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Abstract—This paper presents the 3-D dispersion analysis of finite-
difference time-domain (FDTD) schemes for doubly lossy media, where
both electric and magnetic conductivities are nonzero. Among the
FDTD schemes presented are time-average (TA), time-forward (TF),
time-backward (TB) and exponential time differencing (ETD). It is
first shown that, unlike in electrically lossy media, the attenuation
constant in doubly lossy media can be larger than its phase constant.
This further calls for careful choice of cell size such that both
wavelength and skin depth of the doubly lossy media are properly
resolved. From the dispersion analysis, TF generally displays higher
phase velocity and attenuation errors due to its first-order temporal
accuracy nature compared to second-order ETD and TA. Although
both have second-order temporal accuracy, ETD has generally lower
phase velocity and attenuation errors than TA. This may be attributed
to its closer resemblance to the solution of first-order differential
equation. Numerical FDTD simulations in 1-D and 3-D further confirm
these findings.

1. INTRODUCTION

The finite-diference time-domain (FDTD) method [1] has been
successful thus far in solving various electromagnetics problems. In
addition, the effects of lossy media and conductors have been treated
by incorporating the conductivity into the original formulation of
lossless FDTD update equations. By far, there are four known
schemes for such purposes. One common scheme is the time-average
(TA) [1]. Other variants include the time-forward (TF) [2], time-
backward (TB) [3] and the exponential time differencing (ETD) [4, 5].
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Stability analysis in [6–8] showed that for an electrically lossy medium,
TA still preserves the stability criterion as the lossless FDTD scheme,
i.e., the Courant-Friedrichs-Lewy (CFL) limit. On the other hand,
TF and ETD have more relaxed and TB, more stringent stability
criterion compared to the lossless CFL limit. With such relaxed
stabililty criterion for ETD and TF, [8] demonstrated that both
ETD and TF allow for efficient simulation (with larger time step) of
highly conductive media in 1-D compared to TA, while TB becomes
practically unusable. The bottom line is that there is a trade-off
between efficiency and accuracy if one were to choose between TA,
ETD or TF. TA is chosen when the time step is driven at CFL
limit (accuracy), while ETD or TF are used for time step beyond
the CFL limit (efficiency). However, since ETD resembles closest to
the solution of first-order differential equation (Maxwell’s equations),
it is of great interest to ascertain if ETD outperforms TA and other
schemes at the same time step. Furthermore, the dispersion analysis
of TA in [9] had been confined to only electrically lossy media, and it
is often desirable to carry out the investigation for the more general
doubly lossy media, where both electic and magnetic conductivities
are nonzero. For instance, the media used for perfectly matched layer
(PML) [10] as absorbing boundary conditions require nonzero electric
and magnetic conductivities. Certain ferrite composites [11, 12],
magnetic materials [13] and wave absorbers [14, 15] are also known
to possess both electric and magnetic loss tangents, which find many
applications in microwave engineering.

In this paper, we present the 3-D dispersion analysis of FDTD
schemes for doubly lossy media, with more emphasis being placed on
ETD, TA and TF. The lossless CFL limit will be applied for fair
comparison, while time step used beyond the lossless CFL limit is
beyond the scope of this paper. It will be shown that, if lossless CFL
limit is applied for both ETD and TA, ETD generally exhibits lower
dispersion errors compared to TA and hence should be favoured over
TA. On the other hand, TF has higher dispersion errors compared to
ETD and TA because it is only first-order accurate in time. Numerical
simulations will further confirm these findings. It will also be shown
that, unlike in electrically lossy media, the attenuation constant in
doubly lossy media can be larger than its phase constant, which further
calls for careful choice of cell size such that both wavelength and skin
depth of the doubly lossy media are properly resolved.
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2. FDTD SCHEMES FOR DOUBLY LOSSY MEDIA

Consider a source-free, isotropic, homogeneous doubly lossy medium.
The Maxwell’s curl equations in differential form are stated as

ε
∂

∂t
E− σE = ∇×H (1a)

