
Progress In Electromagnetics Research, PIER 95, 267–282, 2009

SENSOR SELECTION FOR TARGET TRACKING IN
SENSOR NETWORKS

H. Q. Liu, H. C. So, K. W. K. Lui, and F. K. W. Chan

Department of Electronic Engineering
City University of Hong Kong
Tat Chee Avenue, Kowloon, Hong Kong, China

Abstract—This paper addresses the sensor selection problem which
is a very important issue where many sensors are available to track
a target. In this problem, we need to select an appropriate group
of sensors at each time to perform tracking in a wireless sensor
network (WSN). As the theoretical tracking performance is bounded by
posterior Cramer-Rao lower bound (PCRLB), it is used as a criterion
to select sensors. Based on the PCRLB, sensor selection algorithms
with and without sensing range constraint are developed. Without
sensing range limit, exhaustive enumeration is first adopted to search
all possible combinations for sensor selection. To reduce complexity
of enumeration, second, we restrict the selected sensors to be within a
fixed area in the WSN. With sensing range constraint, a circle will be
drawn with the help of communication range for sensor selection. In
a similar manner, two approaches, namely, selecting all sensors inside
the circle or using enumeration to select sensors within the circle are
presented. The effectiveness of the proposed methods is validated by
computer simulation results in target tracking for WSNs.

1. INTRODUCTION

The research topic of wireless sensor network (WSN) has attracted
much attention over the past few years. The WSNs have wide
applications in environmental, medical, food-safety and habitat
monitoring, assessing the health of machines, aerospace vehicles and
civil engineering structures, energy management, inventory control,
home and building automation, homeland security and military
initiatives [1, 2]. In this work, we investigate the target tracking
problem in a huge WSN where a large number of sensors are available
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for taking measurements. Obviously, the tracking accuracy of a target
improves with the increasing number of measurements. Therefore,
in terms of the tracking performance, it is desirable to use as many
measurements as possible. However, the nodes in the WSNs have
limitations in energy consumption, computation power and sensing
ranges, which means that it is inappropriate for all available sensors
to take measurements. As a result, selecting only a proper group
of sensors from the available set to perform tracking is of research
value [3–7].

Based on information principles, sensor selection methods are
proposed in [3, 4]. In their approaches, at each time only one sensor,
referred to as the leader node, is activated. By considering a generic
sensor model where the measurements are interpreted as polygonal
convex subsets of the plane, [5] proposes a sensor selection method
to estimate position of a target with cameras. In [6], using convex
optimization followed by a greedy local search, sensor selection problem
is solved for multiple target tracking. Employing the expected mean
square state estimation error to choose sensors is presented in [7].
According to different channel conditions, the optimization problem
for sensors with lower signal-to-noise ratios (SNRs) allocating a larger
fraction of the total power is developed in [8].

In this paper, we utilize the posterior Cramér-Rao lower bound
(PCRLB) and particle filter (PF) for the joint sensor selection and
target tracking problem, since PF has found a lot of successful
applications in the area of target tracking [9, 16]. Actually, our
procedure includes two major steps: in the first step a number
of sensors are selected to provide observations, in the second step,
after receiving observations, target tracking is performed by PFs.
The performance of tracking system based on Bayesian framework
is measured by PCRLB. As a result, PCRLB is a standard and
reasonable choice for sensor selection. We consider two interesting
scenarios of received measurements: without and with sensing range
constraint. First, without sensing range constraint, which means
that all sensors are available to take measurements, a combinatorial
optimization problem is formulated based on PCRLB. Enumeration
search is then performed to determine the combination of sensors
to seek for the minimum value of PCRLB. Here, PCRLB does not
evaluate the expectation of joint probability density function (PDF) of
states and measurements as we assume that process noise is zero [9].
Even when the process noise is present, as confirmed by simulations,
the tracking system does not suffer from much performance loss, and
this phenomenon is also pointed out in [9]. The enumeration search
would be a huge computational burden even when the density of a
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sensor network is just medium. In order to reduce complexity, we
propose to restrict a fixed area such as square or rectangle in the
search. The sensors within the area that gives minimum PCRLB
value will be selected to perform tracking. Second, we consider the
case with sensing range constraint, which means that not all sensors
can take measurements. However, the sensor communication range
will be utilized. According to the predicted position of the target
a circle would be drawn, and then the sensors inside the circle are
chosen to perform sensing task. This approach is a generalization
of nearest neighborhood (NN) method [4], which selects only one
sensor closest to the predicted position. Instead of using all sensors
within the circle, an alternative is that enumeration search technique
is used again to select sensors based on PCRLB. Since the successful
applications [11–13] of PFs in nonlinear and/or non-Gaussian models,
they are adopted in the nonlinear target tracking problem. To improve
the PF performance, assigning extended Kalman filter (EKF) [9] and
unscented Kalman filter (UKF) [10] as importance sampling functions
are also suggested. The main contribution of the paper is that four
different search strategies are developed to select sensors in target
tracking based on PCRLB.

