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Abstract—This paper describes an augmented generalized impedance
boundary condition (AGIBC) formulation for accurate and efficient
modeling of conductive media. It is a surface integral equation
method, so that it uses a smaller number of unknowns. The
underlying GIBC provides a rigorous way to account for the skin
effect. Combining with the novel augmentation technique, the AGIBC
formulation works stably in the low-frequency regime. No loop-
tree search is required. The formulation also allows for its easy
incorporation of fast algorithms to enable the solving of large problems
with many unknowns. Numerical examples are presented to validate
the formulation.

1. INTRODUCTION

Conductive media are widely encountered in real-world problems, such
as high-speed interconnect design, antenna radiation, radar scattering,
well-logging and subsurface detection. The difference of scales between
the outer propagation physics and the inner diffusion physics causes
difficulties for numerical methods. The small skin depth usually causes
a prohibitively large number of unknowns for those methods requiring
a volumetric discretization of the conductive medium. A popular
alternative uses an impedance boundary condition (IBC) [1], which
approximates the effect of the conductive medium without discretizing
it. However, these IBCs are usually derived from a simplified 2-D
analysis. They are by no means rigorous and may cause large errors
for strongly coupled structures.

Surface integral equations (SIEs) can model conductive medium
rigorously by treating it as a general complex medium and formulating
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integral equations for it. The effect of the conductive medium is
accounted by the lossy Green’s function. To this end, a generalized
impedance boundary condition (GIBC) has been introduced in the
literature [2]. Numerical examples demonstrate that GIBC can
model conductors with good accuracy as well as high efficiency. It
also elucidates the relationship between the rigorous model and the
approximate IBC model with a two-step approximation.

Because of the electric field integral equation (EFIE) operator,
GIBC has a low-frequency breakdown problem. Previously, a loop-tree
decomposition is used as a remedy [2]. However, the search for loop
basis is very tricky for complex structures. Recently we have developed
an augmentation technique to remedy the low-frequency breakdown of
the EFIE operator [3, 4]. Therefore, we combine GIBC with the novel
augmentation technique to formulate an augmented GIBC (AGIBC)
method. The AGIBC method does not need to search for the loop
basis. It also inherits the established solution scheme of A-EFIE.

In this paper, we briefly review the GIBC formulation at first, then
the AGIBC method is discussed in details. Finally, several numerical
examples are presented to validate the proposed formulation.

2. GIBC FORMULATION

SIEs only consider the surface of an object. For a general multiple-
object problem, the notations of the surfaces and regions are illustrated
in Fig. 1. Assuming that each surface contains a homogeneous volume,
all N surfaces are numbered from S1 to SN , and the volume enclosed
by Sν is indexed as Vν . The outermost region is named as V0. In region
Vν , the permittivity and permeability are εν and µν , respectively. The
wave impedance is thus ην =

√
µνε

−1
ν . Here, the index ν runs from

0 to N . The wave number in free space is k = ω
√

µε, and the wave
number in region ν is kν = ω

√
µνεν .

On surface Sν , the electric current is Jν , and magnetic current is
Mν . In region Vν , the incident electric field is Eν

inc, and the incident

Figure 1. An illustration of the multi-object problem.
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magnetic field is Hν
inc. In the following formulations, the magnetic

current and the incident electric field are normalized by the free space
impedance η as Ẽν

inc = η−1Eν
inc, and M̃ν = η−1Mν .

In general, the EFIE and MFIE operators in region ν are written
as

L̃ν
pq = iωη−1µν

(
Ī +

∇∇
k2

ν

)
gν

(
rp, r′q

)
(1)

Kν
pq = ∇gν

(
rp, r′q

)× Ī (2)

where p and q refer to testing surface and source surface, respectively.
The scalar Green’s function is defined as

gν

(
r, r′

)
=

exp (ikν |r− r′|)
4π|r− r′| (3)

and the EFIE operator is normalized by η.
For a single penetrable object, EFIE in the outer region and MFIE

in the inner region are written as

L̃0
11J1 +K0

11M̃1 = −Ẽ0
inc (4)

K1
11J1 − τ1L̃1

11M̃1 = 0 (5)

where τν = η2η−2
ν and integrations are implied over repeated variable.