µ
∂

∂t
H− σ∗H = −∇×E (1b)

where ε, σ, and µ, σ∗ are the permittivity, electric conductivity
and permeability, magnetic conductivity, respectively. Note that in
practice, second-order central differencing is usually adopted for spatial
derivatives (curl) in (1) and all fields are properly staggered on a Yee
lattice. On the other hand, different ways of discretizing (1) in time will
give rise to different schemes. In the following, we first provide a brief
overview of some FDTD based schemes for electrically lossy media and
extend for doubly lossy media. For discretization of Ampere’s law (1a),
we begin by expressing the exact solution to the first-order differential
Equation (1a) as

E(t) = e−
(t−t0)

τ E(t0) +
1
ε

∫ t

t0

e−
(t−t′)

τ
(∇×H

(
t′
))

dt′ (2)

where t0 is the initial time and τ = ε/σ. The generalized update
equation of FDTD schemes for electric field can be written as

En+1 = ca,eEn + cb,e∇×Hn+ 1
2 (3)

where ca,e and cb,e are the electric field update coefficients.
The electric field update coefficients for ETD, TA, TF and TB are

given as follows:

ETD: cETD
a,e = e−

∆t
τ , cETD

b,e = 1−e−
∆t
τ

σ

TA: cTA
a,e = 1−∆t

2τ

1+∆t
2τ

, cTA
b,e = ∆t/ε

1+∆t
2τ

TF: cTF
a,e = 1

1+∆t
τ

, cTF
b,e = ∆t/ε

1+∆t
τ

TB: cTB
a,e = 1− ∆t

τ , cTB
b,e = ∆t

ε

We first note that the update coefficients of ETD are the closest
compared to the analytical solution (1a). In fact, it should also
be pointed out that by applying the following second-order Pade
approximation to the ETD update coefficients,

e−t =
1− t/2
1 + t/2

+ O(t3) (4)
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we will recover the TA update coefficients. Therefore, TA is a further
Pade approximation of the ETD scheme, though both schemes still
maintain overall temporal accuracy of second-order. On the other
hand, TF utilizes forward differencing for its time derivative and TB
utilizes backward differencing, which result in only first-order accuracy
in time.

For doubly lossy media, the discretization of Faraday’s law (1b)
follows in the similar manner. The generalized update equation for
magnetic field is given as

Hn+1 = ca,hHn − cb,h∇×En+ 1
2 (5)

The magnetic field update coefficients ca,h and cb,h for all the schemes
can then be obtained by replacing τ , ε, and σ in the previous electric
field update coefficients with τ∗, µ, and σ∗, respectively, where τ∗ =
µ/σ∗.

3. DISPERSION ANALYSIS AND NUMERICAL
SIMULATION FOR DOUBLY LOSSY MEDIA

By substituting the Fourier modes to all fields in the update equations
detailed in the previous section, one will arrive at the generalized
dispersion relation as follows:

∑

ξ=x,y,z

(
2

∆ξ
sin(kξ∆ξ/2)

)2 (
2

∆t
sin(ω∆t/2)

)2

µncεnc (6)

where ∆ξ and kξ are spatial steps and wavenumbers in each x, y
and z directions. εnc and µnc are known as the complex numerical
permittivity and permeability which are unique to a particular FDTD
scheme in doubly lossy media. Note that in lossless media, εnc = ε,
µnc = µ and (6) will recover the original dispersion relation of FDTD
scheme in lossless media. The complex numerical permittivity of
each scheme is shown clearly in Table 1. Also shown in Table 1 is
the truncation error term in ∆t compared to the analytical complex
permittivity in doubly lossy media given by ε(ω) = ε − j σ

ω . On
the other hand, complex numerical permeability of each scheme and
their respective leading truncation error can be obtained simply by
substituting σ, ε with σ∗, µ, respectively, and thus, shall not be
repeated. For all discretization parameters ∆x, ∆y, ∆z and ∆t
approaching zero, εnc approaches ε(ω) and µnc approaches µ(ω). From
the table, TA and ETD have leading truncation error of second-order,
while TF and TB show first-order leading truncation error. These
further ascertain the temporal accuracy discussed in the previous
section.
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Table 1. Complex numerical permittivity and leading error term for
FDTD schemes.