The rest of the paper is organized as follows. The problem
formulation of target tracking with sensor selection is presented
in Section 2. A brief introduction of PF is given in Section 3.
In Section 4, sensor selection approaches are presented to perform
tracking using PFs. In Section 5, simulation results for evaluating the
tracking performance of the proposed algorithms are provided. Finally,
conclusions are drawn in Section 6.

2. PROBLEM FORMULATION

The model-based methods for tracking applications requires at least
two models: the state model which describes the evolution of the state
with time, and the measurement model which defines the relationship
between noisy observations and the state. In case of two-dimensional
(2D) target tracking, let xt = [xt, yt, ẋt, ẏt]T be state vector that
represents the coordinates and velocities of a moving target at time
t. In this paper, linear state and nonlinear measurement models are
considered [4, 12]:

xt = f(xt−1) + vt = Fxt−1 + vt (1)

and

zt = g(xt) + wt (2)
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where

F =




1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1




The Ts is the sampling interval, vt is a 4×1 independent and identically
distributed process noise vector with vt ∼ N (0,Q), 0 is a zero vector
and Q = Ddiag{σ2

x, σ2
y}DT , where σ2

x and σ2
y account the variances in

x-coordinate and y-coordinate, and D has the form of

D =




T 2
s /2 0
0 T 2

s /2
Ts 0
0 Ts




For the measurement model, time-of-arrival (TOA) measurements are
used, of course, other typical observations, such as time-difference-of-
arrival, angle-of-arrival, received-signal-strength are straightforward to
use. By multiplying the TOAs with the known propagation speed, the
observed distance measurement at time t of the jth sensor is:

zt,j = dt,j + wt,j =
√

(xt − xj)2 + (yt − yj)2 + wt,j ,

t = 1, 2, . . . , j ∈ Φt, |Φt| = Mt, Φt ⊆ {1, 2, . . . , M}
(3)

where M is the total number of sensors in the WSN, | · | represents
cardinality number, xj and yj denote the coordinates of jth sensor,
wt is a zero-mean white Gaussian noise vector containing {wt,j} ∼
N (0, σ2

t,j) with length of Mt. The noise covariance matrix is denoted
by Rt = diag{σ2

t,1, . . . , σ
2
t,j}. The Mt represents the number of sensors

being selected to provide observations at time t, where it is unknown
and may change over time. In this paper, all data are collected in a
central unit, therefore, the major objective of our work is to properly
determine Mt sensors for tracking in a centralized way.

3. PARTICLE FILTER

In order to track a target under Bayesian framework, we need to
calculate the posterior PDF of the state, i.e., π(xt|z1:t), where z1:t =
{z1, z2, · · · , zt} denotes all the observations up to the current time t.
Let the initial density of the state vector be π(x0) = π(x0|z0), where z0

means no measurements. The PDF π(xt|z1:t) is obtained recursively
in two stages, namely, prediction and update. Assuming that at time



Progress In Electromagnetics Research, PIER 95, 2009 271

(t − 1) the required PDF π(xt−1|z1:t−1) is available, the prediction
density of the state at time t is obtained by the following equation

π(xt|z1:t−1) =
∫

p (xt|xt−1)π(xt−1|z1:t−1)dxt−1 (4)

At time t the observation zt becomes available, the update stage is
performed. Via the Bayes’ rule, an update of the prediction density is
given as

π(xt|z1:t) ∝ p(zt|xt)π(xt|z1:t−1) (5)

The recursive propagation of the posterior density, using (4) and (5),
is only a conceptual solution in the sense that in general it cannot
be determined analytically. The most successful methodology for (4)
and (5) is called sequential Monte Carlo method [9, 11], also known
as PF, which is an efficient way to solve nonlinear and/or non-
Gaussian problems. The key idea behind PF is to represent the
required posterior density function by a set of random samples with
associated weights and to compute estimates based on these samples
and weights. According to the law of large numbers, this Monte Carlo
method becomes an equivalent representation of the usual functional
description, and the sequential importance sampling approaches the
optimal Bayesian estimator. Given the large set of N particles
{x(i)

t−1}N
i=1 and their associated weights {w(i)

t−1}N
i=1. The posterior

density at time (t− 1) is approximated as

π(xt−1|z1:t−1) ≈
N∑

i=1

w
(i)
t−1δ

(
xt−1 − x(i)

t−1

)
(6)

where δ() is the Dirac delta function. Moreover, the new particles
{x(i)

t }N
i=1 are generated from the properly designed proposal function:

x(i)
t ∼ q

(
xt|x(i)

t−1, z1:t

)
, i = 1, . . . , N (7)

while the importance weight w
(i)
t is recursively updated as

w
(i)
t ∝ w

(i)
t−1 ×

p
(
zt|x(i)

t

)
p

(
x(i)

t |x(i)
t−1

)

q
(
xt|x(i)

t−1, z1:t

) (8)

Based on the new particles and their associated weights, the minimum
mean square error (MMSE) estimate is [9]

x̂t = E[xt|z1:t] =
∫

xtπ(xt|z1:t)dxt ≈
N∑

i=1

w (i)
t x(i)

t (9)
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where E denotes the expectation operator. Since the PF uses the
designed proposal function to generate new particles and evaluates
their associated importance weights using new observed data, it
approximates the posterior PDF well. In PFs after a certain number of
recursive steps, all but one particle will have negligible weights, leading
to the degeneracy phenomenon. In order to avoid this problem, the
resampling step must be taken. Resampling eliminates samples with
low importance weights and multiplies samples with high importance
weights, and the details can be found in [9]. Another issue in designing
a PF is how to choose the proposal functions. In this paper, transition
prior, EKF and UKF are adopted as proposal functions. The transition
prior uses the transition model in (1) and the details of EKF and UKF
are given in [9]. In our algorithm, we assume that a large number
of sensors are randomly deployed on the sensor field. Due to the
constraints of WSNs, using all sensors at each time to perform tracking
is not recommended. The sensor selection problem will be discussed
in the next section.

4. SENSOR SELECTION STRATEGIES

4.1. Posterior Cramer-Rao Lower Bound

Let x̂t be an unbiased estimate of the state vector xt, based on z1:t.
The covariance matrix of xt, denoted by Pt, has a lower bound defined
as

Pt , E
{
(x̂t − xt)(x̂t − xt)T

} ≥ J−1
t (10)

where J−1
t is the PCRLB that bounds the performance of any unbiased

estimator. In this paper, PCRLB will be exploited as a criterion to
select sensors.

In [14], a recursive method to compute the Fisher information
matrix Jt at time t is derived:

Jt+1 = D22
t −D21

t

(
Jt + D11

t

)−1 D12
t (11)

where

D11
t = −E{∇xt [∇xt log p(xt+1|xt)]T }

D21
t = −E{∇xt [∇xt+1 log p(xt+1|xt)]T }

D12
t = [D21

t ]T

D22
t = −E{∇xt+1 [∇xt+1 log p(xt+1|xt)]T }

−E{∇xt+1 [∇xt+1 log p(zt+1|xt)]T }
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In case of the additive Gaussian noise, the expressions of D11
t , D12

t and
D22

t are simplified as follows:

D11
t = FTQ−1F (12)

D12
t = −FTQ−1 (13)

D22
t = Q−1 + E

{
HT

t+1R
−1
t Ht+1

}
(14)

where Ht+1 is the Jacobian of g(xt+1) evaluated at the true value of
xt+1, i.e.,

Ht+1 = [∇xt+1g(xt+1)]T

In our TOA model, Ht+1 is
Ht+1 =[

2xt+1√
(xt+1 − xi)2 + (yt+1 − yi)2

2yt+1√
(xt+1 − xi)2 + (yt+1 − yi)2

0 0

]T

(15)

Then, the recursion of Jt can be written as:

Jt+1 =Q−1+E{HT
t+1R

−1
t Ht+1}−Q−1F(Jt+FTQ−1F)−1FTQ−1 (16)

Assuming that there is no process noise, that is, Q = 0, Jt+1 is
simplified as:

Jt+1 =
[
F−1

]T JtF−1 + HT
t+1R

−1
t Ht+1 (17)

The J−1
t is PCRLB, which serves as a tool for comparison

of implemented filtering method and prediction of the system
performance. The diagonal elements of J1

t are the lower bounds for
the corresponding mean square errors (MSEs). In fact, [9] shows that
PCRLB does not have much difference even if the process noise is
present. Notice that since the position [xt+1 yt+1]T is unavailable
at time (t + 1), the predicted mean position [x̄t+1 ȳt+1]T is used to
approximate it, where x̄t+1 =

∑N
i=1 w

(i)
t x̂i

t+1, ȳt+1 =
∑N

i=1 w
(i)
t ŷi

t+1,
where [x̂i

t+1, ŷ
i
t+1] is the predicted position of ith particle at time (t+1).

In doing so, the recursion of Jt+1 is also an approximation.
As a useful tool to predict the achievable performance of a tracking

system, the PCRLB of (17) is used as a criterion to select sensors to
optimize tracking accuracy.

4.2. Approaches without Sensing Range Constraint

Now we assume that all sensor measurements are available. Let [J−1]i,j
be the (i, j) entry of J−1, the corresponding predicted PCRLB for the
position is

Ct+1 =
[
J−1

t+1

]
1,1

+
[
J−1

t+1

]
2,2

(18)
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Generally, we want to select Mt sensors to minimize the PCRLB, which
leads to the following combinational optimization problem

c(Mt)opt , arg min
c(Mt)⊂L

Ct+1(c(Mt)) (19)

where c(Mt) is the set containing Mt sensors and L represents the set
of all sensors. We need to determine the combination of sensors that
minimizes the PCRLB. At first attempt, the number of sensors involved
is fixed at each time. Specifically, at each time Mt sensors are chosen
to collect information from the target. The built-in command combnk
in MATLAB is employed to generate combinations. The Mt is a user-
chosen parameter. The problem with this search technique is that the
complexity will grow exponentially with the total number of sensors,
which will be an impossible task to produce all the combinations in
larger WSNs. We refer this approach to as Approach 1.

Since the first approach needs to search all combinations in the
WSN, to reduce high complexity, we resort to a different selection
strategy. Instead of fixing the number of sensors, we fix the area.
Specifically speaking, at each time a fixed frame moves on the sensor
field, the frame with the minimum PCRLB will be chosen, and then
the sensors fall in this area are activated to report target distance
information. Note that, in doing so, at every time the number of
selected sensors varies with time. Mathematically, it is

s(Mt)opt , arg min
s(Mt)⊂S

Ct+1(s(Mt)) (20)

where s(Mt) denotes the set of sensors in the area s and S represents
the set of whole sensor region. The area could be chosen as a square
or a rectangle. It is also a trade-off between the performance and
complexity. The bigger area we set, the better performance we can get
but more resources are needed. Since this search methodology is based
on a chosen area, it is faster than the Approach 1. We refer this to as
Approach 2.

4.3. Approaches with Sensing Range Constraint

Sensor sensing range could limit the number of the measurements
available. That means we cannot obtain all observations every time.
Therefore, we propose the following methods to select sensors with
sensing range constraint. Since the predicted mean of position at
time (t + 1) is available, it would be utilized to select sensors. Using
[x̄t+1 ȳt+1]T as a centre to draw a circle, that sensors lie in this circle
will be selected. The radius r of the circle is equal to the maximum
sensing range. The sensors are unable to provide measurement



Progress In Electromagnetics Research, PIER 95, 2009 275

information when they are outside the sensing range. In mathematical
expression, the sensing range constraint gives

(x̄t+1 − xi)2 + (ȳt+1 − yi)2 ≤ r2 (21)
Since the predicted values provide a rough estimate of target as

long as the state model fits to the target movement, the circle will
definitely contain the true position of target as well as the number of
sensors that are near to the target. In doing so, this approach avoids
any complicated computation. Notice that the number of selected
sensors at each time also changes with time. We refer this to as
Approach 3.

Instead of selecting the all sensors inside the circle, the
combination optimization search in (19) could be also accomplished
to select a fixed number of Mt sensors, i.e.,

c(Mt)opt , arg min
c(Mt)⊂O

Ct+1(c(Mt)) (22)

where O represents the set of all sensors in the circle characterized
by (21). We refer this to as Approach 4. In summary, the pseudo-code
of PF in target tracking with sensor selection is given in Table 1.