Combining them, we get the GIBC formulation [2]. Both the electric
current and magnetic current are expanded with the RWG basis
functions [8],

J1 =
∑

n

j1nΛn, M̃1 =
∑

n

m1nΛn (6)

where j1n is the nth element of the expansion coefficient vector j1, and
m1n is the nth element of the expansion coefficient vector m1. With
the Galerkin testing, the integral equations can be converted into a
matrix form as[

L̄0
11 K̄0

11 − 1
2X̄1

K̄1
11 + 1

2X̄1 −τ1L̄1
11

]
·
[

j1
m1

]
=

[
b0

E1
0

]
(7)

The expressions for the sub-matrices and vectors are listed in the
Appendix. Invoking the Schur complement and defining the impedance
matrix as

Z̄1 =
(
L̄1

11

)−1 ·
(
K̄1

11 +
1
2
X̄1

)
(8)

the equation system is reduced to a single equation[
L̄0

11 + τ−1
1

(
K̄0

11 −
1
2
X̄1

)
· Z̄1

]
· j1 = b0

E1 (9)
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with electric current as the unknown. The magnetic current is then
determined by

m1 = τ−1
1 Z̄1 · j1 (10)

The final equation in (9) is the GIBC formulation. It is also named as
the GIBC-e form because the unknown vector is the electric current.
The implementation details and solution method are presented in [2]
and are omitted here. It is also straightforward to generalize the
formulation for multi-conductor problems. For simplicity of derivation,
we only show the single conductor case.

3. AGIBC FORMULATION

3.1. Augmented Formulation

The EFIE operator in GIBC has the low-frequency breakdown
problem, so that the GIBC matrix is singular at low frequencies.
Traditional remedy is to use the loop-tree decomposition. However, the
search for loop basis is very tricky for real-world complex structures.

It has been shown in [4] that the augmentation technique can
remedy the low-frequency breakdown. The EFIE operator comprises
contributions of both the vector potential and the scalar potential.
The two can be separated by including the charge as extra unknown.
With the current continuity condition, the expanded system, named A-
EFIE, is free of low-frequency breakdown. Similar to AEFIE, GIBC-e
in (9) can be augmented to obtain the AGIBC-e form:[

ikV̄0
11+τ−1

1

(
K̄0

11− 1
2X̄1

) · Z̄1 D̄T
1 P̄0

11B̄1

F̄1D̄1 −ikĪ

]
·
[

j1
cρe

r1

]
=

[
b0

E1
0

]
(11)

where the EFIE operator L̄0
11 is augmented. Matrices V̄0

11 and P̄0
11

represent the vector potential and the scalar potential, respectively.
The detailed expressions of them are listed in the Appendix. Vector
ρe

r1 is the reduced charge vector due to the enforcement of charge
neutrality. Take a single connected object as an example. The charge
neutrality states that the summation of all the charge unknowns is
zero. Thus, one degree of freedom can be removed to form the reduced
charge vector. Backward matrix B̄1 and forward matrix F̄1 project
the original and reduced charge vectors back and forth. If the last
element gets removed, the backward matrix is a unit matrix with an
additional row of all negative ones, and the forward matrix is a unit
matrix without the last column. The constant c is the speed of light
in free space. From this equation, we can solve for j1 and ρe

r1, and
then obtain m1 by (10). Notice that the frequency scaling in AGIBC
is different from that in A-EFIE. That is because the loss dominates
the physics of AGIBC in the low-frequency regime.
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3.2. Dual Formulation

The aforementioned GIBC-e formulation in Equation (7) reduces to a
modified EFIE in Equation (9) with electric current as the unknown. A
dual form, the GIBC-h form, can be alternatively derived by combining
MFIE in the outer region and EFIE in the inner region.

