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Abstract—The purpose of this paper is to explain an exact
derivation of apparent power in n-sinusoidal operation founded on
electromagnetic theory, until now unexplained by simple mathematical
models. The aim is to explore a new tool for a rigorous mathematical
and physical analysis of the power equation from the Poynting Vector
(PV) concept. A powerful mathematical structure is necessary and
Geometric Algebra offers such a characteristic. In this sense, PV has
been reformulated from a new Multivectorial Euclidean Vector Space
structure (CGn-R3) to obtain a Generalized Poynting Multivector (S̃).
Consequently, from S̃, a suitable multivectorial form (P̃ and D̃) of the
Poynting Vector corresponds to each component of apparent power.
In particular, this framework is essential for the clarification of the
connection between a Complementary Poynting Multivector (D̃) and
the power contribution due to cross-frequency products. A simple
application example is presented as an illustration of the proposed
power multivector analysis.
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1. LIST OF SYMBOLS (NOMENCLATURE)

n-sinusoidal = non-sinusoidal or multi-sinusoidal.
R = real numbers
E3 = Euclidean vector space
C = complex vector space
Vn = linear space over real numbers
Gn = Clifford algebra in n-dimensional real space
CGn = complex Clifford Algebra
Φ = operator
Γ = time-domain frequency-domain transform
CGt

n-R3 = time generalized Euclidean space
CGn-R3 = frequency generalized Euclidean space
~1X, ~1Y, ~1Z = Euclidean canonical basis
~1X,Y,Z = generic unitary vector of E3

σ1,...,k = Clifford algebra canonical basis
IdC = identity operation
z̃(t) = instantaneous geometric vector (z̃ ∈ CGt

n-R3)
ẽ(t) = instantaneous electric field geometric vector
h̃(t) = instantaneous magnetic field geometric vector
d̃(t) = instantaneous displacement field geometric vector
b̃(t) = instantaneous magnetic induction field geometric vector
z̃X,Y,Z = components of z̃(t)
z̃p = p-th harmonic component of z̃(t)
Z̃X,Y,Z = spatial components of Z̃
Z̃ = spatial geometric phasor (Z̃ ∈ CGn-R3)
Z̃p = spatial p-th harmonic component of Z̃
Z̃ = geometric phasor (Z̃ ∈ CGn)
Z̃p = p-th harmonic component of Z̃

Z̃pq = bivector component of Z̃

Ẽ = electric field geometric phasor
H̃ = magnetic field geometric phasor
D̃ = displacement field geometric phasor
B̃ = magnetic induction field geometric phasor
S̃ = generalized Poynting multivector (GPM)
P̃ = Poynting multivector (PM)
D̃ = complementary Poynting multivector (CPM)
Up = p-th harmonic voltage rms value
Ip = p-th harmonic current rms value
⊗ = classic geometric product
¯ = generalized geometric product in CGn
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◦ = generalized geometric product in CGt
n-R3

· = inner product
∧ = outer product
⊕ = direct sum
+ = classic sum for scalars and also direct sum for multivectors
j = imaginary unit
∗ = conjugated operation
† = reverse operation
〈 〉0 = scalar part
〈 〉2 = bivector part
S̃ = apparent power multivector
‖S̃‖ = norm, value or magnitude of multivector S̃

Ω̃· = complex scalar
Ω̃∧ = complex bivector
ωp, ωq = harmonic frequencies
αp = phase angle of p-th voltage geometric phasor
αq = phase angle of q-th current geometric phasor
ϕq = phase angle between q-th voltage and q-th current geometric
phasors
δ̃ = relative quality index multivector (RQI )
PF = power factor

2. INTRODUCTION

2.1. Motivation

One of the fundamental issues in power system analysis is related with
the electromagnetic theory in order to explain the energy transfer in
an electric circuit. Hence, this paper establishes an electromagnetic
foundation to the power equation representation. For this goal, a new
Generalized Poynting Multivector is proposed.

