

∂x2
+

∂jx3

∂x3
.

Eq. (8) expresses the electric currents in terms of the electric field
and is called Electric Field Integral Equation (EFIE). It is applied
to arbitrary geometries like objects with cavities, disconnected parts,
breaks on the surface [3, 33].
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Figure 2. Example of spectrum for the EFIE operator on a model
problem representative of the general trend.

On discretizing Eq. (8) in space by the MoM over a mesh
containing n edges, the surface current ~j is expanded into a set of basis
functions {~ϕi}1≤i≤n with compact support (the Rao-Wilton-Glisson
basis [40] is a popular choice), then the integral equation is applied to
a set of tangential test functions ~jt. Selecting ~jt = ~ϕj , we are led to
compute the set of coefficients {λi}1≤i≤n such that

∑

1≤i≤n

λi

[∫

Γ

∫

Γ
G (|y−x|)

(
~ϕi(x)·~ϕj(x)− 1

k2
divΓ~ϕi(x) · divΓ~ϕj(y)

)
dxdy

]

=
i

kZ0

∫

Γ

~Einc(x) · ~ϕj(x)dx, (9)

for each 1 ≤ i ≤ n. The set of Eq. (9) can be recast in matrix form as

Aλ = b, (10)

where A = [Aij ] and b = [bi] have elements

Aij =
∫

Γ

∫

Γ
G (|y−x|)

(
~ϕi(x) · ~ϕj(y)− 1

k2
divΓ~ϕi(x) · divΓ~ϕj(y)

)
dxdy,

bj =
i

kZ0

∫

Γ

~Einc(x) · ~ϕj(y)dx.

In Eq. (10), the set of unknowns are associated with the vectorial
flux across an edge in the mesh. The coefficient matrix A generated
by MoM is dense complex symmetric (but non-Hermitian). The
right-hand side varies with the frequency and the direction of the
illuminating wave.
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Linear systems issued from boundary element discretizations of
Maxwell’s equations are typically very large in applications although
they can be much smaller compared to those arising from FE or
FV formulations of the same problem. The number of unknowns n
grows linearly with the size of the scatterer and quadratically with
the frequency of the incoming radiation [2]. Scattering simulations
involving targets of size in the order of a few tens of wavelength
illuminated at approximately one GHz of frequency may lead to meshes
with many million points [54] and yield dense matrices containing
several Tbytes of data. The condition number of the pertinent linear
system can grow like p1/2, where p denotes the size of the scatterer in
terms of the wavelength, and linearly with the number of points per
wavelength [8]. In Figure 2 we show the distribution of eigenvalues of
the discretization matrix arising for EFIE operators. The presence of
many isolated eigenvalues, some close to the origin and many with large
negative real part is notoriously unfavorable to have rapid convergence
of Krylov methods, see e.g., [25]. In fact, when the number of unknowns
n is related to the wavenumber the iteration count of iterative solvers
may increase as O(n0.5) [49].

Besides EFIE other formulations are possible for modeling closed
targets, like e.g., the Magnetic Field Integral Equation (MFIE) which
reads ∫

Γ

(
~Rext j ∧ ~ν

)
·~jt +

1
2

∫

Γ

~j ·~jt = −
∫

Γ

(
~Hinc ∧ ~ν

)
·~jt.

The operator ~Rext j is defined as

~Rext j(y) =
∫

Γ

~gradyG(|y − x|) ∧~j(x)dx,

and is evaluated in the domain exterior to the object. Both
EFIE and MFIE suffer from interior resonances which make the
numerical solution problematic at some frequencies known as resonant
frequencies, especially for large objects. The problem can be solved by
combining linearly EFIE and MFIE. The resulting integral equation
is known as Combined Field Integral Equation (CFIE) and is the
formulation of choice for closed targets. Hybrid appraches are also
possible, see e.g., [18]. On CFIE the number of iterations typically
increases more slowly, asO(n0.25), and the performance of other Krylov
subspace methods are reported to be more or less equivalent in terms
of the number of matrix-vector products, see e.g., comments in [36].
Therefore, we focus our study on EFIE.
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4. NUMERICAL EXPERIMENTS

The set of linear systems selected for the numerical experiments arise
from RCS calculations of realistic targets. They are dense complex
non-Hermitian. The geometries are depicted in Figure 3 and we report
the characteristics of the model problems in Table 1. Although not
very large, the selected problems are representative of realistic RCS
calculation. Their solution demands considerable computer resources.
For the Airbus A318 problem, storing the pertinent linear system
requires around 18 Gb of RAM when symmetry is not exploited. Larger

(a) Cube (b) Open cylinder (c) Parallelepipede

(d) Paraboloid (e) Sphere (f) Satellite

(g) Jet prototype (h) Airbus A318 prototype

Figure 3. Meshes associated with test examples.



