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Abstract—Based on a new concept, i.e., charge moment tensor and
the rotational equation of a charged dielectric rigid body about a fixed-
point under a uniform external magnetic field, one symmetrical case
has been rigorously solved. The rotational stability has been analyzed
in detail for two cases, general and symmetrical, respectively, by means
of some techniques of matrix analysis.

1. INTRODUCTION

A rotational charged body must generate magnetic moment, thus
sustain a moment of force in an external magnetic field [1–5]. In
view of electromagnetism, it is of both theoretical importance and
broad application background to investigate the rotation dynamics of
a rotational charged body under an external electromagnetic field [1–
10]. For a general charged particle or a continuous charged medium,
the electrodynamics has been well formulated [11–13]. Starting from
a strict and delicate analogue relation, references [1–4] introduce a
concept of magnetic-moment quadric, deduces and numerates some
rules and examples about computing the magnetic moment of a
rotational charged body. Meanwhile, the conditions of zero magnetic
moment for an arbitrary rotational charged body have been formulated
explicitly in [2]. Furthermore, without resorting to the analogue
relation used in [1–3], a natural method of introducing the new concept
of charge moment tensor has been proposed, and a more explicit
dynamic theory for a rotational charged body has been constructed
in [4]. As well known, movement of a rigid body can be viewed
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as superposition of movement of its center of mass and the rotation
around the center, and the latter is the topic of the present paper,
especially that the stability of a dynamical system is of great interest
for those researchers who work in this field. Reference [4] has dealt
with a simple symmetric case for a charged dielectric rigid body purely
rotating in an external uniform magnetic field. We take a charged
dielectric rigid body as an instance to study its dynamical equation
and its stability problem under an external uniform magnetic field
plus an arbitrary time-dependent-only torque, and put our research
object under limitation of slow rotation and no gravitation so that
the mechanic damping effect of electromagnetic radiation and the
relativistic effects caused by rotation can all be ignorable. In the
process of rotation, the charge distribution is invariant with respect
to the dielectric rigid body itself.

The paper is organized as follows. In Section 2, some fundamental
concepts are reviewed, and the Euler’s dynamic equations of a
rotational charged dielectric rigid body under an external uniform
magnetic field plus a time-dependent-only torque have been expressed
in terms of tensor T̃ . In Section 3, the stability of an autonomous
dynamical system has been analyzed by means of matrix analysis. In
Section 4, a symmetric case is rigorously solved, and its stability is
analyzed. In the end, some concluding remarks have been given in
Section 5.

2. THE EULER’S ROTATIONAL EQUATION FOR A
ROTATIONAL CHARGED DIELECTRIC RIGID BODY
UNDER ACTION OF A UNIFORM MAGNETIC FIELD
AND A TIME-DEPENDENT-ONLY TORQUE

References [1–5] have defined and discussed a new concept — charge
moment tensor T̃ (O) with respect to a fixed point O, so the
magnetic moment with respect to this point O is

⇀

Pm(O) =
1
2
T̃ (O) · −→ω (1)

Based on the concepts of principal axes and principal-axis scalar
charge moments [1, 2], charge moment tensor T̃ (O) has a definite
meaning that is independent of the movement of this charged body
and can be expressed in a diagonal form

T̃ (O) = diag (T1, T2, T 3) (2)

For the case of fixed point rotation about O, the magnetic moment



Progress In Electromagnetics Research Letters, Vol. 11, 2009 105

is
⇀

Pm(O) =
1
2

(
T1ωx

~i + T2ωy
~j + T3ωz

~k
)

(3)

Here ~i,~j,~k are the unit vectors of axes X, Y, Z, respectively.
We select Cartesian coordinate system O-XY Z in the body

reference with the center-of-mass point O as its origin and the inertia
principal axes as its three axes. Therefore, according to formula (3),
the moment of force generated by the uniform magnetic field in a fixed
reference is

−→
M = Mx

~i + My
~j + Mz

~k =
−→
P m×

⇀

B =
1
2

[
T̃ (O) · −→ω

]
× ⇀

B (4)

The rotation of the dielectric rigid body under action of an
additional time-dependent-only torque ~Γ(t) satisfies Euler’s equations
in a fixed reference [14]