2.2. Literature Review

The electrical circuits in n-sinusoidal operation can be analyzed by
means of mathematical tools that are much simpler to handle than
electromagnetic theory based on Maxwell equations [1]. However, it
is also true that these equations fully explain interactions between
electric and magnetic fields and therefore explain every electromagnetic
phenomenon, including the energy transfer in an electric system. In
n-sinusoidal operation, the distorted electromagnetic fields can be
represented as sums or series of harmonics. Each harmonic component
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of the field is governed by Maxwell equations and satisfies the Poynting
Theorem.

It is relevant to classify the contribution of these equations to the
electric power theory into following lines of thought:

a) Circuit theory analysis: First, is the most commonly used
approach. It analyzes currents, voltages and circuit element properties.
In this sense, circuit theory, ruled by simple equations based on Ohm’s
law, can be regarded as a very particular case of electromagnetic
theory, and power theory was developed mainly from circuit analysis.
Electrical components of power systems are considered as elements of
circuits and their electromagnetic behaviour is described by means
of voltages and currents of element terminals. Circuit theory can
explain only the power flows between components, and it is unable
to reveal their spatial distribution. Nevertheless, no phenomena such
as hysteresis losses or skin effects can be explained by circuit theory.
These are phenomena of the electromagnetic field characteristics.

For this first approach, Complex Algebra [2] provides an initial
procedure to solve the problem, despite its limitation to the purely
sinusoidal case. The n-sinusoidal operation imposes the substitution
of the Complex Algebra approach with a new representation model
and the reformulation of the energy balance. Considerable research
efforts have been directed towards the representation of apparent
power in various ways [3–9]. Specifically, in [9], the authors use
Geometric Algebra to define a multivector power based on the
decomposition of the instantaneous current into the active and reactive
components. It should be noted that their approach does not
distinguish between reactive and distortion power from a mathematical
viewpoint. Furthermore, none of the aforementioned papers leads to a
representation that could be considered universally satisfactory.

b) Electromagnetic theory analysis: This second valid method
analyzes the energy flow using the Poynting Theorem (PT), and
therefore the Poynting Vector (PV) should be considered, since it
represents the bridge between electromagnetic theory and circuit
theory [10]. These tools are fundamental concepts of electromagnetic
theory with respect to energy flow. The goal is to investigate the nature
of the non-active power and some progress has undeniably been made.
Numerous valuable contributions have appeared in the literature [11–
17], each shedding more light on some aspects of the problem. From
among them, [12, 13] masterfully explain the physical mechanism of
energy propagation in electric power systems, [15] reconsiders the
bases of electromagnetism in order to find a physical interpretation
for the power equation, and [16] uses the PV to illustrate the nature of
power flow in electric circuits using electromagnetic fields. However,
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critics of PV calculations [17] argue that electromagnetic theory is
useless for practical applications of electric power theory. Against this
reference, it is our view that the power equation can be based and
interpreted through a new formulation of the Poynting Vector and
that other aspects concerning the electromagnetic field in n-sinusoidal
operation and their direct relation with power theory have yet to be
thoroughly investigated. Thus, the purpose of this paper is to advance
energy flow analysis by using a new mathematical structure for the
representation of the power equation in single-phase circuits under n-
sinusoidal operation. In this way, a complete solution to the power
equation analysis problem for linear/non-linear circuits based on a
Generalized Poynting Multivector (S̃), is presented.

To this end, primarily our work introduces a CGt
n-R3 mathematical

structure based on Clifford Algebra for the definition of the distorted
electric and magnetic field intensities (ẽ, h̃), which are time geometric
fields associated to an Euclidean direction. From these definitions it
is possible to obtain the quantities called spatial geometric phasors
(Ẽ, H̃) in the CGn-R3 structure in frequency domain. Consequently,
our work is aimed at showing how an electric and magnetic field can
be associated with the elements of Clifford Algebras [21, 22] for a new
formulation and interpretation of power theory in this framework.

This second approach is more general and fundamental that the
first approach based on circuit theory, and it has the additional
advantage of providing a physical insight into the spatial distribution
of the power flow.

