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Abstract—This paper obtains the exact 1-soliton solution of the
complex Ginzburg- Landau equation with power law nonlinearity that
governs the propagation of solitons through nonlinear optical fibers.
The technique that is used to carry out the integration of this equation
is He’s semi-inverse variational principle.

1. INTRODUCTION

The study of the propagation of solitons through optical fibers has been
going on for the past few decades [1–25]. The nonlinear Schrödinger’s
equation (NLSE) is the main equation that studies this process [1].
There are various variants of this equation that also models this
physical phenomena depending on the nonlinear perturbation effects.
One such equation is the Radhakrishnan, Kundu, Lakshmanan (RKL)
equation [22]. In this paper, the complex Ginzburg-Landau (CGL)
equation, with power law nonlinearity, will be studied, which models
optical solitons with a few perturbation effects.

In the presence of perturbation effects, the adiabatic parameter
dynamics of optical solitons can be obtained also by using various
mathematical techniques. They are Variational Principle [1], Soliton
Perturbation Theory [9], Collective Variables Method [16] and others.
But as a matter of fact, none of these methods can integrate the CGL
equation. There has been a newly developed method called the He’s
Variational Principle (HVP) [10] that can carry out the integration
of CGL equation. In this paper, HVP will be employed to carry out
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the integration of the CGL equation with power law nonlinearity. The
closed form 1-soliton solution will also enable to obtain the parameter
restrictions for the solitons to exist.

2. MATHEMATICAL ANALYSIS

The dimensionless form of the CGL equation, with power law
nonlinearity, which will be studied in this paper, is given by [17]
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where x represents the non-dimensional distance along the fiber while;
t represents time in dimensionless form; a, b, α, β and γ are real
valued constants. The coefficients of a and b are due to dispersion and
power law nonlinearity where the parameter m dictates the power law
nonlinearity. The terms due to α, β and γ are from the perturbation
effects [10, 17].

Equation (1) is a nonlinear partial differential equation that is
not integrable by the classical method of Inverse Scattering Transform
since (1) will fail the Painleve test of integrability [1]. However, the
HVP will be available for integrating (1), and therefore this technique
will be used in this paper to carry out the integration of (1).

The starting point is the hypothesis [10]:

q(x, t) = g(x− vt)ei(−κx+ωt+θ) (2)

where the function g represents the pulse shape, and v is the velocity
of the soliton. From the phase component, κ is the soliton frequency; ω
is the soliton wave number, while θ is the phase constant. Substituting
this hypothesis into (1) and decomposing into real and imaginary parts
respectively yield

−ωg + a
(
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)
+ bg2m+1 =

α

g

{(
g′

)2 + κ2g2
}

+ βg′′ (3)

and
g′ (v + 2aκ) = −γg (4)

where g′ = dg/ds and g′′ = d2g/ds2 with

s = x− vt (5)

Now (4) gives the velocity of the soliton as

v = −2aκ− ln g

t
(6)
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Multiplying (3) by g′ and integrating, yields
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where K is the constant of integration. At this point, the quantity J
is defined as
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Now, the 1-soliton solution ansatze, given by [10]

g(s) =
A

cosh
1
m (Bs)

(9)

is substituted into (8). Here, in (9), the parameters A and B represent
the amplitude and inverse width of the soliton respectively. He’s semi-
inverse variational principle states that the parameters A and B are
determined from the solution of the equations [10]
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Thus, by virtue of the soliton hypothesis given by (9), Equation (8)
reduces to
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From (12), Equations (10) and (11) respectively reduce to
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After solving (13) and (14) yields
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Also from (13) and (14), one can obtain the relation between the soliton
amplitude A and inverse width B as

B = Am

√
b

(m + 1)(β − α)
(17)

Now, since A and B are constants, Equation (17) also implies that

b

β − α
= constant > 0 (18)

Also, (17) yields the domain restriction as

b(β − α) > 0 (19)

Finally, Equations (15) and (16) respectively imply

b
{
αγ2 + ω(v + 2aκ)2 + κ2(a + α)(v + 2aκ)2

}
> 0 (20)

and

(β − α)
{
αγ2 + ω(v + 2aκ)2 + κ2(a + α)(v + 2aκ)2

}
> 0 (21)

Thus, finally the 1-soliton solution to (1) is given by

q(x, t) =
A

cosh
1
m [B(x− vt)]

ei(−κx+ωt+θ) (22)

where the amplitude and width are given by (15) and (16), and the
velocity of the soliton is given by (6) while the constraint relation
between the soliton parameters are given by (18)–(21).

3. CONCLUSION

This paper obtains the 1-soliton solution of the CGL equation with
power law nonlinearity. the HVP is used to carry out the integration.
In the process of determining the solution, several constraint relations
between the soliton parameters are obtained. In future, this technique
can be applied to CGL equation with perturbation terms.
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