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Abstract—In this paper, electromagnetic scattering of a plane wave
by large inhomogeneous arbitrarily shaped bi-anisotropic objects
is solved by Adaptive Integral Method (AIM). Based on Maxwell
equations and constitutive relationship for general bi-anisotropic media
and using Volume Integral Equations (VIE), the electromagnetic fields
are derived as functions of equivalent volume sources. Then the
integral equations are discretized using Method of Moments (MoM).
Because of the dense matrix property, MoM cannot be used to solve
electromagnetic scattering by large objects. Therefore, AIM is adopted
to reduce the memory requirement and speed up the solution process.
Comparison between AIM and MoM with respect to CPU time and
memory requirement is done to show the efficiency of AIM in solving
electromagnetic scattering by large objects. Numerical results are
obtained for some canonical cases and compared with Mie theory, in
which excellent agreement is observed. some new numerical results are
also presented for the more general bi-anisotropic material media.

1. INTRODUCTION

There has been a growing interest recently in the study of interaction
between electromagnetic fields and bi-anisotropic materials [1]. Bi-
anisotropic media incorporates large variety of media, such as chiral
or bi-isotropic media, gyrotropic chiral media, Faraday chiral media,
anisotropic media, and gyrotropic media. Various applications utilizing
bi-anisotropic media have been proposed such as angle-sensitive
beam-shaping cover for antennas [2], negative refractive index [3–5],
giant negative Goos-Hänchen shifter [6], polarization transformer [7],
electromagnetic transparent coatings and shielding [8, 9], scattering
enhancement by radial anisotropy [10, 11], and RF circuits [12].
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Electromagnetic scattering is one of the basic problems in the
study of interaction between electromagnetic waves and bi-anisotropic
objects. A rigorous solution of scattered fields by spheres can
be obtained using Mie theory [13–15]. However, if the structures
of complex media are not in canonical geometries, the analytical
analysis is limited and not capable then. In this connection, many
numerical methods have been extended to study the interaction
of electromagnetic wave with complex media such as FDTD [16],
FEM [17] and FEM-BEM [18].

MoM has also been used to solve arbitrary three dimensional
problems with more general types of materials. Scattering by
arbitrarily shaped inhomogeneous dielectric bodies was solved in [19].
Scattering by a gyroelectric body with arbitrary inhomogeneity was
tackled in [20]. The scattering problem of inhomogeneous chiral
objects was studied in [21]. When using MoM to solve electromagnetic
scattering problems by bi-anisotropic objects, the direct solver requires
O(N3) operations to solve such linear equations with N number of
unknowns, while the iterative solver requires O(NiterN

2) operations
where Niter is the number of iterations. Both methods require O(N2)
memory to store the dense matrix. Thus, the stringent computational
and memory requirements have impeded MoM from solving large scale
problems which prevails in real life. However, the recently developed
fast solvers such as AIM and p-FFT [22–26] can alleviate the difficulties
above. The attracting feature of it is the computational and memory
requirement are respectively O(N log N) and O(N) based on volume
integral equations.

In this paper, the electromagnetic scattering by large arbitrarily
shaped inhomogeneous bi-anisotropic objects is solved by AIM. Volume
integral equation approach is presented and free-space Green’s function
is used in the formulation of integral equations. Based on Maxwell
equations and constitutive relationship for general bi-anisotropic
media, electromangetic fields are expressed as functions of equivalent
volume electric and magnetic currents. Then MoM is used to convert
the resultant equation into matrix equations which are subsequently
solved by using an iterative solver. AIM is used to accelerate the
solution process and to reduce the memory requirement for matrix
storage. Some canonical cases are considered and the results are
calculated using AIM and compared with Mie theory. Excellent
agreement is observed. After the validation of the numerical solver,
some new results are computed and discussed.
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2. FORMULATION

2.1. Volume Integral Equations

Consider a homogeneous background medium with permittivity ε0 and
permeability µ0. If an inhomogeneous bi-anisotropic body is present
in the background, the fields in the region of bi-anisotropic body must
satisfy Maxwell equation:

∇×E = −jωB = −jωµ0H−MV (1)
∇×H = jωD = jωε0E + JV (2)

The constitutive relations for bi-anisotropic media are:

D = ε̄ ·E + ξ̄ ·H (3)
B = ζ̄ ·E + µ̄ ·H (4)

which can be written as:

E = ᾱ1 ·D + ᾱ2 ·B (5)
H = ᾱ3 ·D + ᾱ4 ·B (6)

where the parameters are:
[

ᾱ1 ᾱ2

ᾱ3 ᾱ4

]
=

[
ε̄ ξ̄
ζ̄ µ̄

]−1

(7)