[
τ0L̃0

11 −K0
11

K1
11 L̃1

11

]
·
[

M̃1

J1

]
=

[
−H̃0

inc
0

]
(12)

Converted into matrix form with MoM, the GIBC-h form is written as
[
τ0L̄0

11 −
(
K̄0

11 −
1
2
X̄1

)
· Z̄1

]
·m1 = b0

H1 (13)

with magnetic current as the unknown. The electric current can be
calculated by

j1 = −Z̄1 ·m1 (14)

The AGIBC-h form is obtained with the augmentation technique
[

ikτ0V̄0
11−

(
K̄0

11− 1
2X̄1

)·Z̄1 τ0D̄T
1 P̄0

11B̄1

F̄1D̄1 −ikĪ

]
·
[

m1

cρm
r1

]
=

[
b0

H1
0

]
(15)

It can also be derived using duality. From this equation, we can solve
for m1 and ρm

r1, and then obtain j1 by (14).
It is noted that AGIBC-e asks for electric field excitation, while

AGIBC-h needs magnetic field incidence. Readers are referred to
paper [4] for efficient solution scheme of the matrix equation.

3.3. Power Calculation

The matrix equation in (11) or (15) can be solved by either direct
solvers or iterative solvers. Then, various results can be retrieved from
the known current distributions. Here, we derive a succinct expression
to calculate the time average power dissipated into the conductor.
Assume that the conductor is enclosed by surface S1, the time average
power is expressed using Poynting’s vector:

Pav =
1
2
Re

[∮

S1

E1 ×H∗
1 · (−n̂1) dS

]
(16)

The integral kernel yields

E1 ×H∗
1 · n̂1 = (n̂1 ×M1)× (−n̂1 × J∗1) · (−n̂1)

= (n̂1 ×M1) · (−n̂1 × n̂1 × J∗1)
= J∗1 · (n̂1 ×M1) (17)
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Substituting the expansion of the currents in (6), and then performing
the integration, the time-average power can be simply written as

Pav =
1
2
Re

[
jH1 · X̄1 ·m1

]
(18)

It involves one matrix-vector product and one vector inner product.
Notice that matrix X̄1 is highly sparse, as shown in the Appendix.

Figure 2. The mesh of a sphere.

Figure 3. The bistatic RCS of a conductive sphere at 10 MHz.
The sphere is located at the origin with a radius of 0.2mm and a
conductivity of 5.8× 107 S/m.
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4. NUMERICAL EXAMPLES

Numerical examples are presented in this section to validate the
AGIBC method. AGIBC-e form in Equation (11) is used. The first
example is the plane wave scattering of a conductive sphere with radius
0.2mm and conductivity 5.8 × 107 S/m. The surface of the sphere is
discretized into 1,568 triangular patches as shown in Fig. 2, so there
are 2,352 inner edges for surface integral equation methods. The x
polarized plane-wave impinges onto the sphere from the +z direction
at 10 MHz. For such a low-frequency scattering problem, GIBC fails
to deliver correct solutions. However, the new AGIBC formulation
remedies the low-frequency breakdown without using the loop-tree
decomposition. The result agrees well with the Mie series solution
as shown in Fig. 2. The lossless case is also included to demonstrate
the effect of conductor loss.

Then, we calculate the near field of a conductive sphere with a
magnetic dipole excitation. The sphere is located at the origin with a
radius of 5 mm. The conductor has a relative permeability of 20 and a
conductivity of 2× 106 S/m. The surrounding medium has a dielectric
constant of 3.0. A z-polarized magnetic dipole with unit dipole moment
is placed on the z axis at z = 50mm. The scattered electric field, shown
in Fig. 3, is calculated along the line x ∈ [−10, 10] mm, y = 0 mm, and
z = 10 mm. It agrees well with the Mie series solution.

Figure 4. Scattering electric field at x ∈ [−10, 10] mm, y = 0 mm,
and z = 10mm. The sphere is located at the origin with radius of
5mm and conductivity of 2× 106 S/m. A z-polarized magnetic dipole
with unit dipole moment is placed on the z axis at z = 50 mm. The
frequency is 1 kHz.
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The next example is a copper rectangular loop, which is shown
in Fig. 5. It has a typical scale of on-chip interconnects. The length
and width are 1,984µm and 122µm, respectively. The cross section is
4µm by 4µm, and the conductivity of copper is set to be 5.8×107 S/m.
A single delta-gap voltage source is assigned in the middle of a short
side. The triangular mesh contains 448 triangle patches and 672 inner
edges. To validate the AGIBC formulation, the input admittance
is extracted over a broad frequency band from 0.01 GHz to 10 GHz.
Correspondingly, the skin depth decreases from 20.9µm to 0.661µm.
Good agreement between AGIBC and FastHenry [7] is shown in Fig. 4.

The last example is a rectangular conductive plate shown in Fig. 7.
It is 0.5 mm by 0.5 mm with a thickness of 0.02 mm. A plane wave
impinges from the −x direction with Ey = 1.0V/m at 0.1 GHz. It
is a low-frequency problem in the magnetic diffusion regime. The
time-average dissipated power is plotted in Fig. 5 for a wide range
of conductivities. Notice that Krakowski’s formula [5] was derived
based on the assumption that the skin depth is much larger than the
thickness of the plate. Thus, it leads to erroneous results for small
skin depth [6]. The comparison shows that AGIBC agrees well with
Krakowski’s formula when conductivity is smaller than 2×104 S/m, at
which the skin depth is about 20 times larger than the thickness of the
plate. With the decreasing skin depth, the power dissipation increases
at first and drops finally. It is consistent with the physics that the
loss of a perfect electric conductor is zero. As an example, the loss is
49× 10−15 W for conductivity of 5.8× 106 S/m.

(a)

(b)

Figure 5. The geometry of a rectangular loop inductor.
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(a)

(b)

Figure 6. Real and imaginary parts of the input admittance of the
copper rectangular loop.

Figure 7. The mesh of a rectangular conductor plate.
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Figure 8. The dissipated power of the rectangular plate at 0.1GHz
with different conductivities.

5. CONCLUSION

AGIBC inherits the advantages of both GIBC and A-EFIE. It is a
rigorous and efficient method to model conductive medium, especially
when the skin depth is small. The incorporation of the augmentation
technique used in A-EFIE remedies the low-frequency breakdown
of GIBC. The novel method has been applied to various types of
problems.
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APPENDIX A. DEFINITION OF OPERATORS

The MFIE operator Kν
pq should be rewritten as K̄ν

pq +R, if rp equals
r′q. The first term K̄ν

pq takes the Cauchy principal value and the second
term R represents the residue, which equals to ±1

2 n̂p× or ±1
2 n̂q×. The

sign is determined by the relationship between surface Sp and Vν . If Vν

is the outer region of Sp, the testing is on the inner side of Sp and the
residue is −1

2 n̂p×. If Vν is the inner region of Sp, the residue is 1
2 n̂p×.

The relation between Sq and Sp determines the sign of the residue in
terms of n̂q.
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Denote the RWG function as Λm, and the pulse function on a
triangle patch as hm, the matrices in EFIEs and MFIEs can be written
as

[
L̄ν

pq

]
mn

=
〈
Λm (rp) , L̃ν

pqΛn

(
r′q

)〉
(A1)

[
V̄ν

pq

]
mn

=
〈
Λm (rp) ,

µν

µ
gν

(
rp, r′q

)
Λn

(
r′q

)〉
(A2)

[
P̄ν

pq

]
mn

=
〈

hm (rp) ,
ε

εν
gν

(
rp, r′q

)
hn

(
r′q

)〉
(A3)

[
K̄ν

pq

]
mn

=
〈
Λm (rp) , K̄ν

pqΛn

(
r′q

)〉
(A4)[

X̄p

]
mn

= 〈Λm (rp) , n̂p ×Λn (rp)〉 (A5)

The right hand side vectors are defined as
[
bν

Ep

]
m

=
〈
Λm (rp) ,−Ẽν

inc (rp)
〉

(A6)
[
bν

Hp

]
m

=
〈
Λm (rp) ,−H̃ν

inc (rp)
〉

(A7)
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