Finally, this paper addresses the need to understand the
multidimensional character of electric power theory and its relation
to the electromagnetic theory.

2.3. Contributions

The paper is concerned with a representation of the power equation
under non-sinusoidal conditions from electromagnetic theory. The
apparent power concept is better understood if a Clifford vector space
is used for the representation of the distorted electric and magnetic
field intensities. This generates a larger linear space called Generalized
Euclidean Space CGt

n-R3, which will be utilized in this paper for a new
representation of the power equation. This objective cannot be reached
on the Complex Algebra framework.
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3. MATHEMATICAL FOUNDATIONS: GEOMETRIC
EUCLIDEAN SPACES

3.1. Time Domain: Generalized Euclidean Space CGt
n-R3

In order to introduce the instantaneous quantities of electric and
magnetic fields, in this section we define a new structure for the
time domain that we have named Generalized Euclidean Space, CGt

n-
R3, whose coefficients belong to the Complex Geometric Algebra CGn

constructed in [18]. Let
{
~1X , ~1Y , ~1Z

}
be the “canonic” basis of the

Euclidean space E3. A generic element of CGt
n-R3 is given by

z̃(t) = z̃X
~1X + z̃Y

~1Y + z̃Z
~1Z (1)

where each component in (1) is in the form z̃(t) = kej[α(t)+θ]σa ∈ CGt
n,

k ≥ 0 and σa is a basis element of CGn structure [18].
Thus, the CGt

n-R3 structure is a CGt
n vector space whose inner

product is defined by
z̃(t) · w̃(t) = 〈z̃X , w̃∗X〉0 + 〈z̃Y , w̃∗Y 〉0 + 〈z̃Z , w̃∗Z〉0 (2)

where, z̃(t) = z̃X
~1X + z̃Y

~1Y + z̃Z
~1Z , w̃(t) = w̃X

~1X + w̃Y
~1Y + w̃Z

~1Z .
Moreover, from (D1) the norm of z̃(t) is given by

‖z̃(t)‖ =
∑

i=X,Y,Z

〈z̃i, z̃
∗
i 〉0 (3)

Now we define the outer product in this structure as

z̃(t) ∧ (−w̃(t)) =




~1X
~1Y

~1Z

z̃X z̃Y z̃Z

−w̃X −w̃Y −w̃Z




= (〈−z̃Y , w̃Z〉2 + 〈z̃Z , w̃Y 〉2)~1X

+ (〈z̃X , w̃Z〉2 + 〈−z̃Z , w̃X〉2)~1Y

+ (〈−z̃X , w̃Y 〉2 + 〈z̃Y , w̃X〉2)~1Z (4)
Based on (3) and (4), the Geometric Algebra CGt

n-R3 is defined by the
following geometric product

z̃(t) ◦ w̃(t) = z̃(t) · w̃(t) + z̃(t) ∧ w̃(t) (5)

3.2. Frequency Domain: Generalized Euclidean Space
CGn-R3

Let Φ : CGt
n → CGn, Φ

(
k ej[α(t)+θ]σa

)
= k ejθσa, be the operator

that enables the transformation between time-domain and frequency-
domain. We define CGn-R3 as

Φ(CGt
n)~1X + Φ(CGt

n)~1Y + Φ(CGt
n)~1Z (6)



Progress In Electromagnetics Research B, Vol. 15, 2009 407

where a generic element of this space is Φ(z̃a) = Z̃a. Note that CGn-
R3 can also be seen as

CGn-R3 =
{

Z̃X
~1X+ Z̃Y

~1Y + Z̃Z
~1Z : Z̃ ∈ CGn

}

where
Z̃ =

∑
p

Z̄pσp, Z̄p ∈ C and σp ∈ Gn

Obviously, CGn-R3 is a CGn (complex-geometric) vector space and the
multiplication rule for two vectors Z̃, W̃ ∈ CGn-R3 is given by

Z̃ ◦ W̃ = Z̃ · W̃ + Z̃ ∧
(
−W̃

)
(7)

where (7) is the restriction from CGt
n-R3 → CGn-R3.