Jxω̇x − (Jy − Jz)ωyωz = Mx + Γx(t)
Jyω̇y − (Jz − Jx)ωzωx = My + Γy(t)
Jzω̇z − (Jx − Jy)ωxωy = Mz + Γz(t)

(5)

The concrete expression of Eq. (5) is




Jxω̇x−(Jy−Jz)ωyωz =
1
2
[(T21Bz−T31By)ωx+(T22Bz−T32By)ωy

+(T23Bz−T33By)ωz]+Γx(t)

Jyω̇y−(Jz−Jx)ωzωx =
1
2
[(T31Bx−T11Bz)ωx+(T32Bx−T12Bz)ωy

+(T33Bx−T13Bz)ωz]+Γy(t)

Jzω̇z−(Jx−Jy)ωxωy =
1
2
[(T11By−T21Bx)ωx+(T12By−T22Bx)ωy

+(T13By−T23Bx)ωz]+Γz(t)

(6)

here Tij = Tji, (i, j = 1, 2, 3) and J̃(O) = diag (Jx, Jy, Jz) is the
principal-axes inertia tensor of the rigid body with respect to point O.
Note that although J̃ is diagonal in the principal-axes coordinate
system, generally the charge moment tensor T̃ is not definitely of a
diagonal form at the same time. It is due to a fact that the principal
axes of the inertia moment tensor of the rigid body are not generally
coincident with that of the charge moment tensor, just as that generally
the center of mass is not coincident with the center of charge.

Equation (5) or (6) is universal and effective for an arbitrary
rotational charged dielectric rigid body under the action of a uniform
magnetic field plus an additional external time-dependent-only torque.
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3. STABILITY OF A NONLINEAR AUTONOMOUS
DYNAMICAL SYSTEM

Stability problem of a dynamical system involves discussing the
implication of a tiny perturbed initial value upon the asymptotic
behavior of a dynamical system (equation). It is of great theoretical
significance and extensive application background.

According to theory of differential equation, when ~Γ(t) = 0,
Eq. (6) depicts a nonlinear autonomous dynamical system which can
be rewritten in a standard form as follows

d~ω

dt
=

1
2
Π~ω + ~R(~ω) (7)

Here ~ω =

(
ωx

ωy

ωz

)
. The constant matrix Π and nonlinear term ~R(~ω)

are written as follows

Π =


(T21Bz−T31By)/Jx (T22Bz−T32By)/Jx (T23Bz−T33By)/Jx

(T31Bx−T11Bz/Jy (T32Bx−T12Bz)/Jy (T33Bx−T13Bz)/Jy

(T11By−T21Bx)/Jz (T12By−T22Bx)/Jz (T13By−T23Bx)/Jz


 (8)

~R(~ω) ≡



(Jy − Jz)ωyωz/Jx

(Jz − Jx)ωzωx/Jy

(Jx − Jy)ωxωy/Jz


 (9)

with ~R(~ω)/ω → 0, as ~ω → 0. Generally Eq. (6) or (7) can not be
rigorously solved, but its stability can be qualitatively analyzed by
means of matrix theory.

Then for the case of ~Γ(t) = 0, or an autonomous dynamical
system, some discussion is in order. It can be proved that

det(Π) = 0 (10)

Thereby the linear approximate equation of (7) with ~R(~ω) →
0 is

d~ω

dt
=

1
2
Π~ω, (11)

which permits nonzero constant solutions called the singular or
equilibrium points of Eq. (7)

(
ωx

ωy

ωz

)
= exp

[
1
2J

Π(t− t0)
] (

ωx0

ωy0

ωz0

)
(12)
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where
~ω0| t=t0 = (ωx0, ωy0, ωz0) (13)

According to theory of matrix and linear differential equation,
when each of the three roots {λ1, λ2,λ3} of following characteristic
equation (E is a 3× 3 identity matrix)

det(λE −Π) = 0 (14)

has a negative real part, solution (12) must tend to zero as t →∞ and
is called an asymptotic stable solution. If any one of the three roots
{λ1, λ2,λ3} has a positive real part, the solution (12) must tend to
infinite as t →∞. This must result in an unstable rotation. For such
a case, the relativistic effects should be taken into consideration and
invalidate our “non-relativistic approximation” supposed in Section 1.
When some roots of the three roots {λ1, λ2,λ3} have zero real part,
and the remaining roots have negative real part, Eq. (7) with ~Γ(t) = 0
must have an oscillating solution which is called the critical case.