Scheme Complex Numerical Permittivity Leading Error Term

ETD
σ∆tejω ∆t

2

(
1−e

−∆t( 1
τ +jω)

)

j2 sin (ω ∆t
2 )

(
1−e−

∆t
τ

) ∆t2
(

jσω
12 + σ2

12ε

)

TA ε +
σ∆t cot (ω ∆t

2 )
2j ∆t2

(
jσω
12

)

TF ε + σ∆t
2 +

σ∆t cot (ω ∆t
2 )

2j ∆tσ
2

TB ε− σ∆t
2 +

σ∆t cot (ω ∆t
2 )

2j −∆tσ
2

3.1. Resolving Both Wavelength and Skin Depth

From Maxwell’s equations, the analytical attenuation constant, α0 and
phase constant, β0 in a doubly lossy medium can be solved as

α0 = ω





µ′ε′

2




√(
1−µ′′ε′′

µ′ε′

)2

+
(

µ′′

µ′
+

ε′′

ε′

)2

−
(

1− µ′′ε′′

µ′ε′

)






1
2

(7a)

β0 = ω





µ′ε′

2




√(
1−µ′′ε′′

µ′ε′

)2

+
(

µ′′

µ′
+

ε′′

ε′

)2

+
(

1− µ′′ε′′

µ′ε′

)






1
2

(7b)

where ε′ = ε, ε′′ = σ/ω, µ′ = µ and µ′′ = σ∗/ω. In electrically lossy
media (σ∗ = 0), µ′′ = 0 and (7) will recover the propagation constant
derived in most electromagnetic textbooks, e.g., [16]. The medium
wavelength and skin depth can then be found by 2π/β0 and 1/α0,
respectively. In most previous numerical studies of electrically lossy
media, the cell size of a particular FDTD scheme is selected such that
it sufficiently resolves the wavelength of the medium (usually at least
1/10 of wavelength for tolerable numerical errors) while disregarding
the skin depth. This is permissible in electrically lossy media due to the
fact that α0 is always smaller than β0 if µ′′ = 0. In fact, in highly lossy
conductor (ε′′/ε′ À 1), α0 ≈ β0, and therefore, sufficiently resolved
wavelength automatically guarantees sufficiently resolved skin depth.
However in doubly lossy media, α0 is not always smaller than β0 for
nonzero µ′′. A closer look at (7) reveals that when µ′′ε′′/µ′ε′ > 1,
α0 > β0. Under such circumstances, even if the wavelength is well
resolved, the skin depth can be much smaller than the wavelength
and still remains under-resolved which in turn yields higher numerical
errors.
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To further illustrate this, let us investigate the dispersion errors
of FDTD schemes in doubly lossy media. We first assume 1-D
propagation in z direction involving Ex and Hy field components. The
only wavenumber kz that exists can be solved explicitly from (6) as

kz =
2

∆z
arcsin

(
∆z
√

µncεnc

∆t
sin

(
ω∆t

2

))
(8)

The solution kz will be complex in nature because of propagation
in doubly lossy media. The numerical attenuation constant, phase
constant and phase velocity can be found as α = −=(kz), β = <(kz)
and v = ω/β respectively. We further define two performance
measures, which are the attenuation error, (α − α0)/α0 and phase
velocity error, (v − v0)/v0 where v0 is the analytical phase velocity.