440 Jing, Carpentieri, and Huang

Table 1. Characteristics of the model problems.

Example Description Size
Frequency

(MHz)
κ1(A) Geometry

1 Cube 7200 249 2 · O(105) Fig. 3(a)
2 Open cylinder 6268 362 1 · O(105) Fig. 3(b)
3 Parallelepipede 3150 621 6 · O(105) Fig. 3(c)
4 Paraboloid 1980 711 9 · O(103) Fig. 3(d)
5 Sphere 12000 535 6 · O(105) Fig. 3(e)
6 Satellite 1699 57 1 · O(105) Fig. 3(f)
7 Jet prototype 7924 615 1 · O(107) Fig. 3(g)

8
Airbus A318
prototype

23676 800 1 · O(107) Fig. 3(h)

Table 2. Algorithmic cost and memory expenses of the
implementation of Krylov algorithms that are used for the experiments.
We denote by n the problem size and by i the iteration number.

Solver Type
Products

by A

Products
by AH Memory Reference

BiCOR general 1 1 matrix+10n [29]
CORS ” 2 - matrix+14n [29]

BiCORSTAB ” 2 - matrix+13n [29]

GMRES ” 1 -
matrix
+(i+5)n

[43]

QMR ” 2 1 matrix+11n [21]
TFQMR ” 4 - matrix+10n [19]

BiCGSTAB ” 2 - matrix+7n [56]
BiCGSTAB

(l)
” 2l -

matrix
+2l+ 5

[46]

SQMR symmetric 1 - matrix+10n [22]

problems require to use MLFMA for the M-V products to reduce
the memory requirement and effective preconditioners to accelerate
the convergence, and they are out of the scope of this study. We
carry out the M-V product at each iteration using dense linear algebra
packages, i.e., the ZGEMV routine available in the LAPACK library
and we do not use preconditioning. In addition to BiCOR, CORS
and BiCORSTAB, we consider complex versions of iterative algorithms
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based on Lanczos biorthogonalization, such as BiCGSTAB and QMR,
and on Arnoldi orthogonalization, such as GMRES. In Table 2, we list
the complete set of solvers used in our experiments. All the runs are
done on one node of the Entu cluster facility located at CRS4. Each
node features a quad core Intel CPU at 2.8GHz and 16 GB of physical
RAM. The codes are compiled in Fortran with the Portland Group
Fortran 90 compiler version 9.

4.1. Discussions

In Table 3, we show the number of iterations required by Krylov
methods to reduce the initial residual toO(10−5) starting from the zero
vector. The right-hand side of the linear system is set up so that the
initial solution is the vector of all ones. We observe the effectiveness

Table 3. Number of iterations and CPU time (in seconds) required
by Krylov methods to reduce the initial residual to O(10−5). For each
example, an asterisk “∗” indicates the fastest run.

Solver/Example 1 2 3 4 5                  6

CORS 380 (211 ∗ ) 601 (253 ∗ ) 148 (16∗ ) 197 (9) 294 (451 ∗ ) 371 (11∗ )

BiCOR 441 (251) 785 (334) 226 (25) 232 (10) 338 (525) 431 (15)

BiCORSTAB 640 (525) 941 (614) 239 (40) 261 (20) 423 (1099) 775 (37)

GMRES(50) > 3000 (> 844) 2191 (469) 289 (16  ) 261 (6  ) 1803 (1397) 871 (17)

QMR 615 (508) 878 (548) 239 (38) 255 (16) 430 (1045) 452 (24)

TF QMR 399 (435) 482 (398) 146 (32) 177 (15) 281 (863) 373 (27)

BiCGSTAB 764 (418) 1065 (444) 265 (28) 234 (10) 680 (1031) 566 (18)

∗ ∗

Table 4. Number of iterations and CPU time (in seconds) required
by restarted GMRES for different values of restart to reduce the initial
residual to O(10−5). For each example, an asterisk “∗” indicates the
fastest run.