The expression of equivalent volume sources are:

JV = jω(ε̄− ε0Ī) ·E + jωξ̄ ·H (8)
MV = jω(µ̄− µ0Ī) ·H + jωζ̄ ·E (9)

which can be written as:

JV = jω(β̄1 ·D + β̄2 ·B) (10)
MV = jω(β̄3 ·D + β̄4 ·B) (11)

where the parameters are defined as:
[

β̄1 β̄2

β̄3 β̄4

]
=

[
Ī− ε0ᾱ1 −ε0ᾱ2

−µ0ᾱ3 Ī− µ0ᾱ4

]
(12)

Using mixed potential expression for source field relationship, the
scattering fields can be expressed by:

Esca = −jωA−∇φe −∇× F
ε0

(13)

Hsca = −jωF−∇φm +∇× A
µ0

(14)
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where A,F, φe, φm are magnetic vector potential, electric vector
potential, electric scalar potential, magnetic scalar potential which can
be expressed by:

A = µ0

∫

V
JV GdV ′ (15)

F = ε0

∫

V
MV GdV ′ (16)

φe =
1
ε0

∫

V
ρeGdV ′ (17)

φm =
1
µ0

∫

V
ρmGdV ′ (18)

where G is the free space Green’s function:

G(r, r′) =
e−jk0|r−r′|

4π|r− r′| (19)

The relations between equivalent volume charge densities and currents
are:

ρe = − 1
jω
∇ · JV (20)

ρm = − 1
jω
∇ ·MV (21)

Since the total fields are the sum of incident fields and scattering fields
induced by the bi-anisotropic body:

E = Einc + Esca (22)
H = Hinc + Hsca (23)

based on Eqs. (5), (6) and Eqs. (13), (14), we obtain volume electric
and magnetic integral equations:

Einc = ᾱ1 ·D + ᾱ2 ·B + jωA +∇φe +∇× F
ε0

(24)

Hinc = ᾱ3 ·D + ᾱ4 ·B + jωF +∇φm −∇× A
µ0

(25)

2.2. Method of Moments

The inhomogeneous bi-anisotropic objects are divided into tetrahe-
drons and for each face of the tetrahedron, we assign a basis function.
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For the easy implementation, we employ the famous SWG basis func-
tion [19] which is defined below:

fn(r) =





An

3V +
n

ρ+
n , r ∈ T+

n

An

3V −
n

ρ−n , r ∈ T−n
(26)

where An is the area of the nth face, T±n is the the plus/minus
tetrahedron of the nth face and V ±

n are their volumes, ρ±n is the position
vector with respect to the free vertex of T±n . The gradient of SWG basis
function is:

∇ · fn(r) =





An

V +
n

, r ∈ T+
n

−An

V −
n

, r ∈ T−n
(27)

In order to ensure the normal continuity of D and B, we express them
as the linear combinations of the basis functions as:

D =
1
jω

N∑

n=1

Dnfn (28)

B =
η0

jω

N∑

n=1

Bnfn (29)

and introduce the symmetric inner product:

〈f, g〉 =
∫

V
f · gdV (30)

thus, the equivalent volume current can be written as:

JV =
N∑

n=1

(Dnβ̄1 + Bnη0β̄2) · fn (31)

MV =
N∑

n=1

(Dnβ̄3 + Bnη0β̄4) · fn (32)

Applying Galerkin’s procedure, volume integral equations can be
converted into the linear equations:

[
Z̄ED Z̄EB

Z̄HD Z̄HB

] [
Dn

Bn

]
=

[
VE

VH

]
(33)
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where the elements of the block impedance matrices are:

ZED
mn =

1
jω
〈fm, ᾱ1 · fn〉+ jωµ0〈fm,A1,n〉

− 1
jωε0

〈fm,∇φ1,n〉+ 〈fm,∇×A3,n〉 (34)

ZEB
mn = η0

{ 1
jω
〈fm, ᾱ2 · fn〉+ jωµ0〈fm,A2,n〉

− 1
jωε0

〈fm,∇φ2,n〉+ 〈fm,∇×A4,n〉
}

(35)

ZHD
mn = η0

{ 1
jω
〈fm, ᾱ3 · fn〉+ jωε0〈fm,A3,n〉

− 1
jωµ0

〈fm,∇φ3,n〉 − 〈fm,∇×A1,n〉
}

(36)

ZHB
mn = η2

0

{ 1
jω
〈fm, ᾱ4 · fn〉+ jωε0〈fm,A4,n〉

− 1
jωµ0

〈fm,∇φ4,n〉 − 〈fm,∇×A2,n〉
}

(37)

and the elements of the right hand side are:

V E
m = 〈fm,Einc〉 (38)

V H
m = η0〈fm,Hinc〉 (39)

For the evaluation of the impedance matrix elements:

Ai,n =
∫

Vn

β̄i ·fnGdV ′=
An

3

( β̄
+
i,n

V +
n
·
∫

V +
n

ρ+
n GdV ′ β̄

−
i,n

V −
n
·
∫

V −n
ρ−n GdV ′

)
(40)

φi,n =
∫

Vn

∇·(β̄i ·fn)GdV ′=
An

3

(Tr(β̄+
i,n)

V +
n

∫

V +
n

GdV ′−Tr(β̄−i,n)

V −
n

∫

V −n
GdV ′

−
4∑

j=1

n̂+
n,j ·

β̄
+
i,n

V +
n
·
∫

∂V +
n,j

ρ+
n GdS′ −

4∑

j=1

n̂−n,j ·
β̄
−
i,n

V −
n
·
∫

∂V −n,j

ρ−n GdS′
)

(41)

〈fm,∇×A1,n〉 =
∫

Vm

fm · ∇ ×A1,ndV

=
∫

Vm

A1,n · ∇ × fmdV −
∫

Vm

∇ · (fm ×A1,n)dV

=
Am

3

(
−

4∑

j=1

∫

∂V +
m,j

n̂+
m,j · (ρ+

m ×A1,n)dS
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−
4∑

j=1

∫

∂V −m,j

n̂−m,j · (ρ−m ×A1,n)dS
)

(42)

where ∂V ±
m,j denotes the jth face of the plus/minus tetrahedron

associated with mth basis function, n̂±m/n,j denotes the outward normal
vector of jth face of the plus/minus tetrahedron associated with m/nth
basis function. Tr(β̄) denotes the trace of the matrix β̄.

2.3. Adaptive Integral Method

The basic idea using AIM is to split the impedance matrix into two
parts: near zone and far zone impedance matrix. Since the near zone
impedance matrix is a sparse matrix, we can calculate the near zone
interaction directly while use FFT to speed up the far zone interaction.
Since FFT is being used, no need to store the whole far zone impedance
matrix, which greatly reduce the memory requirement. Thus, the
matrix vector multiplication can be written as:

Z̄ · I = Z̄nearI + Z̄farI (43)

In employing AIM, the objects are first enclosed in a rectangular
region and then recursively subdivided into small cells with each cell
containing (M + 1)3 grids. Then each basis function will be projected
to the surrounding grids of its associated cell. If we denote γn as any
component of

{
fn,∇ · fn, β̄i · fn,∇ · (β̄i · fn)

}
, the impedance matrix

elements can be written in one uniform format:

Zmn =
∫

Vm

∫

Vn

γmGγndV ′dV (44)

If γm and γn are far apart, the interaction between them can be
approximated using delta functions. Under this situation, we can
approximate γn as the linear combination of delta functions:

γn(r) ≈ γ̂n(r) =
(M+1)3∑

u=1

Λnuδ(r− r′) (45)

We can obtain Λnu by matching the multiple moments of delta
functions and original basis functions:∫

Vn

γn(r)(x− x0)m1(y − y0)m2(z − z0)m3dV

=
(M+1)3∑

u=1

Λnu(xnu − x0)m1(ynu − y0)m2(znu − z0)m3 (46)
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where (x0, y0, z0) is chosen as the center of the basis function. After
obtaining coefficients Λnu, Zmn can be approximated as:

Zmn ≈ Ẑmn =
(M+1)3∑

v=1

(M+1)3∑

u=1

ΛmvG(rv, r′u)Λnu (47)

written in matrix form:

Z̄far = Γ̄ · Ḡ · Λ̄ (48)

where Λ̄ is the projection matrix, Γ̄ is the interpolation matrix and Ḡ
is the Green’s function matrix. Since Ḡ is Toeplitz, we can use FFT
to calculate the matrix vector multiplication. Thus,

Z̄farI = Γ̄ · F−1
{
F{

Ḡ
}·F{

Λ̄ · I}
}

(49)

Since the near zone interaction can not be correctly approximated using
the above method, we have to correct this interaction, thus we can
define Z̄near as:

Znear
mn =

{
Zmn − Ẑmn, dmn ≤ dnear

0, otherwise (50)

where dnear is the near zone threshold distance. It is clear that Z̄near

is a sparse matrix, thus matrix vector multiplication can be calculated
directly. Therefore, the whole matrix vector multiplication can be
written as:

Z̄ · I = Z̄nearI + Γ̄ · F−1{F{Ḡ} · F{Λ̄ · I}} (51)

In calculating the matrix elements, the curl operator is involved, then
we use

∇×F =
(

∂Fz

∂y
− ∂Fy

∂z

)
x̂+

(
∂Fx

∂z
− ∂Fz

∂x

)
ŷ +

(
∂Fy

∂x
− ∂Fx

∂y

)
ẑ (52)

to calculate the derivative numerically through central difference
scheme.