Figure 1 plots the phase velocity and attenuation errors with
respect to σ/ωε with σ∗/ωµ = 10−2 and cell per wavelength (CPW)
equals 40. ∆t is set at the 1-D lossless Courant limit ∆z

√
µε for ETD,

TA, TF while for TB, smaller-than-lossless Courant limit is used due to
the more stringent stability criterion. Note that the wavelength used
is the wavelength in doubly lossy media, given by 2π/β0 and should
not be confused with the lossless media wavelength 2π/(ω

√
µε). We

first note that TF and TB generally have higher magnitudes of phase
and attenuation errors compared to ETD and TA at lower σ/ωε. This
is expected as TF and TB are only first-order accurate in time while
ETD and TA are both second-order. More importantly, regardless of
schemes, we observe that both phase velocity and attenuation errors
increase dramatically beyond σ/ωε = 102 because it is beyond this
point that α0 > β0 and the skin depth becomes under-resolved. This
indicates the necessity to properly resolve skin depth for µ′′ε′′/µ′ε′ > 1,
which will be shown later.
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Figure 1. (a) Phase velocity and (b) attenuation errors with respect
to σ/ωε. σ∗/ωµ = 10−2, CPW = 40.
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3.2. 3-D Dispersion Analysis

Since the dispersion errors become increasingly large for µ′′ε′′/µ′ε′ > 1,
the skin depth will be properly resolved in the 3-D analysis here. In the
subsequent analysis, instead of specifying only CPW, uniform cell size
∆ is chosen such that for positive integer N , ∆ is λ/N if µ′′ε′′/µ′ε′ ≤ 1,
and 2πδs/N if µ′′ε′′/µ′ε′ > 1, where λ is the medium wavelength and δs

is the skin depth. Larger N implies higher mesh density. These criteria
will ensure that the cell size always properly resolves both wavelength
and skin depth. 2π is included because the ratio between wavelength
and skin depth is exactly 2π at α0 = β0. Alternatively, one may also
specify ∆ in terms of the magnitude of complex wavenumber. The
magnitude of complex wavenumber, |k0| can be found from (7) as

|k0| =
√

α2
0 + β2

0 = ω



µ′ε′

√(
1− µ′′ε′′

µ′ε′

)2

+
(

µ′′

µ′
+

ε′′

ε′

)2




1
2

(9)

However, specifying ∆ in this way may result in finer-than-necessary
cell size, which increases computational effort undesirably, especially
when α0 = β0. Therefore, the former choice of specifying ∆ in terms
of λ or 2πδs (depending on µ′′ε′′/µ′ε′) is preferred over the latter
in terms of |k0|. In 3-D, there exist three individual wave vectors,
kx = k sin θ cosφ, ky = k sin θ sinφ and kz = k cosφ where θ is the

longitudinal angle, φ is the azimuthal angle and k =
√

k2
x + k2

y + k2
z .

The complex wavenumber k is then solved from (6) using appropriate
root finding algorithm.

Figure 2 shows the 3-D plot of phase velocity error for all schemes
at different propagation angle in the first octant. σ/ωε = σ∗/ωµ = 102,
which gives µ′′ε′′/µ′ε′ = 104 > 1, and N is selected as 10. ∆t is now set
at the 3-D lossless Courant limit ∆

√
3µε for ETD, TA and TF while

again for TB, it is set lower due to more stringent stability criterion.
We see that, with properly resolved skin depth, the error level is not
as high as in previous case. We also notice that second-order schemes
ETD and TA have lower error magnitude than the first-order schemes
TF and TB. On top of that, ETD has lower error compared to TA
due to its closer resemblance to the solution of first-order differential
equation. Furthermore, only TF has negative phase velocity error as
opposed to others, which indicates that its phase velocity lags behind
the analytical phase velocity while others lead. It will be shown later
that for most of the values of σ/ωε and σ∗/ωµ, TF has opposing
polarity of both phase velocity and attenuation errors compared to
others. Since TB is only first-order accurate in time (higher error),
and has more restrictive stability criterion compared to others, it shall
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Figure 2. Phase velocity error for (a) ETD, (b) TA, (c) TF and (d)
TB with respect to θ and φ. σ/ωε = σ∗/ωµ = 102, N = 10.

be omitted in all our further comparisons. It should be reminded that
unlike in 3-D lossless FDTD scheme where the numerical phase velocity
always lags the analytical, it is generally not true in doubly lossy media.
Also, the fact that lossless 3-D FDTD scheme always yields the lowest
and highest phase velocity errors in the diagonal and axial directions
does not generally apply for doubly lossy media.

