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Abstract—A design methodology of narrow band-pass frequency
selective surfaces (FSSs) using the Fabry-Perot approach is presented.
The whole FSS structure consists of two identical single layer FSSs
separated by a foam layer, which forms a Fabry-Perot interferometer
(FPI). The band-pass characteristic is a result of the FPI. The pass
band can be controlled by the thickness of the foam, and the bandwidth
can be controlled by the reflection coefficients of the single layer FSSs.
The effects of both metallic and dielectric losses are discussed. It is
interesting to note that the transmission peaks of FPI with high Q
factor decline rapidly and finally disappear as the losses increase, and
the insertion loss is mainly due to the refection. The relationship
between the insertion loss and the Q factor of the FPI is examined.
As examples, narrow band-pass FSSs at about 96 GHz with different
bandwidths are designed.

1. INTRODUCTION

Because of the proceeding occupation of the lower frequency bands and
by the growing demand for smaller system dimensions, the millimeter
wave region is of increasing importance for wireless communications.
Frequency selective surfaces are basically composed of periodic arrays
of either conducting patches or apertures from a conducting sheet. In
the past four decades, FSSs have found wide applications as spatial
filters, absorbers, and polarizers in the microwave, millimeter wave,
and infrared community [1–21]. In some applications, narrow band-
pass FSSs are required to improve the out-of-band block performance,
or to increase the utility and re-use of the available spectrum
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through increased channel selectivity and to reduce adjacent channel
leakage. Attempts to the design of narrow band-pass FSSs have
been made using aperture coupled microstrip patches [9], or double
layer aperture dipole elements, where the response can be controlled
by the relative displacement between the arrays [10], or double
layer slot rings with different radii [11]. In [12], the Fabry-Perot
approach is firstly introduced to design FSSs, and a diagnostic tool
is developed. In [13, 14], the Fabry-Parot approach is respectively used
to design FSSs with wide transmission band and FSSs for channel
demultiplexing. The effects of dielectric losses are also investigated
in [14].

However, none of the papers has used Fabry-Parot approach to
design a narrow band-pass FSS. Therefore, the aim of this paper is
to describe a design methodology of narrow band-pass FSSs using the
Fabry-Parot approach. The effects of metallic and dielectric losses
on the FPI are carefully investigated. The relationship between the
insertion loss and the Q factor of the FPI under different loss levels is
examined.

2. ANALYSIS OF FREQUENCY SELECTIVE
SURFACES

When a plane wave is incident on the FSS, the total electric field can
be decomposed into two parts: the incident field ~Ei due to the incident
wave in the absence of the metallic layer, and the scattered field ~Es,
which is the result of the electric current ~J induced on the metallic
layer. The metallic layer is assumed to be infinitely thin. The relation
between the transverse components of ~Es and ~J in the spectral domain
can be written as [1–3]

{
Ẽs

x = G̃xxJ̃x + G̃xyJ̃y

Ẽs
y = G̃yxJ̃x + G̃yyJ̃y

(1)

where G̃xx, G̃xy, G̃yx, G̃yy are the components of the dyadic Green’s
function. The script ‘∼’ denotes the Fourier transformation, which is
defined as

f̃(α, β) =

+∞∫

−∞

+∞∫

−∞
f(x, y)e−j(αx+βy)dxdy (2)

Applying the boundary condition at the metallic layer, that is,
~Ei + ~Es = Rs

~J at the conducting area, where Rs is the resistance of
the conductor, and considering the periodic property of the FSS, the
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well known electric field integral equation (EFIE) of the FSS is given
as [1–3]




−Ei
x = 1

TxTy

+∞∑
m,n=−∞

(
G̃xxJ̃x + G̃xyJ̃y

)
ej(αmx+βny)

−Ei
y = 1

TxTy

+∞∑
m,n=−∞

(
G̃yxJ̃x + G̃yyJ̃y

)
ej(αmx+βny)

(3)

where Tx, Ty are the periodicities, and

αm =
2πm

Tx
+ k0 sin θ cosϕ, βn =

2πn

Ty
+ k0 sin θ sinϕ (4)

with k0 is the wave number of free space, and θ, ϕ are the elevation
and azimuth angles of incidence, respectively.

The incident electric field and the Green’s function can be
calculated by the spectral immitance approach. The EFIE is solved by
the Galekin’s moment method (MM), and the rooftop basis function is
used to expand the electric current. After the electric current is solved,
the fields at each interface are ready to know, and consequently the
reflection and transmission coefficients.