Example/Solver
GMRES

(50)
GMRES

(100)
GMRES

(200)
GMRES

(500)

1
> 3000
(> 844)

2182 (790) 374 (106) 296 (86∗)

2 2191 (469) 1060 (268) 702 (153) 411 (94∗)
3 289 (16) 228 (13) 176 (10∗) 176 (10∗)
4 261 (6) 217 (5) 182 (4∗) 182 (4∗)
5 1803 (1397) 654 (504) 378 (293) 292 (228∗)
6 871 (17) 608 (12) 470 (9) 306 (6∗)
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of the CORS method, that is the fastest non-Hermitian solver with
respect to CPU time on most selected examples except GMRES
with large restart. Indeed, unrestarted GMRES may outperform all
other Krylov methods and should be used when memory is not a
concern. However reorthogonalization costs may penalize the GMRES
convergence in large-scale applications, so using high values of restart
may not be convenient (or even not affordable for the memory) as
shown in earlier studies [6]. In Table 3, we select a value of 50 for
the restart parameter; for the sake of completeness in Table 4 we show
results using higher restart. The good efficiency of CORS is even more
evident on the two realistic aircraft problems i.e., Examples 3(g)–3(h)
which are very difficult to solve by iterative methods as no convergence
is obtained without preconditioning in 3000 iterates. In Table 6 we
report on the number of iterations and on the CPU time to reduce the
initial residual to O(10−3). This tolerance may be considered accurate
enough for engineering purposes. In [6] it has been shown that a level
of accuracy of O(10−3) may enable a correct reconstruction of the
radar cross section of the object. Again, CORS is more efficient than

Table 5. Number of iterations and CPU time (in seconds) required
by BiCGSTAB (l) for different levels l to reduce the initial residual to
O(10−5). For each example, an asterisk “∗” indicates the fastest run.

Example/Solver
BiCGSTAB

(1)
BiCGSTAB

(2)
BiCGSTAB

(3)
BiCGSTAB

(4)
1 764 (418) 367 (402) 234 (383∗) 181 (394)
2 1065 (444) 512 (424) 324 (404∗) 245 (405)
3 265 (28) 123 (26) 81 (26) 60 (25∗)
4 234 (10) 121 (10) 77 (10) 56 (9∗)
5 680 (1031) 319 (966) 199 (898) 139 (835∗)
6 566 (18) 268 (17) 170 (16∗) 127 (16∗)

Table 6. Number of iterations and CPU time (in seconds) for CORS
and GMRES (50) to reduce the initial residual to O(10−3) on the two
aircraft problems 3(g) and 3(h). These problems do not converge in
3000 iterations. For each example, an asterisk “∗” indicates the fastest
run.

Example/Solver CORS GMRES50
7 1286 (981∗) >3000 (>1147)
8 924 (5493∗) 2792 (8645)
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restarted GMRES on these two tough problems.
The BiCOR method also shows fast convergence and may be an

appropriate choice. Both CORS and BiCOR are based on short-
term recurrences and therefore they are very cheap in memory. A
nice feature of CORS over BiCOR is that it does not require matrix
multiplications by AH . This may represent an advantage when
MLFMA is used because the Hermitian product often requires a
specific algorithmic implementation [54]. In Figure 4 we illustrate
the convergence history of CORS and GMRES (50) on Examples 3
and 6 to show the different numerical behavior of the two families of
solvers. The residual reduction is much smoother for GMRES along
the iterations. We also observe from Table 7 that different choices
of the initial shadow residual may further reduce the overall solution
time. However, the optimal choice is problem dependent and may be
found on a trial and error basis.

Methods based on Lanczos biconjugation are also considered in
many scattering analysis, mainly for their simplicity (parameter-free)
and low memory requirements. The Illinois Group reports on successful
results with BiCG in conjunction with preconditioners and MLFMA to

Table 7. Number of iterations and CPU time (in seconds) for the
CORS method using different choice of initial shadow residual.

Example/Choice for P (t) r∗0 = r0 r∗0 = A · r0

1 419 (234) 380 (211)
2 473 (209) 601 (253)
7 1103 (726) 1286 (981)
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solve the EFIE [23, 34, 44, 50]. The BiCGSTAB method preconditioned
with approximate inverse is robust and converges very fast for solving
electromagnetic wave scattering by 3D dielectric and conducting
objects via hybrid surface and volume integral equations [31, 32], as
well as for solving boundary element formulations of bioelectric and
biomagnetic inverse problems in Magnetoencephalography (MEG) in
combination with incomplete factorization techniques [39]. In our
experiments, as shown in Table 5, BiCGSTAB and its enhanced variant
BiCGSTAB (l) [46] is less efficient than BiCOR and CORS. Also, it
often requires more iterations to converge than BiCORSTAB although
each iteration is slightly less expensive as mentioned in Section 2.