In 3-D dispersion analysis, the more appropriate measures would
be to find the maximum phase velocity and attenuation errors across
all propagation angles (first octant will suffice as the dispersion error
pattern repeats in every octant). We now define the positive maximum
phase velocity error as (max [v(θ, φ)] − v0)/v0 for max [v(θ, φ)] > v0,
and the corresponding negative maximum phase velocity error as
(min [v(θ, φ)] − v0)/v0 for min [v(θ, φ)] < v0. Note that there is no
positive maximum error if v(θ, φ) < v0, and no negative maximum
error if v(θ, φ) > v0 for all angles. The positive and negative maximum
attenuation errors are also defined in a similar fashion. Such definitions
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ensure that both “most positive” and “most negative” errors can be
recorded.

Figures 3, 4 and 5 plot the positive and negative maximum phase
velocity and attenuation errors with respect to σ/ωε at three cases
of σ∗/ωµ = 10−2, 100 and 102. N is 40 and ∆t is the 3-D lossless
Courant limit throughout the remaining sections. Although not shown,
it is found that the phase velocity and attenuation errors recorded
for σ∗/ωµ = 0 and σ∗/ωµ = 10−2 are very similar. Hence it can be
understood that the dispersion characteristics of doubly lossy media at
low σ∗/ωµ (< 10−2) do not differ much from that of electrically lossy
media. It should also be noted that not all regions have simultaneous
positive and negative maximum errors. Some may have either only
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positive or negative errors across all propagation angles. Next, we
observe that in all cases, TF (first-order) generally displays higher
(absolute) maximum errors than ETD and TA (second-order), and
its maximum errors are mostly negative. Further comparing ETD and
TA, it can be seen again that ETD generally has lower maximum errors
than TA.

We note that the dispersion errors of TF can sometimes be lower
than ETD and TA for certain σ/ωε and σ∗/ωµ during the transition
between negative maximum and positive maximum errors (for instance,
cf. Fig. 3). This effect is more pronounced in lower mesh density. To
demonstrate this, Figs. 6 and 7 now plot the positive and negative
maximum phase velocity and attenuation errors with respect to a range
of frequencies at N = 10 and N = 40. Note that N is set with respect
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Figure 5. Same as Fig. 3, but for σ∗/ωµ = 102.
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Figure 6. Positive and negative maximum (a) phase velocity and (b)
attenuation errors with respect to frequency. No negative maximum
errors here. σ = 60 S/m, σ∗ = 800 Ω/m, N = 10 at fmax = 10 GHz.
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Figure 7. Same as Fig. 6, but for N = 40. Dash lines represent
negative maximum errors.

to the highest frequency (10GHz), and ∆ shall remain invariant for
other lower frequencies. σ and σ∗ are arbitrarily set at 60 S/m and
800Ω/m respectively. It can be seen that at N = 10 (low mesh
density), the maximum phase velocity and attenuation errors exhibited
by TF are lower than that of ETD and TA, and its maximum errors
are in the same polarity as ETD and TA. At N = 40, the maximum
errors of TF return to the highest among all. Such observations are
somewhat similar to those found in [17], where higher order schemes
do not necessarily yield lower dispersion errors at lower mesh density.
Nevertheless, the dispersion errors of ETD are still lower than TA
throughout.

Since the dispersion errors in 3-D differ at different angles,
it is customary for us to define the phase velocity anisotropy
error as (max [v(θ, φ)] − min [v(θ, φ)])/min [v(θ, φ)]. The attenuation
anisotropy error is also defined in the similar way. Note that the
definition of anisotropy here is more appropriate compared to those
in [9], where only diagonal and axial errors are taken in consideration.
Figs. 8, 9 and 10 plot the phase velocity and attenuation anisotropy
errors with respect to σ/ωε at σ∗/ωµ = 10−2, 100 and 102. N is set
at 40. ETD and TA have near similar anisotropy errors while TF has
generally higher anisotropy errors than ETD and TA. However, it can
also be seen that the anisotropy errors of TF can be lower than that
of ETD and TA at certain higher range of µ′′ε′′/µ′ε′. Again, similar to
previous phase velocity and attenuation errors, this can be mitigated
by adopting higher mesh density.
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Figure 8. (a) Phase velocity and (b) attenuation anisotropy errors
with respect to σ/ωε. σ∗/ωµ = 10−2, N = 40.
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Figure 9. Same as Fig. 8, but for σ∗/ωµ = 100.
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3.3. Numerical Simulation

