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Abstract—The patch shape influence on the radar cross section
(RCS) of a cylindrical microstrip antenna (CMA) is discussed. The
RCS of the CMA is evaluated from a plane wave scattering problem
solution to a cylindrical microstrip antenna. The method of moments is
employed in the spectral domain using sub-domain basis functions. It
is shown that the patch shape has a pronounced effect such that new
resonance modes appear at frequencies substantially shifted towards
the low-frequency end compared to a cylindrical rectangular patch.

1. INTRODUCTION

Widely accepted in mobile and satellite communications, cylindrical
microstrip antennas (CMA) have long been an area of intensive
research. Over the recent decades, the CMA characteristics
have been thoroughly studied in a variety of ways [1–13]. The
method of moments [5–13] employed in both spectral [6–9] and
spatial domains [5, 10–13] is most universal. But introducing
the basis functions on the entire patch area (entire domain basis
functions) [5, 6, 9] allows dealing with rectangular cylindrical patches
only. Arbitrarily configured patches require using sub-domain basis
functions. Examples are shown in papers [7, 8, 10–13], where the
excitations are a cylindrical microstrip line [7, 8, 13], a probe [10, 12]
and a plane wave [11]. Works [7, 8, 10–13] focuse on such characteristics
as the CMA input impedance versus frequency, radiation pattern at a
fixed frequency and, also, the far field at a fixed frequency in a specific
direction, which is similar to radar cross section (RCS).
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However, the only concern of papers [7, 8, 10–13] was rectangular
cylindrical patches. A rare exception is papers [8] and [13] discussing
the CMA with a recessed feed. So, the CMA characteristics in the case
of complex shape patches highly need investigation.

The present paper seeks to examine the CMA radar cross section
under patch shape changes caused by the introduction of complex-
shape slots. The study will be completed with patch current density
distributions at resonance frequencies. Patch shapes of the present
concern have never been studied. Here, as in [7, 8], the problem will
be solved by the method of moments in the spectral domain with sub-
domain basis functions. The difference consists in the employment
of piecewise sinusoidal basis functions (PWS) rather than rooftops
in [7, 8]. Besides, the Fourier integrals will be taken on the real
axis rather than over a complex-plane contour, and surface wave
contributions will be extracted as single terms.

2. EVALUATION OF CMA RADAR CROSS SECTION

Refer to the CMA model given in Fig. 1. The metal patch is placed
on the external interface of the so-called Goubau line [14], a z-infinite
circular metal cylinder having radius r1 and surrounded by a circular
dielectric substrate of radius r0 and related permittivity εr. The patch
is arbitrarily shaped in the context of rectangular cylindrical geometry.
The shapes to consider are sketched in Fig. 2.
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Figure 1. The plane wave excitation of a cylindrical microstrip
antenna with an arbitrarily shaped patch.
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Figure 2. Patch configurations: (a) Rectangular cylindrical, (b) with
four U-shaped slots, and (c) with a looped slot.

Let the plane wave

Einc = E0eik0(~n~R) (1)

arrive from infinity in the n direction as shown in Fig. 3. In what
follows, the time dependence eiωt will be omitted. In a cylindrical
coordinate system, the z-components of the electric and magnetic fields
of the incident unit-amplitude plane wave are written as follows [15]

Einc
z (r, ϕ, z) =

n=∞∑
n=−∞

anz(r, z)e−in(ϕ−β), (2)

H inc
z (r, ϕ, z) =

n=∞∑
n=−∞

ānz(r, z)e−in(ϕ−β), (3)

with

anz(r, z) = w0 cos(γ) sin(α)e−ik0z cos αinJn(k0r sinα)

ānz(r, z) = w0 sin(γ) sin(α)e−ik0z cos αinJn(k0r sinα),

where W0 is the free space wave impedance; Jn(x) is the Bessel
function; γ is the polarization parameter; k0 = 2π/λ0; and λ0 is the
free space wavelength. The angles α and β specify the wave incidence
direction (Fig. 3). The problem consists in finding the patch current
distribution induced by the incident field.