The cascading technique of the scattering matrix is used to
calculate the frequency response of multilayer FSSs, which is given
as [1–3]

Sc
11 = S1

11 + S1
12RS2

11S
1
21

Sc
12 = S1

12RS2
12

Sc
21 = S2

21TS1
21

Sc
22 = S2

22 + S2
21TS1

22S
2
12

where R = [I − S2
11S

1
22]

−1, T = [I − S1
22S

2
11]

−1, and I is the identity
matrix. The superscripts 1, 2, c of S denote network 1, network 2, and
the composite network, as shown in Fig. 1.

1
S

2
S

c
S

network 1 network 2

Figure 1. Cascading of two networks.

3. THE DOUBLE LAYER FSS FABRY-PEROT
INTERFEROMETER

As shown in Fig. 2, the FPI consists of a double layer FSS structure.
The single layer FSS is composed of a metallic layer (periodic array)
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(a) double layer FSS structure (b) FPI model

Figure 2. Double layer FSS structure and its FPI model [12].

and a dielectric substrate. It should be noted that the single layer FSS
is regarded as a single structure, which is equivalent to the interface
(a network) of the FPI. The reflection and transmission coefficients on
either side of the foam (scattering parameters) can be written as [12]

ρ
−(+)
i = R

−(+)
i ejφ

−(+)
i (5)

τ
−(+)
i = T

−(+)
i ejϑ

−(+)
i (6)

where R
−(+)
i , T

−(+)
i are the magnitudes, and φ

−(+)
i , ϑ

−(+)
i the phases,

with i denoting the left and right side and −(+) the coefficients of
incident waves traveling from −(+)z. ρ

−(+)
1 , τ

−(+)
1 are obtained by

solving a single layer FSS with the left side semi infinite air and the
right side semi infinite foam. Similarly, ρ

−(+)
2 , τ

−(+)
2 are obtained by

solving a single layer FSS with the left side semi infinite foam and the
right side semi infinite air.

According to the cascading technique of the scattering matrix,
after some algebraic manipulations the reflection and transmission
coefficients of the FPI can be written respectively as

S11 = ρ−1 +
τ−1 τ+

1

1− ρ+
1 ρ−2 e−j2βs

ρ−2 e−j2βs (7)

and

S21 =
τ−1 τ−2

1− ρ+
1 ρ−2 e−j2βs

(8)

where
β =

2π

λ0

√
εr − sin2 θ (9)
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and εr, s are the dielectric constant and the thickness of the foam,
respectively, and λ0 is the wavelength in the free space.

From (8), we can obtain

|S21|2 =
(T−1 T−2 )2

1− 2R+
1 R−

2 cosΦ + (R+
1 R−

2 )2
(10)

where
Φ = 2βs− φ+

1 − φ−2 (11)

According to the energy conservation law, yield
(
R

+(−)
1(2)

)2
+

η0

η

(
T

+(−)
1(2)

)2
+ L

+(−)
1(2) = 1 (12)

(
R
−(+)
1(2)

)2
+

η

η0

(
T
−(+)
1(2)

)2
+ L

−(+)
1(2) = 1 (13)

where L terms denote the normalized dissipated power of the interfaces,
η0, η are the wave admittance of free space and the foam, respectively.

According to the reciprocal theory, yield
(
T
−(+)
1(2)

)2
=

(
η0

η

)2 (
T

+(−)
1(2)

)2
(14)

As the FPI is symmetrical, R+
1 = R−

2 = R, T+
1 = T−2 = T ,

L+
1 = L−2 = L. Therefore, (8), (10) and (12) can be rewritten

respectively as

S11 = ρ−1 + S21ρ
−
2 e−j2βs (15)

|S21|2 =
(

η0

η

)2 T 4

1− 2R2 cos Φ + R4
(16)

R2 +
η0

η
T 2 + L = 1 (17)

Obviously, |S21| is maximum when cosΦ = 1, which means

2πs

λ0

√
εr − sin2 θ − nπ =

φ+
1 + φ−2

2
= φ, n = 0, 1, 2, · · · (18)

In this case, considering (17), (16) can be rewritten as

|S21|2 =
(

η0

η

)2 T 4

(
η0

η T 2 + L
)2 (19)