The matrix vector multiplication using AIM can be summarized
as follow four steps:

(i) project β̄i · fn and ∇ · (β̄i · fn) to surrounding grids;
(ii) calculate the grid potentials using FFT;
(iii) interpolate the grid potentials back to each basis function;
(iv) correct the near zone interaction.
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Figure 1. AIM memory require-
ment versus the number of un-
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Figure 2. AIM CPU time per
iteration versus the number of
unknowns.

3. COMPUTATIONAL COMPLEXITY OF THE AIM

Now we investigate the computational complexity and storage
requirement of our AIM implementation. We choose a spherical shell
with inner radius 1m and the thickness 0.1m as the example. It is
composed of dielectric material with εr = 2. The average length of
the tetrahedral cell is 0.07λ0 where λ0 is the free space wavelength.
We increase the frequency of the incident plane wave gradually so
that the total number of unknowns also increase. Then we record the
the matrix storage requirement and CPU time per iteration, plotting
them in Fig. 1 and Fig. 2, respectively. The asymptotic computational
complexity and matrix storage requirement of AIM in solving volume
integral equations have been given by [22] as of O(N) and O(N log N),
respectively. In our implementation on a PC, AIM exhibits O(N),
and O(N log N) patterns for the matrix storage and matrix vector
multiplication, respectively. Our AIM implementation agrees well with
the estimation given in [22].

4. NUMERICAL RESULTS

In this section, several examples will be given to demonstrate the
validity and efficiency of our code to solve the electromagnetic
scattering of large scale arbitrarily shaped bi-anisotropic objects. The
GMRES solver is adopted as the iterative solver and it terminates when
the normalized residue falls below 10−3. In the following examples, we
will introduce some concepts such as bistatic RCS σ, co-polarized RCS
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σθθ and cross-polarized RCS σφθ which are defined below:

σ = lim
r→∞ 4πr2 |Esca|2

|Einc|2 (53)

σθθ = lim
r→∞ 4πr2 |Esca

θ |2
|Einc|2 (54)

σφθ = lim
r→∞ 4πr2

|Esca
φ |2

|Einc|2 (55)

where Einc is a θ-polarized incident plane wave, ES
θ and ES

φ are
respectively the θ and φ components of the scattered field produced.

4.1. Gyroelectric Spherical Shell

In the first example, we consider a gyroelectric spherical shell with
inner radius r1 = 0.3λ0 and outer radius r2 = 0.6λ0 as an example to
demonstrate the validity of our numerical solution. The constitutive

parameters are: ε̄ = ε0

( 2.5 j 0
−j 2.5 0
0 0 1.5

)
. The structure of the

spherical shell is shown in Fig. 3(a). The shell is discretized into 10,840
tetrahedron. The total number of unknowns is N = 45, 000. The shell
is illuminated by a plane wave with k towards z direction and E in x

(a)

(c)

(b)

Figure 3. Geometries of bi-anisotropic objects considered as
numerical examples. (a) A gyroeletric spherical shell, inner radius
r1 = 0.3λ0, outer radius r2 = 0.6λ0. (b) A chiral sphere, radius
r = 0.8λ0. (c) A bi-anisotropic cubes, d = λ0.
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Figure 4. Total bistatic RCS of the shell in Fig. 3. (a) Total bistatic
RCS for scattering angle φ = 0◦; (b) Total bistatic RCS for scattering
angle φ = 90◦.

direction. Fig. 4 shows the bistatic RCS of the shell calculated using
our code and also the Mie series [27] for comparison. We calculate
the total Bistatic RCS in x-z plane and y-z plane respectively. From
Fig. 4, we can conclude that the RCS results calculated from our code
are in excellent agreement with Mie series. It is clear that the RCS
results in two planes are similar, both have three valleys. However, the
third valley is the deepest in φ = 0◦ plane, while it is the second valley
that is the deepest in φ = 90◦ plane.