In accordance with the equivalence theorem [16], the metal patch
is replaced by the equivalent electric surface current (sheet electric
current) distributed over the metal patch surface S′. The current
density Je

s(r0, ϕ
′, z′) is unknown; subscript s stands for z, ϕ. Then the

total tangential electric field can be written as a sum of the excitation
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Figure 3. The incidence field orientation angles with respect to the
CMA coordinate system.

field caused by the incident field and the scattered field generated by
the equivalent surface current as follows

Ep
s (r, ϕ, z) = Ep,exc

s (r, ϕ, z) + Escat,J
s (r, ϕ, z), (4)

with

Escat,J
s (r, z, ϕ) =

∫

z′

∫

ϕ′

[
Je

z(r0, ϕ
′, z′)

Je
ϕ(r0, ϕ

′, z′)

]
ĜJ(r, r0, z, z′, ϕ, ϕ′)dS′ (5)

where

ĜJ(r, r0, z, z′, ϕ, ϕ′) =
[
GJ

zz(r, r0, z, z′, ϕ, ϕ′) GJ
zϕ(r, r0, z, z′, ϕ, ϕ′)

GJ
ϕz(r, r0, z, z′, ϕ, ϕ′) GJ

zϕ(r, r0, z, z′, ϕ, ϕ′)

]

is the Green function; Je
s is the unknown equivalent surface current

density; index p marks one of the two introduced partial domains:
p = 0 stands for r > r0 and p = 1 for r0 > r > r1. The derivation
of (5) is given in [6]. The excitation field is introduced as follows

E0,exc
s (r, ϕ, z) = Einc

s (r, ϕ, z) + E0,scat,G
s (r, ϕ, z) (6)

E1,exc
s (r, ϕ, z) = E1,scat,G

s (r, ϕ, z). (7)

The field Ep,scat,G
s (r, ϕ, z) is determined by the solution of the

diffraction of plane wave (1) by the Goubau line (see Fig. 1). For
this, refer, in particular, to [11]. In this problem formulation, the field
Ep,exc

s (r, ϕ, z) satisfies the boundary conditions on the dielectric-air
homogeneous interface and the boundary conditions on the circular
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metal cylinder. The calculation formula of the excitation field
introduced in (6), (7) is given in Appendix B. The application of the
boundary condition that the total tangential electric field vanishes on
the substituted metal patch surface yields the integral equation for the
unknown surface current density

−E0,exc
s (r0, z, ϕ) =

∫

z′

∫

ϕ′

[
Je

z(r0, ϕ
′, z′)

Je
ϕ(r0, ϕ

′, z′)

]
ĜJ(r, r0, z, z′, ϕ, ϕ′)dS′ (8)

Integral equation (8) is solved by the method of moments under
Galerkin’s scheme. The unknown surface current density is expanded
in the basis functions as follows

Js =
NB∑

q=1

αqJb
qs. (9)

Here Jb
qs are the basis functions of the number NB = NBZ + NBϕ,

where NBZ = (NZ − 1) ∗ Nϕ and NBϕ = (Nϕ − 1) ∗ NZ, with
NZ and Nϕ being the numbers of patch divisions along the z and ϕ
directions, respectively. Each segment size in the relevant direction is
∆z = Wz/NZ and ∆ϕ = Wϕ/Nϕ. The patch splitting into rectangular
cylindrical segments is shown in Fig. 4. As seen, each basis function
is given on two adjacent segments, for details see Appendix C. By the
method of moments, integral equation (8) is reduced to the system of
linear algebraic equations (SLAE)

Zα = V (10)

where α[i] = αi. In the present paper, the elements of matrix Z are
evaluated in the spectral domain as

Zik =
1

4π2

∞∑
n=−∞

∞∫

h=−∞
J̃t

i(r0,−n,−h) ˆ̃GJ(r0, n, h)J̃b
k(r0, n, h)dh, (11)

where J̃b(r0, n, h), J̃t(r0,−n,−h), and ˆ̃GJ(r0, n, h) are the spectral
equivalents of the values Jb

qs, Jt
qs, ĜJ , respectively, with Jt

qs being the
test function. The elements of column V are calculated in the spatial
domain as