The nesting of the geometric Euclidean spaces denoted by CGt
n-R3,

CGn-R3, and CGn are graphically illustrated in Fig. 1.

Figure 1. Nested geometric Euclidean vector spaces.

The fundamental concepts of Generalized Complex Geometric
Algebra CGn are given in [18] and further research about Geometric
Algebra can be found in [21, 22].

4. DISTORTED PERIODIC ELECTRIC AND
MAGNETIC FIELDS: BASIC CONCEPTS

A periodic electromagnetic field is distorted if, simultaneously with the
fundamental harmonic of the field, the highest harmonic components
are present. In this way, if distorted vector field functions satisfy
Dirichlet’s conditions, then they can be developed into Fourier series,
namely:

e(t)=
∑

p

ep(t), d(t)=
∑

p

dp(t), h(t)=
∑

q

hq(t), b(t)=
∑

q

bq(t) (8)
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where ep,dp,hq,bq, are harmonics of the field vectors. Each harmonic
component in the frequency domain of a periodic electromagnetic field
satisfies Maxwell’s equations

∇×Hp = Jp + jωpDp

∇×Ep = −jωpBp

∇ ·Dp = ρp

∇ ·Bp = 0

(9)

where Ep,Hp,Dp,Bp are complex phasors of the p-th harmonic of the
fields.

One of the most important consequences of the first two
Maxwell equations is Poynting’s theorem, which describes the flow
of electromagnetic energy in space and for a volume v enclosed by
a surface s. This can be stated as∫∫

−(e× h)n ds =
∫∫∫

e · jdv +
∫∫∫ (

h · ∂b
∂t

+ e · ∂d
∂t

)
dv (10)

where n is the unit vector orthogonal to the infinitesimal surface ds, e
and h are the instantaneous intensity of the electric and magnetic
fields, d and b are the instantaneous flux densities of these fields
respectively, and j is the instantaneous current density. The theorem
simply means that the increase in stored energy in the fields plus the
ohmic losses within a volume, equal the inflow of a vector e×h across
the surface bounding that volume. The vector e × h is known as the
Poynting Vector (PV), and gives the power density at a point on the
surface in terms of the electric and magnetic fields at that point. Its
physical meaning is also known [23].

The equivalent complex Poynting theorem for a system in linear
media is given by

−
∫∫

(Ep×Hp)n ds =
∫∫∫

EpJ∗pdv+jωp

∫∫∫
[BpH∗

p−EpD∗
p]dv (11)

The energetic interpretation of (11) is as follows

S̄p = Pp + jQp (12)

where

• S̄p is a complex apparent power of the p-th harmonic received by
the system enclosed in the surface “s”.

• Pp is the active power of the p-th harmonic received by the system.
• Qp is the reactive power of the p-th harmonic received by the

system.
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One can readily observe that

Pp =
∫∫∫

EpJ∗pdv (13)

Qp = 2ωp

∫∫∫ [
BpH∗

p

2
− EpD∗

p

2

]
dv (14)

where Pp represents harmonic losses in Joules and Qp is associated to
the average values of the p-th harmonic magnetic and electric energies
accumulated in the volume v [15]. Another representation of (13)
and (14) is given

Pp = Re
[
−

∮
(Ep ×H∗

p)
]
n ds (15)

Qp = Im
[
−

∮
(Ep ×H∗

p)
]
n ds (16)

5. POWER FLOWS IN DISTORTED
ELECTROMAGNETIC FIELDS: GENERALIZED
POYNTING MULTIVECTOR (S̃)

The following notation is adopted to define the electric and magnetic
fields in the CGt

n-R3 framework:

ẽp = |ẽp|ej(ωpt+θp)σp~1X,Y,Z , h̃q = |h̃q|ej(ωqt+γq)σq~1X,Y,Z (17)

where ẽp(t) and h̃q(t) are called instantaneous electric and magnetic
complex-geometric fields respectively.