QMR-like methods are also popular for this problem class [38, 54].
From the results shown in Table 3, though, we observe that
nonsymmetric QMR algorithms generally converge more slowly than
GMRES, BiCOR, CORS. For the sake of completeness, in Table 8
we report on results with a symmetric variant of QMR (referred
to as SQMR) that exploits the system symmetry achieving high
efficiency in our runs. One problem with SQMR is that it needs
a symmetric preconditioner which may be restrictive. Indeed many
effective algebraic preconditioners for surface integral equations are
nonsymmetric and therefore they cannot be used with SQMR. And
even in the case a symmetric preconditioner is available, due to round-
off errors the multipole operator of MLFMA often loses the theoretical
symmetry of EFIE leading to divergence of SQMR as shown in the
experiments reported in [13]. However, when symmetry is preserved
and a symmetric preconditioner is used, SQMR is the most efficient
solver being very competitive with full GMRES.

Preconditioning is critical for EFIE to drastically reduce the
large number of iterations of Krylov methods. This issue has been
investigated in many studies. Simple preconditioners like the diagonal
of A, diagonal blocks, or a band can be effective only when the coeffiient
matrix arising from the discretization of the integral formulation has
some degree of diagonal dominance [50]. Incomplete factorizations
have been successfully applied to solve nonsymmetric dense systems
in [45] and hybrid integral formulations in [31], and also for solving the
EFIE provided pivoting is used [36]. Approximate inverse methods are

Table 8. Number of iterations and CPU time (in seconds) required
by SQMR to reduce the initial residual to O(10−5).

Solver/Example 1 2 3 4 5 6
SQMR 224 (61) 416 (87) 129 (7)103 (2) 201 (152)405 (6)
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Table 9. Experiments with a physical right-hand side.

Example 2
ϕ CORS GMRES (50) BiCGSTAB
0 465 2843 1303
π
2 465 2969 1303

Example 3
ϕ CORS GMRES (50) BiCGSTAB
0 169 348 263
π
2 176 348 259

Example 6
ϕ CORS GMRES (50) BiCGSTAB
0 426 1600 562
π
2 452 1500 534

generally less prone to instabilities on indefinite systems, and several
preconditioners of this type have been proposed in electromagnetism
(see for instance [4, 6, 30]). Choice of algorithm depends on the
specific problem and on the selected computer architecture. However,
experiments show that preconditioning does not change the relative
merits of Krylov algorithms, see e.g., [5, 6, 36]. For this reason we do
not use any specific preconditioner in this study to keep the comparison
as general as possible.

Finally, in Table 9 we report on experiments using physical right-
hand sides computed from Eq. (10). We take as incident field a plane
wave of general form in spherical coordinates

~Einc(x, ϕ, pθ, pϕ) = (pθ)ûθe
ikx·ûr(ϕ) + (pϕ)eikx·ûr(ϕ),

where (pθ, pϕ) are two complex numbers and ûr; ûθ; ûϕ are the unitary
vectors:

ûr =

(cosϕ cos θ
sinϕ cos θ

sin θ

)
, ûθ =

(− cosϕ sin θ
− sinϕ sin θ

cos θ

)
, ûϕ =

(− sinϕ cos θ
− cosϕ cos θ

sin θ

)
,

Without loss of generality, we may take θ = 0 and ϕ variable from 0
to 2π leading to the following expression for the incident field

~Einc(x) = ~Einc(x, ϕ) = ẑeikx·ûr(ϕ) = ẑeik(x1 cos ϕ+x2 sinϕ).

We see in Table 9 that the number of iterations may change
significantly, especially for open surfaces. However, the trend is
confirmed and the CORS method remains very competitive with the
other Krylov algorithms.
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5. CONCLUSION

In this study we have discussed iterative solution strategies for
EM scattering problems expressed in an integral formulation. We
have analyzed the performance of a class of orthogonal projection
Krylov algorithms computed from the Lanczos biconjugate A-
orthonormalization method for solving dense complex non-Hermitian
linear systems in realistic RCS calculation. This family of solvers
shows good convergence properties, is cheap in memory as it is derived
from short-term vector recurrences, is parameter-free and does not
suffer from the restriction to require a symmetric preconditioner.
Additionally, the CORS method does not necessitate of matrix
multiplication by AH that might be tricky to implement in some
integral application codes combined with MLFMA. The results
presented in this study will contribute to enhance the growing
body of evidence of iterative Krylov methods for solving realistic
electromagnetic scattering problems from large structures.
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1. Alléon, G., S. Amram, N. Durante, P. Homsi, D. Pogarieloff, and
C. Farhat, “Massively parallel processing boosts the solution of
industrial electromagnetic problems: High performance out-of-
core solution of complex dense systems,” Proceedings of the Eighth
SIAM Conference on Parallel Computing, M. Heath, V. Torczon,
G. Astfalk, P. E. Bjrstad, A. H. Karp, C. H. Koebel, V. Kumar,
R. F. Lucas, L. T. Watson, and D. E. Womble (eds.), SIAM Book,
Philadelphia, Conference held in Minneapolis, Minnesota, USA,
1997.