V s
i = −

∫∫

Si

ds′Jt
isE

0,exc
s (r0, z, ϕ), (12)
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Si is the surface where the ith basis function is introduced. The
spectral Green function ˆ̃GJ(r0, n, h) is available from Appendix A. To
accelerate the evaluation of the matrix elements Zik, an expedient [7]
was taken consisting in the subtraction and the addition of the Green
function asymptotical representation. The Fourier transforms of the
basis functions and the final formula for the calculation of the elements
V s

i are given in Appendix C.
The solution of SLAE (10) yields the current distribution on

the patch. Hence, by virtue of (5), one finds the field at any point
of space. The far field comes from the asymptotical evaluation of
expression (5) [17]. Finally the field Escat,J

s (r, z, ϕ) in the far zone
appears to be a spherical wave of the form Escat,J(R, θ, ϕ). The far-
field components are available, in particular, from [11]. Then the RCS
is provided by the formula

σuv =
4π

∣∣Escat,J(R, θ = π − α, ϕ = β) · v∣∣2

|E0
u|2

, (13)

where Escat,J ·v is the v-component (v = (θ, ϕ)) of the scattered field in
the direction reverse to the plane wave arrival, i.e., in the −n direction.

3. NUMERICAL RESULTS

Before analyzing different patch shapes for RCS, take up the CMA
structure with a rectangular cylindrical patch. Let the CMA

segment 

PWS basis 
functions 

Z 

ϕ

patch

Figure 4. The patch surface
splitting into segments and the in-
troduction of the basis functions.
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parameters be the same as those in [4]. Specifically, Wz = 3 cm,
Wϕ = 4 cm, r1 = 0.05m, εr = 2.32, and r0/r1 = 1.0159. The frequency
dependences of σθθ/σ0 and σϕϕ/σ0 are shown in Fig. 5 (curves 1 and 2,
respectively, dB), where σ0 = πWzWϕ is the normalization parameter.
The curves come from formula (13) and correspond to the plane wave
normal incidence on the structure, i.e., α = 90◦ and β = 0◦. This case
refers to h̄ = cos(α) = 0 in Appendix A. Curve 1 corresponds to γ = 0◦

(E-polarization, E0,exc
z 6= 0, H0,exc

z = 0) and Curve 2 is for γ = 90◦

(H-polarization, E0,exc
z = 0, H0,exc

z 6= 0). In Fig. 5, two resonances
are clearly seen at frequencies f = 3.21GHz and f = 2.45GHz. For
comparisons, the input impedance calculation results for the probe-fed
CMA in [4] show resonances at 3.232GHz and 2.449GHz for the z- and
ϕ-polarized patch, respectively. The resonance frequencies differ by less
than 0.7% from those in work [4], indicating a very good agreement
of the data. Fig. 6 plots the z-component of the electric current
distribution (Curve 1 in Fig. 5) at resonance frequency f = 3.21 GHz.
This distribution fits the fundamental mode in the z-polarized patch
case. Such a mode is excited right in the case of E-polarized plane wave
incidence on the structure. For reference, the phase distribution of
the electric current z-component of the above-mentioned fundamental
mode is constant.

It is clear that the slot introduction into the metal patch can
essentially affect the electric current distribution on the patch and,

M
O

D
(J

z)

(r
ad

)

Z (m) ϕ

500

450

400

350

300

250

200

150

100

-0,005
-0,010

0,000
0,005

0,010
-0,3

-0,2
-0,1

0,0
0,1
0,2
0,3

Figure 6. Distribution of
the electric current z-component
module on a rectangular cylindri-
cal patch (see Fig. 2(a)).

f=1.0675 GHz
2

1

1
0

*
L

O
G

(
/

) 
 (

D
B

)
σ
θ
σ

θ
0

FREQUENCY (GHz)

0,4   0,6    0,8   1,0    1,2   1,4    1,6   1,8   2,0

20

0

-20

-40

-60

Figure 7. The radar cross
section σθθ/σ0 of a CMA whose
patch has four U-shaped slots
(Curve 1) and a CMA with
a rectangular cylindrical patch
(Curve 2).