The Q factor is defined as

Q =
4R

(1−R)2
(20)
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4. DESIGN OF NARROW BAND-PASS FSSS

First, let the single layer FSS resonates (maximum reflection) at the
wanted frequency by changing the dimensions of the elements. In this
step, the conducting and dielectric losses can be neglected. It should
be noted that the incident wave is from the semi infinite foam. Second,
let the FPI resonates (transmission peak) at the wanted frequency by
changing the thickness of the foam s. An initial vale of s can be
obtained by the following equation:

s =
(φ + nπ)λ0

2π
√

εr − sin2 θ
(21)

The bandwidth obtained in this way, where the resonant frequency of
the single layer FSS is consistent with that of the FPI, can be extremely
narrow. The bandwidth will be broader as the resonant frequency of
the single layer FSS departs from that of the FPI. In other words, the
bandwidth can be controlled by the reflection coefficient of the single
layer FSS.

5. NUMERICAL RESULTS AND DISCUSSION

To validate the MM analysis of the FSS, Fig. 3 compares the results
obtained in this work and those presented by Lima in [12]. The
results were obtained for a square loop FSS (see Fig. 4) on a dielectric
substrate with thickness 0.323 mm and dielectric constant 3.78. Our
results are in a good agreement with those shown in [12].

Next, design of narrow band-pass FSSs using the FPI, which
consists of a symmetrical double layer FSS structure, is demonstrated.

100 200 300 400 500 600 700 800
-30

-25

-20

-15

-10

-5

0

T
ra

n
sm

is
si

o
n
 (
d
B

)

Frequency (GHz)

This work
 [12]

TE15
o

d = 0.01 mm
w = 0.005 mm
t = 0.323 mm
Tx = Ty = 0.125 mm

Figure 3. Comparison between the results obtained in this work and
those presented in [12].
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Figure 4. A square loop FSS and
its dimensions.
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Figure 5. Reflection coefficients
of the single layer FSS.

As shown in Fig. 2, the thickness of the dielectric layer is 0.127 mm, and
the dielectric constant 3.78. The dielectric constant of the foam is 1.1.
Fig. 5 shows the reflection coefficients of the single layer FSS versus
frequency for different d with w = 0.06mm and Tx = Ty = 1mm.
It can be seen that when d = 0.72mm, the element resonates at
about 96 GHz. As demonstrated above, narrowest bandwidth will be
obtained at d = 0.72mm. The phase of the reflection coefficient in this
case is 147.1◦ at f = 96 GHz. From (21), yield

s = 1.2175mm, n = 0
s = 2.7073mm, n = 1

Figure 6 shows the phase term of either side of (18) with different
s. Note that for each s, considering the periodicity 2π from (16),
the variable n in the left side of (18) may have two values: 0 and
1. Therefore, each s corresponds two diagonal lines, which have a
difference of 180◦ (or −180◦). It is clear that the slope of the lines for
s = 1.2175mm is much less than that for s = 2.7073mm. The three
curves intersect at about f = 96GHz. Hence, a transmission peak at
about 96GHz will appear. There are two other points of intersection
for s = 2.7073mm, and one for s = 1.2175 mm in the frequency range
from 50 GHz to 150GHz, respectively. These points of intersection
mean extra transmission peaks.

Figure 7 shows the reflection coefficients of the FPI (double
layer FSS structure) for both s. The resonant frequencies occur
at 96.0092 GHz, 95.9825 GHz, with −10 dB bandwidth 0.00033 GHz,
0.00012GHz, respectively. The resonant frequencies are either slightly
smaller or greater than the expected, 96 GHz, which may be due to the
coupling of the two screen. This can be adjusted by slightly changing
s. For example, the resonant frequency increases from 95.9825 GHz to



294 Zhang, Yin, and Ma

96.0018GHz by changing s = 2.7073mm to s = 2.7064mm. However,
exactly 96GHz may need many numbers after the radix point, because
the resonant frequency is very sensitive to s.

