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Abstract—It is known that the conventional algorithm (CA) of hybrid
finite element-boundary integral-multilevel fast multipole algorithm
(FE-BI-MLFMA) usually suffers the problem of slow convergence,
and the decomposition algorithm (DA) is limited by large memory
requirement. An efficient twofold iterative algorithm (TIA) of FE-BI-
MLFMA is presented using the multilevel inverse-based incomplete LU
(MIB-ILU) preconditioning in this paper. It is shown that this TIA
can offer a good balance of efficiency between CPU time and memory
requirement. The tree-cotree splitting technique is then employed in
the TIA to further improve its efficiency and robustness. A variety
of numerical experiments are performed in this paper, demonstrating
that the TIA exhibits superior efficiency in memory and CPU time to
DA and CA, and greatly improves the computing capability of FE-BI-
MLFMA.

1. INTRODUCTION

It has been shown that the hybrid finite element-boundary integral-
multilevel fast multipole algorithm (FE-BI-MLFMA) is a general,
accurate, and efficient computing technology for open region problems
such as scattering/radiation problems (e.g., [1–14]). The conventional
algorithm (CA) of FE-BI-MLFMA presented in [10] is to directly apply
the iterative solver to the whole hybrid FE-BI matrix equation. Since
the whole matrix is not well-conditioned due to the ill-conditioned
FEM matrix part, the convergence of CA is usually very slow, which
makes CA less attractive [12, 13]. The decomposition algorithm
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(DA) is to first employ fast direct sparse solver to factorize the
FEM matrix, and then solve the reduced matrix with iterative
solver [12]. Numerical experiments show that the decomposition
algorithm (DA) converges very fast, but is greatly limited by large
additional memory requirement due to the LU factorization for the
FEM matrix. Even using advanced sparse solver such as the fast
multifrontal LU factorization by [15], the expenditure of the memory
is still enormous for large electrical-size problems, and largely limits
the application of DA.

A natural idea to overcome the disadvantage of DA is to employ
the iterative solver for the FEM part instead of the LU factorization,
which leads to our twofold iterative algorithm (TIA). Our TIA is
formed by two iterative steps viz., the inner iterative step for the FEM
part and the outer iterative step similar to that in DA. Since the FEM
matrix usually is not well-conditioned, the inner iterative step will take
a very slow convergence. Therefore, the TIA would not be success if
no other means could treat this problem. The important fact is that
the great achievement of iterative solvers with preconditioning can be
suitably employed into the TIA. Hence, the key point of the TIA is
how to choose a suitable iterative solver with special preconditioning
technique to efficiently complete the inner iterative step of the TIA.

In the past few decades, the preconditioned iterative methods
have made great progress for solving large sparse linear systems. The
preconditioning technique is essential to the success of the iterative
solvers [16]. It has been recognized that among various preconditioning
techniques, the incomplete LU (ILU) preconditioning is a good one,
which can offer a good compromise between robustness and efficiency.
There are many variants of the ILU preconditioning (e.g., [17–22]).
The recently proposed multilevel inverse-based ILU (MIB-ILU) shows a
great potential for solving large sparse linear systems (see also [21, 22]).
In this paper, we employ this MIB-ILU preconditioning into our TIA,
and investigate its numerical performance in computing scattering by
large complex targets.

It has been pointed out by [23] that the edge elements used in
the previous FE-BI-MLFMA suffer from the problem of instability at
low frequencies or fine meshes. A tree-cotree splitting technique was
proposed to solve this problem [23], and applied to solve 2-D and 3-
D waveguiding structures problems in [24, 25]. This paper also tries
to apply this tree-cotree splitting technique to the TIA for scattering
problems and investigate its numerical performance in this application.

In sum, this paper presents an efficient TIA of FE-BI-MLFMA
using the MIB-ILU preconditioning technique. An alternative
formulation of the tree-cotree splitting technique is given for another
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interpretation and understanding, and is applied to the TIA. A variety
of numerical experiments are performed to investigate the numerical
performance of the TIA of FE-BI-MLFMA for scattering by large
complex targets.

2. TWOFOLD ITERATIVE ALGORITHM OF
FE-BI-MLFMA

This section first presents the outline of the TIA. Then the MIB-ILU
preconditioning is discussed and applied to the TIA. Finally, the tree-
cotree splitting technique is reformulated and applied to the TIA.

2.1. Outline of TIA

It is known that the problem of scattering by a complex target can be
discretized by the hybrid FE-BI method [10] as

[
KII KIS 0
KSI KSS B
0 P Q

]{
EI

ES

HS

}
=

{ 0
0
b

}
(1)

where [KII ], [KSS ], [KIS ], [KSI ], [B] are sparse FEM matrices, [P ]
and [Q] are dense BI matrices. Also, [KII ], [KSS ] are symmetric, [B]
is skew symmetric. The iterative solvers such as GMRES are usually
chosen for solving (1) instead of direct solvers in order to take full
advantage of sparsity of the FEM matrixes and MLFMA to speed
up the main step of matrix-vector multiplication in iterative solvers.
However, since the coefficient matrix in (1) is not well-conditioned, the
convergence speed will be very slow if the iterative solvers are directly
applied to the whole equation of (1). It has been verified in [12] that
a good approach of DA is to decompose (1) into the FEM and BI
equations, and employ the sparse direct solver for the FEM equation
and the iterative solver for the BI equation. However, the large memory
and CPU time required in the direct solver becomes a bottleneck of
DA when the FEM domain is large. To overcome this bottleneck, a
natural idea is to employ preconditioned iterative solvers for the FEM
equation instead of the direct solvers, which leads to our TIA. To
be more specific, Equation (1) is decomposed into the following FEM
equation [
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]{
EI

ES

}
= −

[
0
B

]
{HS} , (2)

and the BI equation

[Q] {HS} = {b} − [P ] {ES} . (3)
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Our TIA is as follows: (1) Given an initial guess {HS}, {ES} is
solved from (2) using the preconditioned GMRES iterative solver. This
can be called as the inner iterative step; (2) With the obtained {ES}
in the inner step and the initial guess {HS}, {HS} is updated from (3)
using the GMRES iterative solver. This can be called as the outer
iterative step. These inner and outer iterative steps form a complete
step of the TIA, which repeats till convergence.

2.2. The MIB-ILU Preconditioning

The key step of the TIA is to choose a suitable preconditioning
technique for speeding up the convergence of GMRES for (2) in
the inner step. Here we choose the recently proposed MIB-ILU
preconditioning, which has shown to be a great potential for large
sparse matrix equation.

This MIB-ILU preconditioning is established on the Crout LU
factorization shown in Figure 1. The dark area shows the parts of the
entries being computed at the k-th step. The shaded areas show the
parts of the entries being accessed at the k-th step. It can be seen that
the Crout LU factorization computes the k-th column of L and k-th
row of U at step k. In our implementation, we store L by columns and
U by rows, thus the entries can be searched and accessed efficiently
during the factorization.

The ILU factorization is obtained by applying dropping rule to
the entries of the k-th column of L and k-th row of U for each step
k. The entries usually are dropped either by their location (positional
dropping) or magnitude (threshold dropping). The positional dropping
works well for regularly structured problems, but it is not designed for

Figure 1. The computational pattern for the Crout factorization. The
dark area shows the parts of the entries being computed at the k-th
step. The shaded areas show the parts of the entries being accessed at
the k-th step.
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general cases. The threshold dropping is often used, but it is not
robust. Since the threshold dropping cannot guarantee that the norms
of the inverse of L or U is small, this may have some unpredictable
effects to the ILU preconditioner.

To overcome this problem, a better dropping rule is presented
by [21], which is to drop an entry ljk at step k when it satisfies
|ljk|‖eT

k L−1‖ ≤ E , where eT
k denotes the k-th unit vector, and E is the

ILU drop tolerance. Since this dropping rule is based on the inverse of
L or U , this ILU is called as the inverse-based ILU.

Since the inverse of L is usually not available, the next problem is
how to estimate ‖eT

k L−1‖. To this end, the estimation of ‖eT
k L−1‖

is approximated as ‖eT
k L−1b‖∞ for any testing vector b satisfying

‖b‖∞ = 1. Since eT
k denotes the k-th unit vector, the problem to

estimate ‖eT
k L−1b‖∞ at step k is reduced to determine the largest

k-th component of the solution to the linear system Lx = b. The
implementation adopted in this paper uses the simplest rule which
amounts to selecting bk = ±1 at each step k, in such a way as to
maximize the k-th component of L−1b.

To take full advantage of the idea of the inverse-based ILU, we
extend it to a multilevel version. Suppose the k-th column of L and
k-th row of U have been calculated by the Crout factorization, we
then estimate ‖L−1‖ and ‖U−1‖. If ‖L−1‖ < κ and ‖U−1‖ < κ (κ is
the set bound), then the inverse-based ILU is performed, otherwise,
the k-th column and row will be postponed to the last column and
row. This procedure is repeated through all columns and rows.
Finally, all columns and rows of matrix K are categorized into two
types: factorized and postponed. To be matched with the concepts
of algebraic multilevel method, the factorized columns and rows can
be considered corresponding to the fine grid, whereas the postponed
corresponding to the coarse grid. For clear description, the original
matrix can be rearranged as

K =
(

KFF KFC

KCF KCC

)
. (4)

Since the inverse-based ILU on KFF has been performed, the
preconditioner K̃−1

FF of KFF can be easily constructed. Thus, based
on the following multiplicative Schwarz approximation

K−1 ≈
[
I −K−1

FFKFC

0 I

] [
K−1

FF 0
0

(
KCC −KCFK−1

FFKFC

)−1

]

[
I 0

−KCFK−1
FF I

]
, (5)
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The construction of the preconditioner of K is reduced to
the construction of preconditioner of SCC , where SCC = KCC −
KCF K−1

FF KFC . In other words, the remained problem is to perform the
inverse-based ILU in the coarse level. This procedure can recursively
proceed to obtain a multilevel inverse-based ILU precondioner.

To improve the numerical performance of the above presented
MIB-ILU, here we also employ other two advanced preprocessing
techniques before performing MIB-ILU. The first one is the symmetric
weighted matching technique proposed in [15]. This technique tries to
permute the large entries close to the diagonal to enhance the stability
of the LU factorization. The second one is the nested dissection
technique, which is a fill-in reducing reordering technique [27].
This paper directly employs the version of the nested dissection in
METIS [28].

2.3. The Tree-cotree Splitting Technique

It is known that the tetrahedron edge element is generally employed in
the FEM part of FE-BI-MLFMA. However, it has been found in [23]
that this edge element usually suffers from the problem of instability
at low frequencies or fine meshes. A tree-cotree splitting technique
was proposed to handle this problem [23–25]. To be more specific, the
electric field E(r) is modeled by

E(r) =
4∑

i=1

Ei
g∇ϕi +

6∑

j=1

Ej
rNj , (6)

where ϕi is the same nodal basis function as that in the conventional
node element, and Nj is the same edge basis function as that in
the conventional edge element. Since the interpolating parameters
in (6) include those on edges and nodes, this element can be formally
called as the node-edge element. It is obvious that some interpolating
parameters in the node-edge element are redundant, and should be
removed in the practical application [24]. It is worth to note that the
interpolating parameter Ej

r still truly stands for the tangential field at
tetrahedron edge, but Ei

g does not represent for the gradient value at
tetrahedron node in (6), since ∇ϕi is a linear combination of Nj . Thus
the node-edge element still enforces the continuity of tangential field
between neighbor tetrahedrons, and gives the flexibility of normal field
between neighbor tetrahedrons.
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Figure 2. The flow chart of TIA algorithm.

3. NUMERICAL EXAMPLES

To demonstrate the accuracy, efficiency, and versatility of TIA
described above, we present several numerical examples in this section.
The program is developed according to the flow chart in Figure 2, and
all the computations are performed on an IBM server xSeries 366, Xeon
MP 3.66 GHz, 16 GB memory.
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3.1. Investigation of the MIB-ILU Preconditioning

It has been analyzed that the numerical performance of the MIB-ILU
preconditioning is the key to the success of the TIA. Thus, this section
will focus on investigating the numerical performance of the MIB-ILU
preconditioning. The first numerical example is an open cavity as
shown in Figure 3.

The cross section of the open cavity is 2λ × 2λ. The depth
of the cavity h increases from 1λ to 10λ. In this experiment,
we use the incomplete LU with threshold (ILUT) preconditioning
technique as the benchmark to exhibit the performance of our
proposed MIB-ILU preconditioning method. Before comparing the
two preconditioning approaches, it is better to perform some tests for
the ILUT preconditioning with different parameters and pick the best
one to use. The dropping tolerance is the parameter which determines
the performance and fill-in of the ILUT preconditioner. We will first
examine the convergence of using ILUT preconditioning GMRES with
different dropping tolerance. Numerical results are shown in Table 1,
where N is the restart number of GMRES, which varies from 20 to
200. From the results we can see that although the smaller dropping
tolerance will result in a better convergence, but the fill-in factor and

10λ

        h:
depth of the
     cavity

10λ

Figure 3. An open cavity object.

Table 1. Computation information of the ILUT-GMRES by varying
the dropping tolerance and restart number N .

Dropping

tolerance
Filling factor

Factorization

time

Number of Iteration   

N=20 N=50 N=100 N=200

0.05 2.95 3.2 272 137 65 65

0.01 5.85 12.0 180 35 35 35

0.005 10.98 25.5 42 23 23 23

0.001 37.25 76.2 6 6 6 6
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factorization time significantly increase. Hence, we choose dropping
tolerance of ILU as 0.005 and the restart number of GMRES as 100 in
the following experiments.

Next we will compare the performance of the proposed MIB-
ILU preconditioning GMRES with the ILUT-GMRES. The detail of
computational information is listed in Table 2. ILUT-GMRES takes
tens of iterations to converge to a relative residual error smaller than
10−4. In contrast, MIB-ILU-GMRES converges to a relative residual
error smaller than 10−6 with less than 10 iterations. Also we can see
that the memory and factorization time required by MIB-ILU is much
smaller than ILUT. In this computation, the set bound κ for ‖L−1‖
and ‖U−1‖ is 50 and the drop tolerance E is chosen as 0.02. It is
worth to note that the optimal parameters for different objects may
be different, but the numerical performances overall are acceptable. In
this work, we also examine the performance of the two preconditioning
technique with another Krylov iterative solver, BiCGStab. The MIB-
ILU technique again shows much better efficiency than the ILUT
technique. The numerical results are omitted here for the sake of
simplicity.

It is interesting that the number of iterations in both ILUT-
GMRES and MIB-ILU-GMRES increases slowly with the number of
unknowns. This may be attributed to the geometrical specialty of this
example. In this numerical experiment, we just increase the depth of
the cavity and also keep the density of the mesh. Thus our numerical
experiment actually is one-dimensional variation with the same mesh
density. It is also easily concluded from Table 2 that the solving time
of MIB-ILU-GMRES is largely dominated by the factorization part.
This preconditioning technique is very suitable for our TIA, since the

Table 2. Comparisons of the ILUT-GMRES and MIB-ILU-GMRES
solver for the open cavity problem.

Memory (MB) Number of Iteration
The CPU time for

Factorization (Sec)

The CPU time for Solving

FEM matrix (Sec)

Depth (λ) Unknowns ILUT MIB-ILU

1 30,450 157 39 18 3 8.4 3.8 0.05 0.01

2 59,660 250 70 23 3 25.5 13.0 0.15 0.01

4 118,080 498 130 24 5 88.0 27.0 0.6 0.04

6 176,500 820 180 26 5 115.0 42.0 1.8 0.05

8 234,920 1198 240 28 5 200.0 58.0 2.5 0.08

10 293,340 1598 360 32 5 358.0 73.0 6.0 0.10

ILUT ILUT ILUTMIB-ILU MIB-ILU MIB-ILU
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factorization is only performed once and we need to solve FEM matrix
equation in each inner iterative step. The memory and CPU time
required by the MIB-ILU-GMRES for solving the open cavity problem
are plotted in Figure 4. It is clearly seen from Figure 4 that the memory
and CPU time grow almost linearly with the number of the unknowns.
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Figure 4. The memory and CPU time required by the MIB-ILU-
GMRES for solving the FEM matrix of the open cavity.

Table 3. Numerical performance of the MIB-ILU-TIA versus the DA
and CA for the coated spheres.

Diameter

(λ)

Unknown

MoM / FEM

Number of iteration Memory (MB)
Total solving CPU time

              (Sec)

CA DA TIA CA
DA TIA

CA DA TIA

2 4800 / 16002 240 24 24 65 60 / 19 60 / 8 61 4.3 4.2

4 19200 / 64002 335 35 35 260 234 / 88 234 / 40 450 23.8 20.0

6 43200 /144002 402 43 43 444 384 / 254 384 /95 1609 128.9 114.4

8 76800 / 256002 >500 54 54 1035 927 / 433 927 / 150 >5000 202.2 180.0

10 >500 65 65 1287 1027 / 687 1027 / 200 >5000 421.2 370.2

MoM / FEM MoM / FEM

120000 /400002
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Table 4. Numerical performance of the MIB-ILU-TIA versus the DA
and CA for the isotropic dielectric sphere.

Diameter

(λ)

Unknown

MoM / FEM

Number of iteration Memory (MB)
Total solving CPU time

                 (sec) 

CA DA TIA CA
DA

MoM / FEM

TIA

MoM  / FEM
CA DA TIA

1 1200 / 9960 859 14 14 20 18 / 56 18 / 15 33 3.3 5.0
 

2 4800 / 77120 1689 17 16 93 80 / 550 80 / 100 442 67.9 65.0

4 10800 / 257480 >5000 20 20 / 187 / 2829 >5000 987.2 506.2

6 24300 / 862770 >5000 / 25 / 400 / 15565 400 / 2200 >5000 / 2000.0

8 43200 / 2037760 >5000 / 27 / 1002 / 31500 1002 / 4500 >5000 / 5000.2

/: Fail in computation
*: Estimated. 

*

187 / 400

3.2. Comparison of TIA and DA As Well As CA Algorithm

In this section, the numerical performances of the conventional
algorithm (CA) [10], the decomposition algorithm (DA) [12] and the
twofold iterative algorithm (TIA) are investigated and compared by
typical experiments. The fast multifrontal LU factorization is used
to factorize the FEM matrix in DA. We computed two types of
objects: coated spheres and dielectric spheres. Table 3 presents the
iteration number, total CPU time and memory requirement of the
three algorithms for computing scattering by coated spheres having
different diameter (D = 1λ, 2λ, . . . , 10λ) of conducting core, and 0.05λ
thickness and εr = 4.0 − j1.0, µr = 1.0 of the coating material.
Table 4 presents the computation information of the three algorithms
for dielectric sphere with different diameter (D = 1λ, 2λ, . . . , 8λ). It
can be seen that the convergence speed of the TIA is almost the same
as that of DA, and much faster than that of CA, and the memory
requirement of TIA is much less than that of DA. In sum, numerical
results demonstrate that the TIA offers a good compromise between
robustness and efficiency, and greatly improves the capability of FE-
BI-MLFMA.

3.3. Investigation of the Node-edge Element

It has been demonstrated in the work of [25] that the application of
the tree-cotree splitting can greatly improve the stability of the h-p
adaptive refinement in FEM especially when the size of the element
is very small. In this work, this section will investigate the numerical
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Table 5. The comparision of the fill-in factor in the MIB-ILU
preconditioning for solving the FEM matrixes generated by node-edge
(NE) element and edge element (EE) for a coated sphere with 0.05
λ-thick coating.

Diameter
Unknowns

Lossy dielectric
Uniaxial dielectric

r

3 0 0

0 3 0

0 0 4

=

Anisotropic dielectric

3 2j 0

3 0

0 0 4
r −2jε =

NE EE NE EE NE EE

2 32004 2.6 4.7 3.0 6.9 4.3 7.6

4 108804 3.0 5.6 3.4 7.2 4.4 9.3

6 244804 3.2 5.7 3.6 7.5 4.6 9.7

8 435204 3.4 5.8 3.7 8.2 4.6 10.8

10 680004 3.5 6.0 3.8 / 4.7 /

εrε = 4 − j(λ)

performance of utilizing this technique in the TIA. We use the MIB-
ILU approach to construct preconditioners for the matrixes generated
by the node-edge element and the edge element. It is known that the
fill-in factor is an important estimation parameter of a preconditioner,
which determines the memory requirement. Table 5 lists the fill-in
factors in the construction of the two preconditioners for matrices
generated by the node-edge element and edge element for different
media. From Table 5 we can see the MIB-ILU approach even fails in
constructing a successful preconditioner for matrix generated by edge
element when the FEM region is electrically large and anisotropic.
However, the node-edge element is always stable.

3.4. Capability of TIA

To further demonstrate the capability of the TIA, the scattering by
an electrically large dielectric sphere is computed, whose diameter is
10λ, and relative permittivity is 3.0 − j1.0. In this computation, the
unknowns of the FEM part and MoM part are 3, 971, 350 and 67,
500. The number of nonzero in the FEM matrix is 34, 413, 951.
The outer iteration for the MoM equation converges in 31 iterations.
The memory requirement of FEM part and MoM part are 7.1 GB
and 1.4GB respectively. The total CPU time is 7,500 seconds. The
comparison of calculated bistatic RCS in the E-plane and Mie series
is shown in Figure 5. The second example is a coated sphere, whose
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conducting core has a diameter of 25λ. The conducting sphere is coated
with two 0.05λ-thick lossy dielectric layers. The relative permittivity
is 2.5− j0.5 for the inner layer and 1.5− j0.5 for the outer layer. The
unknown of the MoM part is 480,000 and the unknown of the FEM

R
C

S 
(d

B
sm

)

60
50

40

30

20

10

−10

−20

−30

−40

0

0 20 40 60 80 100 120 140 160 180
Theta (degree)

TIA
Mie

Figure 5. Bistatic RCS in the E-plane for a dielectric sphere with a
diameter of 10λ and permittivity of 3− j.
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Figure 6. Bistatic RCS in the E-plane for a coated sphere with two
layers. The conducting core has a diameter of 25λ, inner layer has a
thickness of 0.05λ, a relative permittivity of 2.5− j0.5, outer layer has
a thickness of 0.05λ, a relative permittivity of 1.5− j0.5.
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part is 2,720,004 and the number of nonzero in the FEM matrix is
20,960,005. The memory requirement of the FEM and MoM part are
only 2.5 GB and 4.6 GB. The total CPU time is 4,692 seconds. The
calculated result is shown in Figure 6, from which we can see the high
accuracy and efficiency of the proposed TIA.

4. CONCLUSIONS

An efficient TIA of FE-BI-MLFMA is presented using the MIB-ILU
preconditioning and the tree-cotree splitting technique. The analysis
and numerical experiments of the TIA demonstrate that: (1) the MIB-
ILU preconditioning technique is highly efficient and accurate, and
very stable even the computational domain is electrically large and
anisotropic; (2) the tree-cotree splitting technique further enhances
the robustness and improves the efficiency of TIA.
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