314 Svezhentsev and Kryzhanovskiy

hence, the antenna RCS. In particular, a patch with a U-slot is
known to offer a number of properties enhancing the planar printed
(microstrip) antenna performance [18]. Take up a CMA with a patch
with four U-slots (Fig. 2(b)) with the parameters Wz = 4.9 cm,
Wϕ = 6.5 cm, r1 = 0.05m, εr = 3.38, and r0/r1 = 1.0159. In this
situation, we split the original rectangular cylindrical patch (Fig. 4)
into the NZ×Nϕ = 24×34 segments. Then some metal segments are
removed to achieve the desired configuration (Fig. 2(b)). Let the CMA
be exited by a normally incident E-polarized plane wave, i.e., α = 90◦,
β = 0◦, and γ = 0◦. In the further consideration, these angles of the
incident field orientation will be considered. The frequency dependence
of σθθ/σ0 for the CMA with the above-mentioned patch (Fig. 2(b)) is
plotted in Fig. 7, Curve 1. Curve 2 gives the σθθ/σ0 of a rectangular
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Figure 8. The |Jz(z, ϕ)| (a) and |Jϕ(z, ϕ)| (b) distributions on a
patch with four U-shaped slots. The brightest areas correspond to the
highest amplitude.
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Figure 9. The phase Jz(z, ϕ) (a) and Jϕ(z, ϕ) (b) distributions on
a patch with four U-shaped slots. The phase difference between the
white and the black spans 180◦, the grey establishes slot positions.

cylindrical patch, demonstrating the fundamental resonance of a CMA
with a rectangular cylindrical patch. Curve 1 is a representative of
the fact that for E-polarized wave incidence, a patch with four U-slots
has lots of resonances in the region where a rectangular cylindrical
patch has a single one. Amongst these numerous resonances, the one
at frequency f = 1.0675GHz is evidently of primary interest, being the
strongest, its band the widest. The surface current module distribution
on a patch with four U-slots (Fig. 2(b)) is displayed in light and dark in
Fig. 8(a) for Jz(z, ϕ) and in Fig. 8(b) for Jϕ(z, ϕ), f = 1.0675GHz. The
brightest areas correspond to the highest amplitude. The darkest areas
establish slot positions and, also, zero amplitude spots. The maximum
of the Jz(z, ϕ) module is a little more than twice as large as the Jϕ(z, ϕ)
module, which is attributed to the splitting of the Jz current into the
two Jϕ components at the points z = ±0.021 m, ϕ = 0. The phase
distributions of the patch surface currents Jz(z, ϕ) and Jϕ(z, ϕ) at
f = 1.0675 GHz are plotted in Figs. 9(a) and (b), respectively. The
white to black spans a 180◦ phase difference, the grey shades locate the
slots. The distribution of the electric current module density for this
oscillation suggests that the current distribution on the metal patch is
quite complex; the maximum current density falls on the patch central
line at ϕ = 0. The analysis of the current density phase distribution
(Figs. 9(a), (b)) indicates that the Jz(z, ϕ) distribution is symmetrical
about the plane ϕ = 0, while the Jϕ(z, ϕ) distribution is asymmetrical
about ϕ = 0. In other words, while Jz(z, ϕ) has a peak, Jϕ(z, ϕ) goes
to zero in this plane. The examination of the amplitude and phase
distributions of the patch surface current density (see Figs. 8 and 9)
enables us to construct the distribution of the patch current density
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vector conventionally shown in Fig. 10. Let us give a detailed physical
analysis to this.
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Figure 10. The vector of surface
current density distribution on a
patch with four U-slots.
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The patch with four U-slots can be (on condition) composed
of five horizontal (z-parallel) strip conductors (one of them makes
an interior rectangle) and four vertical (ϕ-parallel) strip conductors.
The excitation field induces cophasal currents on the five horizontal
conductors. On the central conductor (|z| ≤ 0.01m, |ϕ| ≤ 0.3
radian), the currents are distributed over the whole surface, covering
all its width when |z| < 0.05m. Inside the gaps between the slots
(|z| = 0.01 m, ϕ = 0 and |z| = 0.015m, ϕ = 0), the currents
are concentrated into the Jz being at a maximum. At the ends
of the linear conductor segments, the currents Jz transform to the
Jϕ, with the initial phase conserved. The behavior of the current
Jϕ is more complicated. Its distribution on the vertical conductors
is not only asymmetric (with initial phase varying) about the plane
ϕ = 0. It is remarkable that it changes its initial phase when passing
from the central and the intermediate conductors (|z| ≤ 0.01m and
|z| = 0.015m) to the outer vertical conductors at ϕ = 0. Also, the
initial phase is changed at |z| = 0.021m, |ϕ| = 0.32 radian. As a
result, Jϕ vanishes at |z| = 0.021 m, |ϕ| = 0.32 radian, and potential
difference (voltage) loops take place at the points. The practical use of
this fact consists in the following. When feeding this topology patch,
the source energy must be halved and cophasally delivered to the points
z = 0.021m, ϕ = ±0.32 radian or z = −0.021m, ϕ = ±0.32 radian.