Figure 8 shows the transmission coefficients of the FPI in a wider
frequency band. As expected, extra transmission peaks occur at
139GHz for s = 1.2175mm and 60.5 GHz, 126GHz for s = 2.7073mm,
respectively. On other words, in a wide range from 50 GHz to 139GHz
for s = 1.2175mm or from 60.5 GHz to 126 GHz for s = 2.7073mm,
there is only one transmission peak. It can be seen that for s =
1.2175mm the FPI has better out-of-band performance while for
s = 2.7073mm the FPI has a narrower bandwidth. The FPI is assumed
to be lossless in Figs. 5–8.
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FPI.
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Figure 9 shows the frequency response of the FPI for the aluminum
and copper conductors rather than the perfect conductor. The
transmission peaks decline significantly with insertion loss −6.935 dB
and −6.008 dB, respectively. The dissipated power is −3.054 dB and
−3.134 dB, respectively. The result shows that both the dissipated and
reflected powers for the aluminum are greater than that for the copper
due to its smaller conductance.

Figure 10 shows the reflection and transmission coefficients of the
FPI for different dielectric loss tangents. It can be seen that the
transmission peak declines rapidly and finally disappears as the loss
tangent increases. It is interesting to note that for a high Q FPI, as
the transmission peak disappears, the insertion loss is mainly due to
the refection rather than the dissipation. This may be very useful for
broadband band-stop FSSs, for example, the FSS for s = 1.2175 mm
will have a stop bandwidth of 65.5 GHz if the center transmission peak
is suppressed. (15) and (19) will give a good interpretation for the
disappearance of the transmission peak and the reflection of the power:

If T 2 ¿ L, from (19), |S21| → 0, this suggests the disappearance
of the transmission peak.

If |S21| → 0, from (15), S11 → ρ−, this means that the reflection
coefficient of the FPI is close to that of the single layer FSS. If L
is small, which is true for most conductors and dielectrics, most of
the power will be reflected. Consider the FPI in Fig. 10 with tan δ =
1.0e−3 at f = 96.0092GHz as an example, the transmission coefficient
of the single layer FSS is T 2 = 8.22e − 06, while the dielectric loss is
6.24e−04. From (19), S21 = 1.36e−2 or −37.33 dB. The transmission
and reflection coefficients of the FPI in Fig. 10 obtained from MM are
−38.15 dB, −0.108 dB, respectively. Note that in Figs. 9 and 10 the
dielectric loss and the conductor loss are discussed separately, that is,
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it is assumed that there is no dielectric loss when considering conductor
losses, and vice versa. The foam is assumed to be lossless.

As mentioned in Section 4, broader bandwidth can be obtained
from shifting the resonance of the single layer away from that of the
FPI. The shifting can be realized by changing the element dimensions.
Comparisons of transmission coefficients of the FPI for different
conductors and dielectrics with different loss tangents are respectively
shown in Figs. 11 and 12 with d = 0.76mm and w = 0.06mm.
The thickness of the foam is obtained from (18) with the result
s = 1.1047mm. As shown in Fig. 11, the resonant frequency obtained
is 96.0150 GHz, with −10 dB bandwidth 2.50 GHz, about 2.6%. It
can be observed that there is little distinction among the frequency
response of FPI with the aluminum, copper and the perfect conductor,
the transmission curves almost coincide with each other. Fig. 11 also
shows the simulated results by HFSS. As can be seen, the resonant
frequency simulated by HFSS is about 97 GHz, slightly larger than
that obtained from the MM. Except this difference, good agreement is
observed. Compared with lossless dielectrics, Fig. 12 shows that the
transmission coefficient declines distinctly at tan δ = 1.0e− 2 but has
little change at tan δ = 1.0e − 3, which is commercially available. It
should be noted that the insertion loss in this case is mainly due to the
absorption, not the reflection. It is undesired that in the upper band
the transmission coefficient declines slowly, which is due to the lower
Q factor.

Figure 13 shows the transmission coefficients of the FPI versus Q
factor for different L. As can be seen, for low Q factor, the insertion
loss is mainly due to the dissipation, which is about 2L/T if L is much
smaller than T . As the Q factor increases, the transmission coefficient
decreases rapidly, and finally goes to zero.
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6. CONCLUSION

A design methodology of narrow band-pass FSSs using the Fabry-
Perot approach is developed. The resonant frequency is controlled by
the thickness of the foam, while the bandwidth is determined by the
reflection coefficient of the FPI interface. The effects of the metallic
and dielectric losses are investigated. The results show that for a high
Q FPI the transmission peak declines rapidly and finally disappears as
the losses tangent increases. It is interesting that as the transmission
peak disappears, most of the power is not dissipated but reflected. It
should be noted that the resonant frequency is very sensitive to the
thickness and will change if the angle of incidence changes.
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