The theory of algebra equation gives relation of the roots and the
coefficients of Eq. (14) as

λ1λ2λ3 = det(Π) = 0 (15)
λ1 + λ2 + λ3 = tr(Π) ≡ α (16)
α=(T21Bz−T31By)/Jx+(T32Bx−T12Bz)/Jy+(T13By−T23Bx)/Jz(17)
λ1λ2 + λ2λ3 + λ3λ1 = β, (18)

β ≡ (T22T33−T 2
23)B

2
x/JyJz+(T11T33−T 2

13)B
2
y/JzJx

+(T11T22−T 2
12)B

2
z/JxJy−(T12T33−T13T23)(Jx+Jy)BxBy/JxJyJz

−(T11T23−T12T13)(Jy+Jz)ByBz/JxJyJz

−(T13T22−T12T23)(Jz+Jx)BzBx/JxJyJz (19)

Then from (15)–(18), without loss of generality, we let λ3 = 0,
and

λ1 =
α +

√
α2 − 4β

2
, λ2 =

α−
√

α2 − 4β

2
, (as α2 − 4β ≥ 0) (20)

or

λ1 =
α + i

√
4β − α2

2
, λ2 =

α− i
√

4β − α2

2
, (as α2 − 4β < 0) (21)

Due to λ3 = 0, according to the stability theory, any one of the
conditions listed below must cause (12) to be an unstable solution.
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i. α2 − 4β ≥ 0 and λ1λ2 = β < 0. (One of λ1, λ2 is positive.)
ii. α2− 4β ≥ 0, λ1λ2 = β > 0 and λ1 +λ2 = α > 0. (Both λ1 and λ2

are positive.)
iii. α2 − 4β < 0 and λ1 + λ2 = α > 0. (The real parts of λ1, λ2 are

positive.)

Also due to λ3 = 0, any one of the listed below is a critical stability
condition for solution (12)

i. α2 − 4β ≥ 0 and λ1λ2 = β > 0, but λ1 + λ2 = α < 0. (Both
λ1 and λ2 are negative.)

ii. α2 − 4β < 0, λ1 + λ2 = α < 0. (The real parts of λ1, λ2 are
negative.)

On the other hand, signs of α2 − 4β, α and β are apparently
determined by the distribution of charge and mass, the magnitude and
direction of magnetic induction.

We will deal with another simple and symmetrical case in the
subsequent section.

4. AN EXAMPLES OF STRICT SOLUTION AND ITS
STABILITY PROBLEM

Let us consider a simple case of strict solution. A charged dielectric
rigid body rotates around its center of mass O with a nonzero initial
angular velocity ~ω0 |t=t0 = (ωx0, ωy0, ωz0) expressed in the body
Cartesian coordinate frame O-XY Z, which is defined by the three
principal axes of the inertia tensor. Generally the charge moment
tensor T̃ (O) is not definitely of a diagonal form as the inertia moment
tensor J̃(O) which is supposed here to have such a symmetry as
Jx = Jy = Jz ≡ J . Then, under the action of a uniform magnetic field
with magnetic induction ~B = (Bx, By, Bz) plus a time-dependent-only
external torque ~Γ(t) = (Γx(t), Γy(t), Γz(t)), some concrete conclusions
will be drawn from Eq. (6) about the movement of the charged
dielectric rigid body. This is a rigorously solvable example of our
theory.