Consider the CMA with a looped slot (Fig. 2(c). The σθθ/σ0

versus frequency is seen in Fig. 11, Curve 1. As before, Curve 2 is for
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the σθθ/σ0 of a rectangular cylindrical patch. As in the previous case
(see Fig. 7), the considered frequency region abounds with resonances.
The highest quality resonance is at the frequency f = 0.68GHz. The
patch current module and the phase distributions are in Figs. 12
and 13, respectively. The pictures suggest that for this oscillation
type, the current is mainly concentrated round the patch perimeter,
in the area outside the loop of the slot. The current density phase
distribution (the color pattern and gradation are similar to Fig. 9)
shows that the z-component of the current is symmetrical about the
plane ϕ = 0, while the ϕ-component distribution is asymmetrical and
vanishes in the ϕ = 0 plane.

-0,02

0,00
0,01

0,02 -0,6
-0,4

-0,2
0,0

0,2
0,4

0,6

0

500

1000

1500

2000

M
O

D
(
J z

)

 (ra
d)

Z (M
)

M
O

D
(J

)

 (ra
d)

Z (M)

(a) (b)
ϕϕ

ϕ

-0,01
0

500

1000

1500

-0,02

0,00
0,01

0,02

-0,01

-0,6
-0,4

-0,2
0,0

0,2
4
0,6

0,

Figure 12. The |Jz(z, ϕ)| (a) and |Jϕ(z, ϕ)| (b) distributions on a
patch with a looped slot.
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The vector of surface current density distribution on a patch with
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Figure 14. The vector of surface current density distribution on a
patch with a looped slot (Fig. 2(c)).

a looped slot is sketched in Fig. 14. A peak of the potential difference
is observed for |z| = 0.021 m, ϕ = 0, which allows this patch excitation
with a lumped source. The current distribution in the middle of the
patch oscillates with an alternating phase and small amplitude, making
the contribution from these currents to the radiation field far less than
it is from the exterior looped conductor. A brief summary as to the
patches with four U-slots or a looped slot is that the related decrease
of the resonance frequency of the fundamental oscillation is the more
evident, the longer are conductors supporting the cophasal component
of the current Jϕ.

The obtained results suggest that for a CMA with an arbitrarily
shaped patch (Figs. 2(b) and (c)), a series of high-Q resonances appear
at lower frequencies compared to the fundamental resonance of a
rectangular cylindrical patch. Specifically, for the E-polarized wave
incidence, a rectangular cylindrical patch has a resonance at frequency
f = 1.6425GHz, while the resonance frequency of a patch with four
U-slots (Fig. 2(b)) is f = 1.0675GHz, and it is f = 0.68 GHz for a
looped-slot patch (Fig. 2(c)).

4. CONCLUSION

The plane wave scattering problem of a cylindrical microstrip antenna
with an arbitrarily shaped patch has been solved by the method of
moments in the spectral domain using piecewise basis functions. A
numerical algorithm for the radar cross section calculation has been
developed. At the beginning, the radar cross section was calculated for
a cylindrical microstrip antenna with a rectangular cylindrical patch.
The resonance frequencies of the fundamental z- and ϕ-polarized
oscillations are in a good agreement with the probe-fed antenna data
available from the literature, suggesting that the developed algorithm
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works well.
Then the radar cross section of a cylindrical microstrip antenna

has been calculated for patches of different shapes. In particular, the
consideration was given to patches with four U-slots or a looped slot.
Amplitude and phase distributions of the current density at resonance
frequencies have been evaluated and analyzed. It has been shown that
resonance frequencies of a CMA with complex-shape patches can be at
substantially lower frequencies compared to the configuration carrying
a rectangular cylindrical patch.