Observe that the classic instantaneous fields can be derived from
the real (or imaginary) part of the projections given by the scalar
product (2) as follows:

ep(t) = Im(ẽp · σp) = Im{|ẽp|ej(ωpt+θp)~1X,Y,Z} (18)

hq(t) = Im(h̃q · σq) = Im{|h̃q|ej(ωqt+γq)~1X,Y,Z} (19)

In order to obtain the geometric phasors, it is necessary to apply the
Φ operator on these quantities (see Section 3.2).

Φ(ẽp) = |ẽp|ejθpσp~1X,Y,Z = Ẽp (20)

Φ(h̃q) = |h̃q|ejγqσq~1X,Y,Z = H̃q (21)

where Ẽp and H̃q are called harmonic “spatial geometric phasors”
of the electric and magnetic harmonic fields respectively and verify
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Maxwell’s equations [20]. In this framework, a Generalized Poynting
Multivector (S̃) is defined as

S̃ =
∑
p,q

(
Ẽp ¯ H̃∗

q

)
(22)

where H̃∗
q is the conjugate of the q-th harmonic spatial geometric phasor

H̃q and the symbol “¯” is the generalized complex geometric product
(B7). Consequently, the Generalized Poynting Multivector (S̃) for a
volume v enclosed by a surface s is given by∫∫

s

n · S̃ ds =
∫∫

s

∑
p

n · P̃ ds+
∫∫

s

∑

p6=q

n · D̃ ds

=
∫∫

s

∑
p

n·(Ẽp¯H̃∗
p) ds+

∫∫

s

∑

p 6=q

n·(Ẽp¯H̃∗
q+Ẽq¯H̃∗

p) ds (23)

where the unitary vector n is the unitary vector orthogonal to the
infinitesimal surface ds, P̃ is the Poynting Multivector and D̃ is the
Complementary Poynting Multivector. Equation (23) expands the flux
of the S̃ into two terms

• The first term∫∫
s

∑
p

n · P̃ ds =
∫∫
s

∑
p

n · (Ẽp ¯ H̃∗
p) ds represents the power con-

tribution due to like-frequency products.
• The second term∫∫

s

∑
p6=q

n · D̃ ds =
∫∫
s

∑
p6=q

n · (Ẽp¯ H̃∗
q + Ẽq¯ H̃∗

p) ds represents the

power contribution due to cross-frequency products.

6. POWER MULTIVECTOR APPROACH

6.1. Multivector Representation of Power in Terms of
Generalized Poynting Multivector

The considerations stated in the above section have been derived
from an electric field e(t) and a magnetic field h(t). To understand
energy balance, one must touch base with electromagnetic field
theory and reformulate the classic Poynting Vector concept. In this
way, we consider an elementary single-phase transmission line (two
conductors), where an n-sinusoidal voltage source

u(t) =
√

2 Im
∑

p

Upe
j(ωpt+αp) (24)
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is connected at the sending end in order to supply either a linear or
non-linear load. The same conductors carry a current responsible for
the generation of the magnetic field, given by

i(t) =
√

2 Im
∑

q

Iqe
j(ωqt+βq) (25)

where βq = αq−ϕq for linear operation, ϕq is the harmonic impedance
phase angle and Up, Iq represent rms values of up(t) and iq(t)
respectively.

The energy balance can thus be expressed as a multivector S̃
in {CGn}, generated by “¯” of the voltage and conjugate current
geometric phasors (B2) given by the following set

S̃ = Ũ ¯ Ĩ∗ =



Ũ · Ĩ∗︸ ︷︷ ︸

Ω̃·

⊕ Ũ ∧ Ĩ∗︸ ︷︷ ︸
Ω̃∧



 (26)

This quantity consists of complex scalar (Ω̃·) and complex bivector
(Ω̃∧) parts. Note from (26) that Ω̃· =

∑
p∈N

UpIpe
jαpσ0. