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Abstract—In this paper we derived the formula for calculating the
mutual inductance between circular filaments with lateral and angular
misalignment by using the approach of the magnetic vector potential.
The results obtained correspond to those of F. W. Grover, although
the latter used the general formula given by the Neumann integral
instead of a vector potential approach. However, the major purpose
of this paper is to clarify some confusion introduced in previous works
regarding the mutual inductance calculation between thin filamentary
circular coils with parallel axes in air. This problem has been solved by
Kim et al. [8] using the magnetic vector potential, but unfortunately
it leads to erroneous results, even for slight misalignments of the coils’
center axes. This is why we chose to use the approach of the magnetic
vector potential to show that, when properly derived, the results must
indeed reduce to the well known F. W. Grover’s formulas.

1. INTRODUCTION

In this paper, we use the approach of the magnetic vector potential to
prove F. W. Grovers’ formulas obtained by integration of the Neumann
formula, and also to clarify some previously published results on
mutual inductance calculation between circular filaments with parallel
axes in air. The mutual inductance calculation between coaxial circular
filaments has been thoroughly treated by a number of authors since
the time of Maxwell, and an accuracy exceeding anything required
in practice is nowadays possible [1–7]. A formula for two circles
whose axes intersect was first given by Maxwell [1]. Formulas for
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circular loops with parallel axes have been given by Butterworth [2]
and Snow [3]. Unfortunately, these formulas were slowly convergent
and not useable with a wide range of parameters. Using Butterworth’s
formula [2], Grover developed a general method to calculate the mutual
inductance between circular filaments located at any position with
respect to each other [4, 5]. Today, with powerful numerical methods,
such as the Finite Element Method (FEM) and the Boundary Element
Method (BEM), it is possible to calculate accurately and rapidly this
important electrical parameter. However, there is still an interest to
address this problem using semi-analytical methods, as it considerably
simplifies the mathematical procedures and associated programming.
The computation time is also generally significantly reduced. One such
approach has been presented in [8], in which the mutual inductance
between circular filaments with parallel axes has been calculated by
using the approach of the magnetic vector potential. Obviousely,
this approach should lead to the same formulas as those obtained
by Grover [4, 5]. However, a quick comparison shows that this is
not the case, which leads to misleading results. Therefore, in this
paper, we review this case in details, and we show the right way to
retrieve Grover’s formula from a magnetic vector potential approach.
An application example is provided in the last section, in order to prove
our assertions.

2. REVIEW OF BASIC EXPRESSIONS

2.1. Formula for Circular Coils with Both Lateral and
Angular Misalignments

In [4] and [5], Grover presented a formula for computing the mutual
inductance M between two filamentary circular coils with inclined axes
(e.g., see Fig. 1). The first coil has a radius RP , and the second coil
has a radius RS . The distance between the coils’ centers is c, and the
distance between their axes is d. The resulting expression proposed by
Grover for M is:

M =
2µ0

π

√
RP RS

π∫

0

[cos θ − d
RS

cosφ]Ψ(k)

k
√

V 3
dφ (1)

where

α =
RS

RP
, β =

c

RP
, V =

√
1− cos2 φ sin2 θ − 2

d

RS
cosφ cos θ +

d2

R2
S
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Figure 1. Filamentary circular
coils with angular and lateral
misalignment (axes intersect but
not at the center of either coil).

Figure 2. Filamentary circular
coils with lateral misalignment (z
and z′ axes parallel).

k2 =
4αV

(1 + αV )2 + ξ2
, ξ = β − α cosφ sin θ

and Ψ(k) =
(

1− k2

2

)
K(k)− E(k)

In the last equations, K(k) and E(k) are respectively the complete
elliptic integrals of the first kind and the second kind, defined as

K(k) =

π∫

0

1√
1− k2 sin2 θ

dθ and E(k) =

π∫

0

√
1− k2 sin2 θdθ (2)

These elliptic integrals can be evaluated efficiently according to the
classical algorithm presented in [9]. One has to be careful as the elliptic
integral functions implemented in most computation software such as
Matlab often use the parameter m = k2 as the input argument, instead
of the modulus k. One should note that the above formula corresponds
to the general case when both lateral and angular misalignments are
present, although the z and z′ axes must lie in the same plane for (1)
to be valid.

2.2. Formula for Circular Coils with Parallel Axes but
Lateral Misalignment (Angle θ = 0)

This situation, which is depicted in Fig. 2, is a direct simplification of
the case presented above. The mutual inductance formula can therefore
be obtained directly from (1), by setting θ = 0. We end up with the
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formula below, also provided in [5]:

M =
2µ0

π

√
RP RS

π∫

0

(1− d
RS

cosφ)Ψ(k)

k
√

V 3
dφ (3)

where

α =
RS

RP
, β =

c

RP
, V =

√
1 +

d2

R2
S

− 2
d

RS
cosφ, k2 =

4αV

(1 + αV ) + β2

and Ψ(k) =
(

1− k2

2

)
K(k)−E(k).

Another solution to this problem (circular coils with parallel axes but
lateral misalignment) has been proposed by Kim et al. [8]. In this case,
the solution was obtained by using the magnetic vector potential. The
final expression for the mutual inductance, expressed in the notation
of the current paper, takes the form given below:

M =
2µ0RS

π

2π∫

0

√
(RP + r)2 + c2

r
Ψ(k)dφ (4)

where

r =
√

(d + RS cos(φ))2 + (RS sin(φ))2,

k2 =
4RP r

(RP + r)2 + c2
, Ψ(k) =

(
1− k2

2

)
K(k)− E(k)

However, a simple numerical evaluation for identical parameters shows
that Grover’s and Kim’s expressions, i.e., Equations (3) and (4), do
not lead to the same value of mutual inductance, which suggests that
one of them is erroneous. Such a numerical example is presented in
Section 4 of this paper.

In order to clarify this, we carried out the entire derivation of the
mutual inductance formula, using the method of the magnetic vector
potential, as done by Kim et al. [8]. All details of this derivation are
provided in Section 3.

3. ANALYTICAL CALCULATION OF MUTUAL
INDUCTANCE

Let’s consider two circular filaments, as showed in Fig. 3. This
case corresponds to the one presented in Fig. 1, although additional
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Figure 3. Filamentary circular coils with angular and lateral
misalignment (axes intersect but not at the center of either coil).

variables were defined to clarify the analytical calculation presented
below. Variables c, d, RP and RS are the same as in Figs. 1 and 2.

Before carrying on with the full derivation, it is useful to precise
the content of Fig. 3.

1) The primary coil of radius RP lies in the plane XOY (z = 0), with
the center at point O(0, 0, 0).

2) The secondary coil of radius RS lies in a plane whose unit normal
vector N = 〈Nx, Ny, Nz〉 is given by Nx(x − xC) + Ny(y − yC) +
Nz(z − zC) = 0, and the center of the coil is located at point
C(xC , yC , zC).

3) The secondary axes system (x′, y′, z′) is NOT the same as in Figs. 1
and 2.

4) Given the local coordinate system defined in Fig. 3, the angle
between the unit vector N and axis z (or z′) is θ (see Fig. 1) so
that N = 〈0, sin(θ), cos(θ)〉, and C(0, y = d, z = c) (in terms of
the global coordinate system).

5) BP is an arbitrary point of the primary coil, whose coordinates
are (RP cos(t), RP sin(t), 0), 0 < t < 2π.

6) ES is an arbitrary point of the secondary coil, whose coordinates
are ES(−RS sin(φ), d + RS cos(θ) cos(φ), c − RS sin(θ) cos(φ)),
0 < φ < 2π.

It should be emphasized that in all expressions provided below, the
radius RP of the primary coil must be larger or equal than the radius
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RS of the secondary coil. In the opposite case, the same procedure is
applicable after setting the coil with larger radius as the primary coil.

The magnetic vector potential A at point ES , produced by a
circular current loop of radius RP carrying the current IP (See Fig. 3),
is given by

~A =
µ0

4π

∫

lP

IP d~lP
r

(5)

where

µ0 = 4π × 10−7 H/m (magnetic permeability of vacuum)

d~lP = (−~i sin(t) +~j cos(t))RP dt t ∈ (0; 2π)
~i,~j,~k are the unit vectors of axes x, y and z respectively,

r2 =
∣∣∣ ~ES − ~BP

∣∣∣
2

= (RP cos t + RS sinφ)2

+(RP sin t−RS cos θ cosφ− d)2 + (c−RS sin θ cosφ)2

= A + B cos t + C sin t

A = R2
P + R2

S sin2 φ + R2
S cos2 θ cos2 φ + d2

+2dRS cos θ cosφ + (c−RS sin θ cosφ)2

B = 2RP RS sinφ

C = −2RP (d + RS cos θ cosφ)

Using Stokes’s theorem, the flux through the secondary circuit due to
a current in the primary circuit is

Φ =
∫∫

SS

~B d~SS =
∫∫

SS

(∇× ~A)d~SS =
∫

lS

~Ad~lS (6)

where
d~lS = (−~i cosφ−~j cos θ sinφ + ~k sin θ sinφ)RSdφ

The mutual inductance between the secondary and primary coils is
given by:

M =
Φ
IP

(7)

From (5), (6) and (7), we obtain:

M =
µ0

4π
RP RS

2π∫

0

2π∫

0

[sin t cosφ− cos t cos θ sinφ] dφdt

r
(8)
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where
r =

√
A + B cos t + C sin t

Equation (8) should be amenable to the same form as Equation (1),
i.e., Grover’s formula. As a first step, we integrate with respect to
the variable t, corresponding to the substitution t = 2ψ + α, [9]. The
following notations are useful in order to carry out the integration:

tanα =
C

B
p =

√
B2 + C2

with:

tanα = −d + RS cos θ cosφ

RS sinφ

p = 2RP

√
d2 + R2

S + 2dRS cos θ cosφ−R2
S sin2 θ cos2 φ

and:

p = 2RP RS

√
1− sin2 θ cos2 φ +

d2

R2
S

+ 2
d

RS
cos θ cosφ = 2RP RSV

where

V =

√
1− sin2 θ cos2 φ +

d2

R2
S

+ 2
d

RS
cos θ cosφ

and cosα = ±sinφ

V
, sinα = ∓

d
RS

+ cos θ cosφ

V
(9)

The first integration then gives:

I1 =

2π∫

0

[sin t cosφ− cos t cos θ sinφ] dt

r
=2 cosφ

π−α
2∫

−α
2

sin(2ψ + α)dψ√
A + p cos(2ψ)

−2 cos θ sinφ

π−α
2∫

−α
2

cos(2ψ + α)dψ√
A + p cos(2ψ)

=
4 cos φ cosα√

A + p
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2∫

−α
2

sinψ cosψdψ

∆

+
2 cos φ sinα√

A + p

π−α
2∫

−α
2
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∆
− 2 cos θ sinφ cosα√

A + p

π−α
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−α
2
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+
4 cos θ sinφ sinα√

A + p

π−α
2∫

−α
2

sinψ cosψdψ

∆

=
4(cosφ cosα + cos θ sinφ sinα)√

A + p

π−α
2∫

−α
2

sinψ cosψdψ

∆

+
2(sinφ cosα cos θ − cosφ sinα)√

A + p

π−α
2∫

−α
2

(2 sin2 ψ − 1)dψ

∆

= −4(cosφ cosα + cos θ sinφ sinα)√
A + p

∆
k2
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π−α

2

−α
2

+
2(sinφ cosα cos θ − cosφ sinα)√

A + p

{
2
k2

[
F (ψ, k2)−E(ψ, k2)

]

−F (ψ, k2)
}π−α

2

−α
2

where

α =
RS

RP
, β =

c

RP
, z = c−RS sin θ cosφ,

k2 =
4p

A + p
=

4RP RSV

(RP + RSV )2 + z2
=

4αV

(1 + αV )2 + ξ2

ξ = β − α cosφ sin θ, ∆ =
√

1− k2 sin2 ψ

Using the following transformations [9, 10]:

F (π − α
2 , k) = 2K(k)− F (α

2 , k), E(π − α
2 , k) = 2E(k)− E(α

2 , k)
F (−α

2 , k) = −F (α
2 , k), E(−α

2 , k) = −E(α
2 , k)

we obtain,

I1 =
8(cos θ sinφ cosα− cosφ sinα)

k2
√

A + p

[(
1− k2

2

)
K(k)−E(k)

]
(10)

From (8) and (10), we obtain

M =
µ0

π

√
RP RS

2π∫

0

(cos θ sinφ cosα− cosφ sinα)Ψ(k)
k
√

V
dφ (11)
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It is possible to simplify (11) by using the transformation (9), i.e.,

cos θ sinφ cosα− cosφ sinα = ±
cos θ + d

RS
cosφ

V

which allows rewriting the mutual inductance expressed by (11) as:

M =
µ0

π

√
RP RS

2π∫

0

(cos θ + d
RS

cosφ)Ψ(k)

k
√

V 3
dφ (12)

Equation (12) can be evaluated on the two intervals (0, π) and (π, 2π).
For the second interval we introduce the substitution φ = 2π − ϕ,
which makes the integral identical to the first one. Therefore, we can
rewrite (12) on the interval (0, π), i.e.,

M =
2µ0

π

√
RP RS

π∫

0

(cos θ + d
RS

cosϕ)Ψ(k)

k
√

V 3
dϕ (13)

Finally, the substitution φ = π − ϕ transforms (13) into well known
Grover’s formula (1):

M =
2µ0

π

√
RP RS

π∫

0

(cos θ − d
RS

cosφ)Ψ(k)

k
√

V 3
dφ (14)

where

α =
RS

RP
, β =

z

RP
, k2 =

4αV

(1 + αV )2 + ξ2

V =

√
1− sin2 θ cos2 φ +

d2

R2
S

− 2
d

RS
cos θ cosφ,

ξ = β − α cosφ sin θ

Ψ(k) =
(

1− k2

2

)
K(k)− E(k)

By setting θ = 0, (14) reduces to (3), i.e., the case of a lateral
misalignment, as already shown in Section 2.2.

Thus, we analytically confirmed by the approach of the magnetic
vector potential the Grover’s formula for calculating the mutual
inductance between circular filaments both with inclined and parallel
axes.
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Obviously, the formula obtained by Kim et al. [8], and
corresponding to Equation (4) in this paper, should also be amenable
to the same form as (3), since it was also derived from the magnetic
vector potential. However, one can easily show that this is not the case.
In addition, we easily show that a simple numerical application of (3)
and (4) leads to different results, which is another reason to decline
the result of Kim et al. in the calculation of the mutual inductance
between circular filaments with parallel axes (lateral misalignment).

4. APPLICATION EXAMPLE

In this section, we compare the results obtained by Grover’s [4, 5] and
Kim’s [8] formulas for a given application case. The problem consists
in two circular coils of rectangular cross section (see Fig. 4), with the
following dimensions:

1) Primary Coil: RP = 42.5 mm, a = 10.0mm, hP = 10.0mm,
N1 = NP = 150.

2) Secondary Coil: RS = 20.0 mm, a = 10.0 cm, b = 4.0mm,
hS = 4.0mm, N2 = NS = 50.

The calculation of the mutual inductance of the proposed coil
configuration will be realized by using the filament method [8, 11]. The
dependence of the mutual inductance on the separation distance “c”
(in [8] the separation distance is denoted “z”) was calculated for several
values of the lateral misalignment “d” (in [8] the off-center distance
is “y”). See Table 1 for comparative results, in the case where the
distance between the coils’ centers is c = 0 (centers are coplanar), but
variable lateral misalignment “d”. We did not consider the cases for

Figure 4. Geometric configuration considered in Section 4: Two
circular coils of rectangular cross section with parallel axes (lateral
misalignment).
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Table 1. Mutual inductance calculation (N = K = 2, n = m = 1).

d c M(10−4H) M(10−4H) [8], Discrepancy(%)

(mm) (mm) This work, Eq. (20) Eq. (3)

Eq. (3) vs Eq. (20)

0.0 0.0 1.52875989 1.52875989 0.00

1.0 0.0 1.52967999 1.53063181 0.062

2.5 0.0 1.53453878 1.54049796 0.388

5.0 0.0 1.55229043 1.57627671 1.545

7.0 0.0 1.57597265 1.62337093 3.001

10.0 0.0 1.63029226 1.72877701 6.041

15.0 0.0 1.79299153 2.02559287 12.973

15.5 0.0 1.81647101 2.06644759 13.762

69.5 0.0 −0.36397730 1.57888396 –

80.0 0.0 −0.17767980 1.05074054 –

100.0 0.0 −0.07231342 0.60979570 –

200.0 0.0 −0.00718415 0.13810829 –

500.0 0.0 −0.00043535 0.02158082 –

1000.0 0.0 −0.00005401 0.00537760 –

which the coils intercepted each other, because they are not physical
ones.

For the cases where the smaller coil is located inside the bigger coil
(d = 0 to 15.6 mm), the discrepancy between the two results (3) and [8]
changes from 0% (case of coaxial coils) to 13.762%. In the second
region where the smaller coil is outside the bigger coil (d = 69.5 to
1000mm) the mutual inductance obtained by [11] using Equation (3)
(this work) presents a sign reversal, and then reaches a negative
maximum and approaches zero for larger values of lateral misalignment
“d”. This behavior is the one that corresponds to the theory, as the
flux lines linked by the secondary coil change their orientation outside
the primary coil [4, 12]. On the other hand, the mutual inductance
obtained by Equation (20) of reference [8] slowly approaches zero when
the smaller coil is outside the bigger coil, and never reach negative
values, which is not correct according to theory. This therefore proves
that Equation (20) of reference [8] is erroneous. Actually, it is exact
only when the coils’ axes correspond with each other.

5. CONCLUSION

In this paper, we confirmed the validity of Grover’s formula for
calculating the mutual inductance between circular filaments with
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lateral and angular misalignment by using the approach of the
magnetic vector potential. We clarified some previous work on
the same subject, in which a wrong formula was presented for the
calculation of the mutual inductance between circular filaments with
parallel axes in air.
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