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Abstract—An exact analytic solution is presented to the problem of
scattering of a plane wave from a perfect electromagnetic conducting
(PEMC) elliptic cylinder, using the method of separation of variables.
The formulation is carried out by expanding the incident as well as
the scattered electromagnetic fields in terms of appropriate angular
and radial Mathieu functions and a set of expansion coefficients. The
incident field expansion coefficients are known, but the scattered field
expansion coefficients are unknown. Imposing the boundary conditions
at the surface of the elliptic cylinder leads to the determination of the
unknown expansion coefficients in closed form. Results are presented
as normalized scattering widths for elliptic cylinders of different sizes
and PEMC admittances, to show the effects of these on scattering.

1. INTRODUCTION

Research associated with scattering and radiation from impedance
loaded objects has been of much interest in the past [1–7]. This in
recent years has led to a lot of research on scattering by PEMC objects.
A PEMC medium, considered as a generalized form of a perfect electric
conducting (PEC) and a perfect magnetic conducting (PMC) medium
in which certain linear combinations of electromagnetic fields become
extinct [8], is definable by a single real-valued parameter known as the
PEMC admittance. A null admittance corresponds to a PMC medium
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and an admittance of infinity corresponds to a PEC medium, when the
field magnitudes are finite [9].

A PEMC material acts as a perfect reflector of electromagnetic
waves, but differs from PEC and PMC materials due to the
fact that it produces a reflected wave with cross-polarized field
components [10, 11]. This has been demonstrated in the literature
recently, by analyzing the scattering of plane waves from an infinitely
long PEMC circular cylinder [12, 13], from a PEMC sphere [14, 15],
and from a PEMC spheroid [16].

The elliptic cylinder is an object which has been analyzed widely
in the literature, as it can produce cylindrical objects of different cross
sections when the axial ratio of the ellipse is changed. Furthermore,
since the elliptic cylindrical coordinate system is one of the systems in
which the wave equation is separable, solutions to problems involving
elliptic cylinders can be obtained in closed form. Here, we present for
the first time, the analysis pertaining to the scattering of a plane wave
of arbitrary polarization and angle of incidence from an infinitely long
PEMC elliptic cylinder of arbitrary size and axial ratio. Such a solution
is valuable, since it can be used as a benchmark for validating solutions
obtained using approximate methods or other numerical methods.

2. FORMULATION

Since a PEMC medium can be considered as the generalization of a
PEC and a PMC medium, the boundary conditions to be satisfied at
the surface of a PEMC object can be obtained from those to be satisfied
at the surfaces of the corresponding PEC and PMC objects as

n̂× (H + ME) = 0, n̂ · (D−MB) = 0 (1)

where n̂ is the unit normal to the boundary of the surface, E and
H are the electric and magnetic fields, respectively, D and B are the
electric and magnetic flux densities, respectively, and the real-valued
scalar parameter M is the PEMC admittance.

Consider a linearly polarized uniform plane electromagnetic wave
incident on an infinitely long PEMC elliptic cylinder of semi-major
axis length a and semi-minor axis length b, at an angle φi with respect
to the positive x axis of a Cartesian coordinate system located at
the centre of the elliptic face, as shown in Fig. 1. The axis of the
cylinder is assumed to be along the z axis. From the perspective of
the analysis, it is beneficial to define the x and y coordinates of the
Cartesian coordinate system, in terms of u and v coordinates of an
elliptical coordinate system also located at the centre of the cylinder
in the form x = F coshu cos v, y = F sinhu sin v, with F being the
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Figure 1. Geometry of the problem.

semi-focal length of the ellipse. A time dependence of exp(jωt) with ω
being the angular frequency is assumed throughout the analysis, but
suppressed for convenience.

2.1. Transverse Magnetic (TM) Polarization

For a TM polarized incident plane wave, the axial component of the
electric field of unit amplitude can be written as Ei

z = ejkρ cos(φ−φi),
where k = 2π/λ, with λ being the wavelength in the region exterior
to the cylinder, and ρ, φ are the polar coordinates. Let the elliptic
cylindrical vector wave functions N and M = k−1(∇×N) be defined
as

N(i)
qm(c, ξ, η) = R(i)

qm(c, ξ)Sqm(c, η)ẑ (2)

M(i)
qm(c, ξ, η) =

1
kh

[
R(i)

qm(c, ξ)S′qm(c, η)û−R(i)′
qm(c, ξ)Sqm(c, η)v̂

]
(3)

where for q = e, o, Sqm and R
(i)
qm are the even and odd angular Mathieu

functions and the radial Mathieu functions of the ith kind, both of
order m, respectively, ξ = coshu, η = cos v, c = kF , κ̂ denotes a unit
vector in the positive κ direction, the primes on S and R denote their
respective derivatives with respect to v and u, and h = F

√
ξ2 − η2.

The incident electric field Ei can now be expanded in terms of
N(1)

qm as

Ei = Ei
z ẑ =

∞∑

m=0

AemN(1)
em +

∞∑

m=1

AomN(1)
om (4)

with the expansion coefficients Aem and Aom given in [7].
Since the elliptic cylinder is comprised of a PEMC material, the

scattered electric field Es will contain both co-polarized and cross-
polarized components. Thus, it has to be expanded using both N(4)

qm
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and M(4)
qm as

Es =
∞∑

m=0

{
BemN (4)

em + CemM (4)
em

}
+

∞∑

m=1

{
BomN (4)

om + ComM (4)
om

}
(5)

where Bem, Bom, Cem, Com are the unknown expansion coefficients.
Using Maxwell’s equations and referring to (4) and (5), the expansions
of the incident and scattered magnetic fields can now be written as

Hi=
j

Z

[ ∞∑

m=0

AemM(1)
em +

∞∑

m=1

AomM(1)
om

]
(6)

Hs=
j

Z

[ ∞∑

m=0

{
BemM(4)

em+CemN(4)
em

}
+

∞∑

m=1

{
BomM(4)

om+ComN(4)
om

}]
(7)

where Z is the wave impedance in the region exterior to the cylinder.
The unknown expansion coefficients can be obtained by imposing

the tangential boundary condition in (1) at the surface ξ = ξs of the
cylinder, which can be expressed mathematically as

[
H i

z + Hs
z + M

(
Ei

z + Es
z

)]
ξ=ξs

= 0 (8)
[
H i

v + Hs
v + M

(
Ei

v + Es
v

)]
ξ=ξs

= 0. (9)

Substituting from (4)–(7) in (8)–(9), and applying the orthogonal
property of the angular Mathieu functions yield

Bqm = −R
(1)′
qm (c, ξs)R

(4)
qm(c, ξs) + Z2M2R

(4)′
qm (c, ξs)R

(1)
qm(c, ξs)

(1 + Z2M2)R(4)
qm(c, ξs)R

(4)′
qm (c, ξs)

Aqm (10)

Cqm = jMZ
R

(1)
qm(c, ξs)R

(4)′
qm (c, ξs)−R

(4)
qm(c, ξs)R

(1)′
qm (c, ξs)

(1 + Z2M2)R(4)
qm(c, ξs)R

(4)′
qm (c, ξs)

Aqm (11)

for q = e, o. The scattered fields obtained using (10)–(11) in (5)
and (7), plus the incident fields, can be shown to satisfy the normal
boundary condition in (1), demonstrating the veracity of the solution
obtained.

2.2. Transverse Electric (TE) Polarization

The expressions for the incident and scattered electromagnetic fields
in this case can be obtained from (4)–(7), using duality. Since the
boundary conditions to be satisfied on the surface of the cylinder are



Progress In Electromagnetics Research Letters, Vol. 10, 2009 63

still given by (8)–(9), the unknown expansion coefficients associated
with the copolar and cross-polar scattered fields can be obtained from
(10) and (11), by interchanging R

(i)
qm(c, ξs) with R

(i)′
qm(c, ξs) for i = 1, 4.

3. FAR FIELD

In the limit ξ → ∞, using asymptotic expressions of R
(4)
qm(c, ξ) and

R
(4)′
qm (c, ξ), Es

z in the far zone for the TM case can be written as

Es
z =

√
j

kρ
e−jkρ

[ ∞∑

m=0

jmBemSem(c, τ) +
∞∑

m=1

jmBomSom(c, τ)

]
(12)

in which τ = cosφ. The expression of Es
φ can be obtained from (12)

by changing Bqm to Cqm and multiplying by j. Hs
φ = −Es

z/Z and
Hs

z = Es
φ/Z. The bistatic scattering cross section is defined as

σ = lim
ρ→∞ 2πρ

Re [(Es ×Hs∗) · ρ̂]
Re

[(
Ei ×Hi∗) · ρ̂] (13)

with Re[w] denoting the real part of a complex number w, the asterisk
denoting the complex conjugate, and ρ̂ denoting the unit vector in the
direction of increasing ρ. After substituting for the scattered fields (in
the far zone) and also for the incident fields in (13), we can write an
expression for the normalized bistatic scattering width as

σ

λ
=

∣∣∣∣∣
∞∑

m=0

jmBemSem(c, τ)+
∞∑

m=1

jmBomSom(c, τ)

∣∣∣∣∣
2

+

∣∣∣∣∣
∞∑

m=0

jmCemSem(c, τ)+
∞∑

m=1

jmComSom(c, τ)

∣∣∣∣∣
2

. (14)

The normalized backscattering width can be obtained by substituting
φ = φi in (14). The normalized bistatic scattering width in the TE
case can be expressed in a form similar to (14) too.