The results presented in the paper for arbitrarily shaped
patches, namely, locations of all the resonant frequencies and current
distribution peculiarities can be directly used for same-shape patch
antennas fed by other sources, such as a probe or a microstrip line.

APPENDIX A. THE SPECTRAL GREEN FUNCTIONS

The components of the Green function ˆ̃GJ(r0, n, h) in the spectral
domain take the following appearance [19]

ˆ̃GJ(r0, n, h) =
[
χnzz(r0, h̄) χnzϕ(r0, h̄)
χnϕz(r0, h̄) χnϕϕ(r0, h̄)

]
(A1)

where

χn(zz)(r0, h̄) = −∆H
n (h̄)

∆n(h̄)
w0

k0r0
;

χn(zϕ)(r0, h̄) = χn(ϕz)(r0, h̄) = iw0F̄n
∆̄n(h̄)
∆n(h̄)

+
nh̄w0

x2
1

∆H
n (h̄)

∆n(h̄)
;

χn(ϕϕ)(r0, h̄) = − iw0nh̄k0r0

x0x1

∆̄n(h̄)
∆n(h̄)

[
x1

x0
F̄n(h̄) +

x0

x1
Φn(h̄)

]

−(nh̄)2w0k0r0

(x0x1)2
∆H

0 (h̄)
∆n(h̄)

+ k0r0w0Φn(h̄)F̄n
∆E

n (h̄)
∆n(h̄)

;

∆̄n(h̄) = nh̄
[
x−2

1 − x−2
0

]
;∆E

n (h̄) = −i
[
Φn(h̄)− εr1Fn(h̄)

]
;

∆H
n (h̄) = i

[
Φn(h̄)− F̄n(h̄)

]
; Fn(h̄) =

γ′1(r0)
x1γ1(r0)

; F̄n(h̄) =
γ̄′1(r0)

x1γ̄1(r0)
;

Φn(h̄) =
γ′0(r0)

x0γ0(r0)
;∆n(h̄) = ∆̄n(h̄)−∆E

n (h̄)∆H
n (h̄);

γn0(r, h̄) =
H

(2)
n (k̃0r)

H
(2)
n (k̃0r0)

;
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{γn1(r, h̄), γ̄n1(r, h̄)} =
H

2)
n (k̃1r)

H
(2)
n (k̃1r1)

+

{
Γ1

Jn(k̃1r)
Jn(k̃1r1)

, Γ̄1
Jn(k̃1r)
Jn(k̃1r1)

}
;

Γ1 = −Jn(x̄1)
Jn(x1)

H
(2)
n (x1)

H
(2)
n (x̄1)

; Γ̄1 = −J ′n(x̄1)
Jn(x1)

H
(2)
n (x1)

H ′(2)
n (x̄1)

;

_

k
2

i = k2
0{εri − h̄2}; x2

i = (k0r0)2{εri − h̄2}; x̄2
1 = (k0r1)2{εr1 − h̄2};

εri =
{

εr1 = εr r1 < r < r0

εr0 = 1 r > r0
.

Here Jn(x) is the Bessel function, H
(2)
n (x) is the Hankel function of the

second kind, and εri is the related permittivity.

APPENDIX B. EVALUATION OF THE EXCITATION
FIELD

The excitation field derived in terms of the diffraction problem solution
for plane wave (1) incident on the Goubau line takes the form [11]

E0,exc
z (r, ϕ, z) =

∞∑
n=−∞

dnz(h̄, z)e−in(ϕ−β) (B1)

E0,exc
ϕ (r, ϕ, z) =

∞∑
n=−∞

dnϕ(h̄, z)e−in(ϕ−β) (B2)

where

dnz(h̄, z) = [an(r0, z) + Bn0] ,

Bn0 = −ce
z

∆H
n

k0r0 ·∆ + ce
ϕ

[
iF̄n

∆̄n

∆n
+

nh̄

x2
1

∆H
n

∆n

]

