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Abstract—In this paper, the wave propagation and the cutoff
frequencies of a rectangular metallic waveguide, partially filled the
metamaterial multilayer slabs have been studied. The equations of the
TMM method are not complex and the numerical examples show that
we can easily obtain the characteristics of the metamaterial multilayer’s
rectangular waveguide satisfyingly. The cutoff frequencies of the
metamaterial waveguide show very different characteristics compared
with the usual waveguide.

1. INTRODUCTION

In 1968, Veselago [1] proposed the concept of left-handed medium
(LHM) theoretically and predicted many unusual physical properties
such as the plane-wave propagation exhibited by the negative refraction
media in which permittivity and permeability are both negative. These
materials have been termed as metamaterials, left-handed materials,
backward-wave materials and so on. People have been proposed many
applications, such as a thin sub wavelength cavity resonators contained
with metamaterials. Many authors have studied the guiding devices
using metamaterials. The wave-guide properties of a planar two-
layered wave-guide, one magnetodielectric and the other metamaterial
have been theoretically considered [2]. Eleftheriades [3] has presented
experimental verification of focusing using an implementation of
artificial transmission-line media in planar form. Alu [4] has analysed
wave propagation in a parallel-plate waveguide filled with a pair of
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Figure 1. Geometry of a waveguide filled with N layers metamaterial
multilayer slabs.

lossless slabs. Krowne [5] has studied a microstrip structure containing
a metamaterial. Hrabar [6] has analyzed a rectangular metallic
waveguide filled with metamaterial. H. Cory [7] has studied the wave
propagation in a rectangular metallic waveguide, loaded with only one
layer longitudinal metamaterial slab adjacent to air.

In this paper, we have developed the transfer matrix method
(TMM) to study a rectangular metallic waveguide partially filled with
the metamaterial multilayer slabs. By using the TMM, the values of
the field from one boundary are transmitted to another by involving
multiplication of transfer matrixes only. The order of the solved
matrixes employed in the TMM is still two and an iterative process
is not required. The propagation and the cutoff frequencies have been
obtained for amount of the metamaterial multilayer slabs. Although
only the TE mode has been studied here, the TM mode case can be
treated in a similar way.

2. FORMULATION

The structure is shown in Fig. 1. The waveguide has N layers slabs
in which layer is filled with metamaterial or normal materials. In
this example, the first layer is filled by air, the second layer is a
metamaterial-filled layer, then the third layer is air-filled, the fourth
is a metamaterial layer and so on in the whole structure. The
metamaterial layers’ permittivity and permeability are εi = −εrεo, and
µi = −µ0, i = 2, 4, 6, . . .. From the Solution to Maxwell’s equation, we
know the Borgnis’method [8], about the x direction, each components
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can be expressed as:
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U and V are the functions referred in Borgnis’ method [8]. If U = 0,
they can be called LSE (TEx) modes. While if V = 0, they can be
called LSM (TMx) modes. When discussing LSE (TEx) modes, we
can easily find
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Using the same method, we can obtain the formula about LSM (TMx)
modes as following:
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For simplicity, we discuss LSE (TEx) modes and suppose ky = 0, the
electric field Ey components are given as follows:

Ei(x) = Ai sin(kix) + Bi cos(kix),
dEi(x)

dx
= ki(Ai cos(kix)−Bi sin(kix))

(7)

Ai and Bi, are the constants to be determined, and k2
i = ω2µiεi − β2.

By applying the boundary condition between every two
neighboring layers, the coefficients Ai, Bi for all layers can be
connected. From the Eq. (5), we can know Hz ∝ dEy/dx. By using
the field continuity conditions at interfaces x = xi−1 and x = xi, the
coefficients Ai, Bi and the field values of the neighboring layers are
connected as follows:[
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(a) the result in Ref. 7 (b) the present method

Figure 2. The propagation coefficients at t = 3/4a when N = 2.

Repeated applications of Equation (8) throughout all the layers lead
to the connections of the coefficients in the first layer A1 and B1 to the
coefficients An and Bn in the last layer. Shown in the following,
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Using the boundary conditions at x0 = 0 and xn = a, we know
En(a) = E0(0) = 0, then M12 = 0. We can get the cutoff frequencies
and dispersion relationships.

3. NUMERICAL RESULTS

In order to validate the proposed method, first we studied a structure
shown in Fig. 2, ε1 = ε0, µ1 = µ0 and ε2 = −4ε, µ2 = −µ0 at
t = 3/4a, we showed the Graphs of k0t versus t when the layers’ number
is N = 2 in Fig. 2, compared with the results calculated by usual
analysis method in the Ref. [7], it is found that the agreement between
two methods are very good, we can say that the present methods is
effective for this problem.

Last we calculated the cutoff frequencies of the metamaterial
multilayer waveguide. The results have been shown in Fig. 3, when
every layer’s width has a relation to xi−xi−1 = a/N, (i = 1, 2, 3, . . . , n)
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ε  =4ε  ,  µ  = µ   (i=1, 3, 5    )i 0 i 0
...

ε  =ε  ,  µ  = µ   (i=2, 4, 6    )i 0 i 0
...

ε  =−4ε  ,  µ  =−µ   (i=1, 3, 5    )i 0 i 0
...

ε  =ε  ,  µ  = µ   (i=2, 4, 6    )i 0 i 0
...(a) (b)

Figure 3. The cut-off frequencies in the waveguide loaded with N -
layers’ slabs when xi − xi−1 = a/N, (i = 1, 2, 3, . . . , n).

We can see that when the layers’ number N is added, the cutoff
frequencies do not get convergent in the metamaterial filled waveguide,
while the all normal material filled waveguide is going to a constant.
We may say when the layers’ number N is added, the normal material
filled waveguide’s permittivity and permeability can be approximated
to a constant, while the metamaterial mixed with normal material filled
waveguide is difficult to be done in this way.

4. CONCLUSION

We have studied the propagation and cutoff frequencies of the
rectangular metallic waveguide partially filled the metamaterial
multilayer by the method called TMM which is rapidly and satisfying
for this problem. The waveguide loaded with the metamaterial
multilayer displayed very interesting and different characteristics
compared with the usual waveguide.
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