5. SIMULATION RESULTS

Computer simulations have been conducted to evaluate the tracking
performance of the proposed methods by comparing with selecting
one sensor prediction-based NN (1-PNN), three sensors 3-PNN
approaches [4] and PCRLB. The MSE is chosen as the performance
measure. Particle filtering schemes with transition prior, EKF
and UKF as proposal functions are denoted by PF, PF-EKF and
PF-UKF, respectively, and we also integrate them in [4]. We
assume that M sensors are randomly deployed on a 2D WSN of
dimension 500m× 500m and the initial state vector of the target is
[50m, 40 m, 7m/s, 6 m/s]T . The SNR is defined by SNR = d2

t,j/σ2
t,j

and is set to be 40 dB. In Approaches 1 and 4, at each time Mt = 3
sensors are activated to provide the observations. The number of
particles is N = 500. The states are initialized randomly around their
true values. The Fisher information matrix J0 is initialized using the
identity matrix. Two scenarios of process noise, namely, zero process
noise and nonzero process noise of σ2

x = σ2
y = 1, are investigated. All

results provided are averages of 500 independent runs. For each case,
we will recommend a tracker based on following rules: If the PF-EKF
and PF-UKF have comparable performance, then the PF-EKF will be
selected as a tracker as it has less complexity than PF-UKF, otherwise,
the PF-UKF will be selected because it has better performance thanks
to the usage of UKF as a proposal function.
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Table 1. Particle filter with sensor selection.

- Initialization: t = 0

- For i = 1, . . . , N , sample the state particle xi
0 ∼ p(x0)

- For t = 1, 2, ...

- Sensor selection step:

- For i = 1, . . . , N , predict the particles according to

the sate model

- Select sensors to provide measurements based on

(19), (20), (21) or (22)

- Importance sampling step:

- For i = 1, . . . , N , draw particles x
(i)
t ∼ q

(
xt|x(i)

t−1,y1:t

)

- here, three importance sampling functions are available:

transition prior, EKF and UKF.

- For i = 1, . . . , N , evaluate the importance weight:

w
(i)
t ∝ w

(i)
t−1 ×

p
(
yt|x(i)

t

)
p
(
x
(i)
t |x(i)

t−1

)

q
(
xt|x(i)

t−1,y1:t

)

- For i = 1, . . . , N , normalize the importance weight:

w̃i
t = wi

t/
∑N

j=1 wj
t

- Resampling step:

- Eliminate samples with low importance weights and

multiply samples with high importance weights.

- For i = 1, . . . , N , set wi
t = 1/N .

- MCMC move step:

- Apply MCMC move to improve the diversity of particles

- Estimation step:

- The MMSE estimate of state is obtained as:

x̂t ≈
∑N

i=1 w
(i)
t x

(i)
t

5.1. Evaluation of Approaches without Sensing Range
Constraint

We first study Approach 1 with a total of M = 40 sensors. The MSEs
of Approach 1 and 1-PNN and 3-PNN technique without and with
process noise are plotted in Figures 1 and 2, respectively. We observe
that the PF-EKF and PF-UKF of Approach 1 are comparable and
they give the best performance using the optimization solution of (19).
As PF-UKF requires a higher complexity, the PF-EKF of Approach 1
is recommended as the best tracker in this case. Moreover, it is seen
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Figure 1. Mean square error comparison between Approach 1, 1-PNN
and 3-PNN methods without process noise (— PCRLB; - · - PF of
Approach 1; −− PF-EKF of Approach 1; · · · PF-UKF of Approach 1;
4 PF of 1-PNN; ¤ PF-EKF of 1-PNN; + PF-UKF of 1-PNN; ¦ PF-
UKF of 3-PNN).
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Figure 2. Mean square error comparison between Approach 1, 1-
PNN and 3-PNN methods with process noise (— PCRLB; - · - PF of
Approach 1; −− PF-EKF of Approach 1; · · · PF-UKF of Approach 1;
4 PF of 1-PNN; ¤ PF-EKF of 1-PNN; + PF-UKF of 1-PNN; ¦ PF-
UKF of 3-PNN).
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Figure 3. Mean square error comparison between Approach 2, 1-
PNN 3-PNN methods without process noise (— PCRLB; - · - PF of
Approach 2; −− PF-EKF of Approach 2; · · · PF-UKF of Approach 2;
4 PF of 1-PNN; ¤ PF-EKF of 1-PNN; + PF-UKF of 1-PNN; ¦ PF-
UKF of 3-PNN).

that the results of the proposed PF-EKF and PF-UKF schemes and
PCRLB are similar in the absence and presence of process noise. The
difference in the accuracy of PF-EKF and PF-UKF is around 1 m.