Equation (6) can be rewritten in a matrix form as Jx = Jy = Jz ≡
J

d

dt

(
ωx

ωy

ωz

)
=

1
2J

Λ

(
ωx

ωy

ωz

)
+

1
J




Γx(t)
Γy(t)
Γz(t)


 (22)
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with

Λ =




T21Bz − T31By T22Bz − T32By T23Bz − T33By

T31Bx − T11Bz T32Bx − T12Bz T33Bx − T13Bz

T11By − T21Bx T12By − T22Bx T13By − T23Bx


 (23)

where Λ is a time-independent matrix. Thus, by use of the matrix
theory, we have

(
ωx

ωy

ωz

)
= exp

[
1
2J

Λ(t− t0)
] (

ωx0

ωy0

ωz0

)

+
1
J

t∫

t0

exp
[

1
2J

Λ(t− τ)
]


Γx(τ)
Γy(τ)
Γz(τ)


 dτ (24)

About the stability problem of (22), we only need to discuss the
stability of solution at the equilibrium point for the homogeneous
equation of Eq. (22) as ~Γ(t) = 0, because the inhomogeneous case,
Eq. (22), can be changed into a homogeneous case by a simple
transformation

( Ωx

Ωy

Ωz

)
=

(
ωx

ωy

ωz

)
− 1

J

t∫

t0

exp
[

1
2J

Λ(t− τ)
]


Γx(τ)
Γy(τ)
Γz(τ)


 dτ

= exp
[

1
2J

Λ(t− t0)
](

ωx0

ωy0

ωz0

)
, (25)

with ~Ω satisfies following linear equation

d

dt

( Ωx

Ωy

Ωz

)
=

1
2J

Λ

( Ωx

Ωy

Ωz

)
,




Ωx(t0)
Ωy(t0)
Ωz(t0)


 =




ωx0

ωy0

ωz0


 (26)

Some discussion similar to that in Section 3 is then in order about
Eq. (22) for the homogeneous case (26), i.e., the case of ~Γ(t) = 0. It can
be found that det(Λ) = 0. Thereby, Eq. (26) permits nonzero constant
vector solutions in addition to the trite zero solution. They are called
the singular points or equilibrium points of Eq. (26). According to the
stability theory of a dynamical system, when each of the three roots
{η1, η2, η3} of following characteristic equation

det(ηE − Λ) = 0, (27)



110 Zhou

has a negative real part, solution (25) is called an asymptotic stable
solution. If at least one of the three roots {η1, η2,η3} has a positive
real part, the solution (25) is unstable. When some of the three roots
{η1, η2,η3} have zero real parts, and the remaining roots have negative
real parts, the linear approximate part of Eq. (22) ( i.e., ~Γ(t) = 0) must
have an oscillating solution which is called the critical case between the
asymptotic stable and unstable solutions.

The theory of algebra equation gives relation of the roots and
coefficients of Eq. (27) as

η1 + η2 + η3 = tr(Λ) = 0, (28)
η1η2η3 = det(Λ) = 0, (29)

η1η2 + η2η3 + η3η1 = K, (30)

where

K ≡ (T22T33 − T 2
23)B

2
x + (T11T33 − T 2

13)B
2
y + (T11T22 − T 2

12)B
2
z

−2(T12T33 − T13T23)BxBy − 2(T11T23 − T12T13)ByBz

−2(T13T22 − T12T23)BzBx (31)

Then from (28)–(31), without loss of generality, we let η3 = 0, and

η1 = −η2 = ±i
√

K, (as K ≥ 0) (32)

or

η1 = −η2 = ±
√
−K, (as K < 0) (33)

Thus, when K ≥ 0, (then Re(λ1) = Re(λ2) = 0), solution (25) is
a constant vector (for K = 0), or an oscillating one (for K > 0), which
is the critical case between the asymptotic stable and unstable ones.
Its stability depends on the concrete form of Λ.

When K < 0, then one of the roots is positive, and the
solution (25) is unstable and therefore invalidate our “non-relativistic
approximation” and the dynamic Eq. (6). On the other hand, sign of
K is apparently determined by the sign and distribution of charge, the
magnitude and direction of magnetic induction, but not affected direct
by the distribution of mass.

5. CONCLUSION

Research on the dynamic behaviors of a charged rigid body in an
electromagnetic field is an important and valuable pursuit involved in
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many disciplines. By use of a new concept, i.e., charge moment tensor,
which is related to magnetic moment of a rotational charged body, the
Euler’s equation of a rotational charged dielectric rigid body, under
a uniform magnetic field plus an additional time-dependent torque,
is analyzed, especially at its equilibrium point. Some concrete and
simple conclusions about a case with symmetric mass distribution but
arbitrary charge distribution are drawn. The corresponding stability
about the system has been discussed in detail, and the stability test
rules are also explicitly manifested.
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