4. RESULTS AND CONCLUSION

Results obtained are presented as normalized bistatic and monostatic
scattering widths for PEMC elliptic cylinders of different sizes, axial
ratios, and PEMC admittances, for TM polarization of the incident
wave. For convenience, the PEMC admittance has been expressed in
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Figure 2. Cs versus ka for an
elliptic cylinder of axial ratio ≈ 1
and for a circular cylinder, when
MZ = 0, 1, ∞.
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Figure 3. Variation of the
normalized backscattering width
with the angle of incidence, for
elliptic cylinders of axial ratio 2,
ka = π, and different υ.

the dimensionless form MZ = tan υ [15]. Since results for the TE
case with MZ = tan υ are identical to those for the TM case with
MZ = tan(90◦−υ), the results for the TE case have not been presented
separately. When calculating the summations in (14), it was sufficient
to consider 15 terms to get an accuracy of two significant digits.

To validate the analysis and the software used for calculating the
results, we have first computed the normalized backscattering widths
for elliptic cylinders of axial ratio 1.001 and semi-major axis lengths
ka = 0.1 to 10 with normalized PEMC admittances MZ = 0, 1, ∞,
when they are excited by an arbitrarily incident plane wave. The
normalized scattering width Cs in this case is obtained as described
in Section 3 of [12]. These results have been compared in Fig. 2
with the corresponding results obtained for a PEMC circular cylinder
in [12], and they are in excellent agreement, verifying the accuracy of
the analysis and the software used for obtaining the results.

Figure 3 shows the variation of the normalized backscattering
width (NBSCW) (σ/λ) for a PEMC elliptic cylinder of axial ratio
2 and semi-major axis length λ/2 with the angle of incidence, when
the PEMC admittance parameter υ changes from 0◦ to 90◦. Here we
observe an increase in the NBSCW with υ at a given angle of incidence
φi, when 110◦ ≤ φi ≤ 70◦. The change in the NBSCW from υ = 0◦ to
υ = 90◦ is maximum when φi = 90◦.

Variations of the normalized bistatic scattering widths (NBSWs)
with the scattering angle (φ) for the PEMC elliptic cylinders considered
in Fig. 3 are shown in Fig. 4, when φi = 0◦. For υ = 0◦ and υ = 15◦,
the NBSW is maximum when φ = 120◦ and φ = 240◦. For all other
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Figure 4. Variation of the nor-
malized bistatic scattering width
with the scattering angle for the
elliptic cylinders considered in
Fig. 3, when they are illuminated
by an axially incident plane wave.
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Figure 5. Variation of the
normalized backscattering width
with the angle of incidence, for
elliptic cylinders of axial ratio 2,
υ = 45◦, and different semi-major
axis lengths.
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Figure 6. Variation of the normalized backscattering width with the
angle of incidence, for elliptic cylinders of ka = π, υ = 45◦, and
different axial ratios (ARs).

values of υ, it is maximum when φ = 180◦ corresponding to forward
scattering. The NBSW increases with υ for most values of φ, and the
increase is more prominent for 150◦ ≤ φ ≤ 210◦.

Figure 5 shows the variation of the NBSCW with φi for PEMC
elliptic cylinders of axial ratio of 2, υ = 45◦, and 5 different semi-major
axis lengths. From these plots we see that the NBSCW increases with
the size of the cylinder, since for a larger cylinder the area available
for scattering is more. The NBSCW is maximum for all cylinders at
broadside incidence corresponding to φi = 90◦.
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Finally, the variation of the NBSCW with φi for PEMC elliptic
cylinders of semi-major axis length λ/2, υ = 45◦, and 4 different
axial ratios, are shown in Fig. 6. In this case, the patterns become
broader as the axial ratio (AR) decreases. All patterns have peaks at
φi = 90◦, with the peaks becoming sharper as the AR increases. For
75◦ ≤ φi ≤ 105◦, the NBSCW increases with the AR, but outside this
region it decreases as the AR increases from 2 to 5, reaching quite
small values close to φi = 0◦, for AR> 3.

The results obtained in this paper are important, since they can
be used as benchmarks to validate similar results obtained using other
approximate or numerical methods, and also to get an insight into how
the changing of various parameters associated with a PEMC cylinder
changes the scattering widths that could be obtained from it.
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