2. Bendali, A., “Approximation par elements finis de surface de
problemes de diffraction des ondes electro-magnetiques,” Ph.D.
thesis, Université Paris VI, 1984.
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36. Malas, T. and L. Gürel, “Incomplete LU preconditioning
with multilevel fast multipole algorithm for electromagnetic
scattering,” SIAM J. Scientific Computing, Vol. 29, No. 4, 1476–
1494, 2007.

37. Mittra, R. and K. Du, “Characteristic basis function method for
iteration-free solution of large method of moments problems,”



450 Jing, Carpentieri, and Huang

Progress In Electromagnetics Research B, Vol. 6, 307–336, 2008.
38. Nilsson, M., “Iterative solution of Maxwell’s equations

in frequency domain,” Master’s thesis, Uppsala University
Department of Information Technology.

39. Rahola, J. and S. Tissari, “Iterative solution of dense linear
systems arising from the electrostatic integral equation in MEG,”
Physics in Medicine and Biology, Vol. 47, No. 6, 961–975, 2002.

40. Rao, S. M., D. R. Wilton, and A. W. Glisson, “Electromagnetic
scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas
Propagat., Vol. 30, 409–418, 1982.

41. Saad, Y., “A flexible inner-outer preconditioned GMRES
algorithm,” SIAM J. Scientific and Statistical Computing, Vol. 14,
461–469, 1993.

42. Saad, Y., Iterative Methods for Sparse Linear Systems, PWS
Publishing, New York, 1996.

43. Saad, Y. and M. H. Schultz, “GMRES: A generalized minimal
residual algorithm for solving nonsymmetric linear systems,”
SIAM J. Scientific and Statistical Computing, Vol. 7, 856–869,
1986.

44. Samant, A. R., E. Michielssen, and P. Saylor, “Approximate
inverse based preconditioners for 2D dense matrix problems,”
Tech. Rep. CCEM-11-96, University of Illinois, 1996.

45. Sertel, K. and J. L. Volakis, “Incomplete LU preconditioner for
FMM implementation,” Micro. Opt. Tech. Lett., Vol. 26, No. 7,
265–267, 2000.

46. Sleijpen, G. L. G. and D. R. Fokkema, “BiCGstab(ell) for
linear equations involving unsymmetric matrices with complex
spectrum,” ETNA, Vol. 1, 11–32, 1993.

47. Sogabe, T., “Extensions of the conjugate residual method,” Ph.D.
thesis, University of Tokyo, 2006.

48. Sogabe, T., M. Sugihara, and S.-L. Zhang, “An extension of the
conjugate residual method to nonsymmetric linear systems,” J.
Comput. Appl. Math., Vol. 226, 103–113, 2009.

49. Song, J. M. and W. C. Chew, “The fast illinois solver code:
Requirements and scaling properties,” IEEE Computational
Science and Engineering, Vol. 5, No. 3, 19–23, 1998.

50. Song, J. M., C.-C. Lu, and W. C. Chew, “Multilevel fast multipole
algorithm for electromagnetic scattering by large complex
objects,” IEEE Transactions on Antennas and Propagation,
Vol. 45, No. 10, 1488–1493, 1997.

51. Song, J. M., C. C. Lu, W. C. Chew, and S. W. Lee, “Fast illinois



Progress In Electromagnetics Research, PIER 99, 2009 451

solver code (FISC),” IEEE Antennas and Propagation Magazine,
Vol. 40, No. 3, 27–34, 1998.

52. Sonneveld, P., “CGS, a fast Lanczos-type solver for nonsymmetric
linear systems,” SIAM J. Scientific and Statistical Computing,
Vol. 10, 36–52, 1989.

53. Su, D. Y., D.-M. Fu, and D. Yu, “Genetic algorithms and method
of moments for the design of PIFAs,” Progress In Electromagnetics
Research Letters, Vol. 1, 9–18, 2008.
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