In this subsection, further investigations with actual FDTD simulations
in 1-D and 3-D are done. For 1-D, we use 100 cells of homogeneous
doubly lossy medium with σ = 10 S/m and σ∗ = 104 Ω/m. The values
of σ and σ∗ are chosen such that they are sufficiently large for clear
demonstration of the doubly lossy effect, while ensuring measurable
field values (not too severely attenuated). N is set at 10 (∆z = 10 µm)
at the operating frequency of 100GHz and ∆t = 0.811 ps is at the
lossless 1-D Courant limit. A Gaussian pulse with significant frequency
content of up to 100GHz is launched as a hard source at the initial
point. The analytical electric field in time domain at each cell position
after arbitrary time step can be obtained by numerically integrating
the frequency domain solution. This analytical electric field will serve
as the reference solution to be compared with the simulated electric
field. Fig. 11(a) plots the absolute electric field error normalized to the
maximum amplitude of reference solution against cell position. The
error exhibited by TF has fallen outside the range of the plot and is
comparatively larger than ETD and TA. Between second-order ETD
and TA, we can see that the error recorded by ETD is generally lower
than that of TA.

For 3-D experiment, we consider a homogeneous doubly lossy
medium filled cavity with 18× 18× 17 dimension terminated by PEC
walls. σ and σ∗ are chosen as 0.1 S/m and 500 Ω/m respectively.
A z-directed point current source is located precisely at the centre
(10, 10, 9) of the cavity, driven by modulated Gaussian pulse with
significant frequency content of up to 600 MHz. Again, N = 10
(∆x = ∆y = ∆z = 36 mm) at the operating frequency of 600 MHz is
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Figure 11. Normalized absolute electric field error with respect to (a)
cell position for 1-D problem and (b) time for 3-D problem in a doubly
lossy medium. N = 10.
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chosen for the cell size, and ∆t = 69.267 ps is at 3-D lossless Courant
limit. The electric field is then recorded at position (16, 16, 15) until
the simulation is terminated after 20 ns. Using similar configuration,
the cell size is reduced to 1/3 of the original problem and simulation is
carried out using TA scheme with properly scaled dimension, cell size,
and time step. This will serve as the reference solution for comparison.
Fig. 11(b) plots the absolute electric field error normalized to the
maximum amplitude of reference solution with respect to time. It
can be seen that the error recorded by ETD is the lowest among all
under such circumstances. Also, the overall errors recorded from 3-D
experiment are larger than those recorded from 1-D. This may be due
to the presence of anisotropy effects in 3-D. From all these simulations,
we find that ETD is generally the better choice for modeling doubly
lossy media compared to TA and TF.

4. CONCLUSION

This paper has presented the 3-D dispersion analysis of FDTD schemes
for doubly lossy media, where both electric and magnetic conductivities
are nonzero. It has been shown that, unlike in electrically lossy media,
the attenuation constant in doubly lossy media can be larger than
its phase constant. This further calls for careful choice of cell size
such that both wavelength and skin depth of the doubly lossy media
are properly resolved. From the dispersion analysis, TF generally
displays higher phase velocity and attenuation errors due to its first-
order temporal accuracy nature compared to second-order ETD and
TA. Although both have second-order temporal accuracy, ETD has
generally lower phase velocity and attenuation errors than TA. This
may be attributed to its closer resemblance to the solution of first-
order differential equation. Numerical FDTD simulations in 1-D and
3-D further confirm these findings. Owing to its higher accuracy, ETD
should be better than TA for FDTD simulation of doubly lossy or
electrically lossy media.
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