Next we consider a huge WSN of M = 1000 sensors. In this case,
it is inappropriate to use the enumeration search to choose sensors
because the combination of taking 3 out of M = 1000 is 166167000,
which means that Approach 1 is infeasible. Instead, we examine the
performance of Approach 2 and a 50 m× 50m square is chosen as
the fixed area in the search. The MSE results for zero and non-zero
process noise are shown in Figures 4 and 5, respectively. It is observed
that the PF-UKF of Approach 2 gives the best tracking performance
which is comparable to the PCRLB. It is because many sensors have
been selected to provide observations at each time in this dense sensor
network. However, the PF-EKF has more than 10 m difference in
estimation accuracy. As we can see that PCRLB has fast drop at
first due to the random initialization.

5.2. Evaluation of Approaches with Sensing Range
Constraint

With sensing range constraint, we now evaluate the performance of
Approaches 3 and 4 with M = 1000 sensors, and the results of zero
and non-zero process noise, are plotted in Figures 6 and 7, respectively.
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Figure 4. Mean square error comparison between Approach 2, 1-
PNN and 3-PNN methods with process noise (— PCRLB; - · - PF of
Approach 2; −− PF-EKF of Approach 2; · · · PF-UKF of Approach 2;
4 PF of 1-PNN; ¤ PF-EKF of 1-PNN; + PF-UKF of PNN; ¦ PF-UKF
of 3-PNN).

0 10 20 30 40 50 60
10

 -1

10
0

10
1

10
2

10
3

10
4

10
5

Time (s)

M
S

E

Figure 5. Mean square error comparison between Approaches 3, 4 and
1-PNN and 3-PNN methods without process noise (— PCRLB; ? PF
of Approach 3; ◦ PF-EKF of Approach 3; × PF-UKF of Approach 3;
- · - PF of Approach 4; −− PF-EKF of Approach 4; · · · PF-UKF of
Approach 4; 4 PF of 1-PNN; ¤ PF-EKF of 1-PNN; + PF-UKF of
1-PNN; ¦ PF-UKF of 3-PNN).
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Figure 6. Mean square error comparison between Approaches 3, 4, 1-
PNN and methods with process noise (— PCRLB; ? PF of Approach 3;
◦ PF-EKF of Approach 3; × PF-UKF of Approach 3; - · - PF of
Approach 4; −− PF-EKF of Approach 4; · · · PF-UKF of Approach
4; 4 PF of 1-PNN; ¤ PF-EKF of 1-PNN; + PF-UKF of 1-PNN; ¦
PF-UKF of 3-PNN).
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Figure 7. Mean square error comparison between Approaches 3-4 and
PNN method with process noise ( — PCRLB; ? PF of Approach 3;
◦ PF-EKF of Approach 3; × PF-UKF of Approach 3; - · - PF of
Approach 4; −− PF-EKF of Approach 4; · · · PF-UKF of Approach 4;
4 PF of PNN; ¤ PF-EKF of PNN; + PF-UKF of PNN).
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The maximum communication range r = 30 m is chosen. We see that
the performance of the PF-EKF and PF-UKF of Approach 3 is the
best among other trackers and attains the PCRLB. Since only Mt = 3
sensors are selected in Approach 4, the performance is not very good
compared with using all sensors in the circle governed by r. In this test,
the PF-EKF of Approach 3 is the recommended tracker as it provides
the best performance with relatively smaller complexity.

6. CONCLUSIONS

In this paper, we have studied the sensor selection problem for target
tracking in a wireless sensor network (WSN). Utilizing the posterior
Cramer-Rao lower bound (PCRLB) without process noise, we have
proposed four approaches to solve the sensor selection problem. Three
particle filter (PF) schemes, namely, bootstrap, extended Kalman
filter (EKF) and unscented Kalman filter (UKF), for target tracking
are suggested. Without sensing range constraint, the PF-UKF of
Approach 2 is the best tracker in a dense WSN. With sensing range
constraint, the PF-EKF of Approach 3 is recommended as it provides
the best performance with relatively smaller complexity.
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