4.2. Chiral Sphere

In the second example, we consider a chiral sphere with radius r =
0.8λ0 as an example to demonstrate the validity of our code. The
constitutive parameters are: ε̄ = 1.5ε0Ī, µ̄ = 1.5µ0Ī, ξ̄ = −ζ̄ =
−0.2j

√
ε0µ0Ī. The structure of the sphere is shown in Fig. 3(b). The

sphere is discretized into 27,256 tetrahedron. The total number of
unknowns is N = 111, 294. The shell is illuminated by a plane wave
with k towards z direction and E in x direction. Fig. 5 shows the
bistatic RCS of the sphere calculated using our code and also the Mie
series [28] for comparison. From Fig. 5, we can conclude that the RCS
results calculated from our code are in good agreement with Mie series.
Some small discrepancy exists due to the inevitable numerical errors
such as discretization errors and integration errors. We can see that
there is a big difference between co-polarized and cross-polarized RCS.
While there are many deep valleys for σθθ, σφθ are much more smooth
except when θ ≈ 180◦ where both are very small.
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Figure 5. Bistatic RCS of the sphere in Fig. 3. (a) co-polarized
Bistatic RCS for scattering angle φ = 0◦; (b) cross-polarized bistatic
RCS for scattering angle φ = 0◦.

4.3. Bi-anisotropic Cubes

In the last example, we consider cubes with different constitutive
parameters to demonstrate the versatility of our code in solving
arbitrarily shaped large scale bi-anisotropic problems. There are four
cubes along y direction. The cubes’ side lengths are d = λ0. The

first one is a gyroelectric cube with ε̄ = ε0

( 2.5 j 0
−j 2.5 0
0 0 1.5

)
. The

second one is a gyromagnetic cube with µ̄ = µ0

( 2.5 j 0
−j 2.5 0
0 0 1.5

)
.

The third one is a chiral cube with ε̄ = 1.5ε0Ī, µ̄ = 1.5µ0Ī, ξ̄ =
−ζ̄ = −0.2j

√
ε0µ0Ī. The last one is a Faraday chiral cube with ε̄ =( 2.5 j 0

−j 2.5 0
0 0 1.5

)
, µ̄ =

( 2.5 j 0
−j 2.5 0
0 0 1.5

)
, ξ̄ = −ζ̄ = −0.2j

√
ε0µ0Ī.

The configuration of the cubes is shown in Fig. 3(c). The cubes are
discretized into 54,129 tetrahedron. The total number of unknowns
is N = 221, 880. The cubes are illuminated by a plane wave with k
towards z direction and E in x direction. Fig. 6 shows the bistatic RCS
of the cubes. We have computed both co-polarized bistatic RCS for
scattering angle φ = 0◦ and φ = 90◦, respectively. From these figures,
we can see that for σθθ, the result in φ = 0◦ plane is larger than that
in φ = 90◦ plane except when θ > 120◦. For σφθ, the result has many
valleys in φ = 0◦ plane while only one deep valley in φ = 90◦ plane.
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Figure 6. Bistatic RCS of the cubes in Fig. 3. (a) co-polarized bistatic
RCS for scattering angle φ = 0◦ and φ = 90◦; (b) cross-polarized
bistatic RCS for scattering angle φ = 0◦ and φ = 90◦.

Table 1. Comparison of memory requirement between AIM and MoM.

Example Unknowns AIM (GB) MoM (GB) MAIM/MMoM

shell 45000 1.41 16.2 8.7%
sphere 111294 3.78 99 3.8%
cube 221880 7.56 394 1.9%

Table 2. Comparison of CPU time between AIM and MoM.

Example Unknowns AIM (hours) MoM (hours) MAIM/MMoM

shell 45000 1.0 5.4 19%
sphere 111294 2.2 82 2.7%
cube 221880 4.4 646 0.7%

4.4. Memory and CPU Time Comparison

In Table 1, we compare the total memory consumed by AIM and
the memory estimated for the conventional MoM in computing these
examples. From Table 1, we observe that the memory savings using
AIM is more than 90%.

The CPU time consumed by AIM to compute these examples is
shown in Table 2 and CPU time estimated for MoM is also given for
comparison purpose. We find that the saving in time is more than
80%.
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5. CONCLUSION

In this paper, adaptive integral method has been extended to solve
the electromagnetic scattering by large scale inhomogeneous bi-
anisotropic objects. Volume integral equations are used to characterize
the scattering property of bi-anisotropic objects and subsequently
converted into a matrix equation by using MoM. AIM has been utilized
to reduce the stringent memory requirement and to speed up the
solution process. The gyroelectric spherical shell and chiral sphere
examples are used to validate our AIM code and the bi-anisotropic
cubes example is used to demonstrate the versatility of AIM code in
solving scattering problems by large scale arbitrarily shaped objects.
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