+cm
z

[
− ∆̄n

k0r0 ·∆
]

+ cm
ϕ

[
nh̄

x2
1

∆̄n

∆n
− iFn

∆H
n

∆n

]
;

ce
z =

i(k0r0)2

x2
0

a′n(r0, z); ce
ϕ = ān(r0, z);

cm
z =

i(k0r0)2

x2
0

ā′n(r0, z); cm
ϕ = −an(r0, z);

dnϕ(h̄, z) = −nh̄

x2
0

an(r0, z) +
i(k0r0)2

x2
0

sin(α)ā′n(r0, z)
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−nh̄

x2
0

Bn0 +
i(k0r0)

x0
γ′n0(r0, h̄) B̄n0,

B̄n0 = ce
z

∆̄n

k0r0∆
+ ce

ϕ

[
−iF̄n

∆E
n

∆n
− 1

x2
1

∆̄2
n

∆n

]

+cm
z

[
∆E

n

k0r0 ·∆
]

+ cm
ϕ

[
iεr1Fn

∆̄n

∆n
− nh̄

x2
1

∆E
n

∆

]
;

h̄ = cos(α).

APPENDIX C. CALCULATION OF THE RIGHT HAND
SIDE ELEMENTS V s

i

For basis functions, the suggested Galerkin’s scheme takes piecewise
sinusoidal (PWS) functions [20]. The current density for the z- and
ϕ-oriented PSW basis functions originated, correspondingly, at (zb

i , ϕ
b
i)

and (zb
k, ϕ

b
k) comes to be

Jb
iz(z) = Jb

iz(z)z0 =
sin[pz(∆z −

∣∣z − zb
i

∣∣)]
sin(pz∆z)

z0 (C1)

Jb
kϕ(ϕ) = Jb

kϕ(ϕ)ϕ0 =
sin[pϕ(∆ϕ −

∣∣ϕ− ϕb
k

∣∣)]
sin(pϕ∆ϕ)

ϕ0 (C2)

where z0 and ϕ0 are the unit vectors in the z- and ϕ-directions,
pz = k0p0, pϕ = k0r0pz, and p0 =

√
(εr + 1)/2. The Fourier transform

of the PWS basis and test functions is given below. For the z-oriented
functions, it appears to be

J̃b(t)
zi (r0, n, h) = J̃

b(t)
zi (r0, n, h)z0 = eiz

(b,t)
i heinϕ

(b,t)
i an

z (n)ah
z (h)z0, (C3)

where

ah
z (h̄) =

4
Az

sin[∆z(h + pz)/2] sin[∆z(h− pz)/2]
pz

h2 − p2
z

an
z (n) = 2 sin[∆ϕn/2)]/n Az = sin(pz∆z).

For the ϕ-oriented functions,

J̃b(t)
ϕk (r0, n, h) = J̃

b(t)
ϕk (r0, n, h)ϕ0 = eiz

(b,t)
k heinϕ

(b,t)
k an

ϕ(n)an
ϕ(h)ϕ0, (C4)

where

an
ϕ(n) =

4
Aϕ

sin[∆ϕ(n + pϕ)/2] sin[∆ϕ(n− pϕ)/2]
pϕ

n2 − p2
ϕ

ah
ϕ(h) = 2 sin[∆ϕh/2)]/h, Aϕ = sin(pϕ∆ϕ).
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Make use of Formulas (B1), (C3), (C4) and calculate the right-hand
side elements V s

i according to (12). Then

V z
i = −Izz

i

n=∞∑
n=−∞

dnz(h̄, z)Izϕ
i (C5)

V z
i = −Iϕz

i

n=∞∑
n=−∞

dnϕ(h̄, z)Iϕϕ
i (C6)

where

Izz
i = e−ih̄z

(b,t)
i ah

z (h̄), Izϕ
i = e−inϕ

(b,t)
i an

z (n)

Iϕz
i = e−ih̄z

(b,t)
i ah

ϕ(h̄), Iϕϕ
i = e−inϕ

(b,t)
i an

ϕ(n)

h̄ = cos(α).
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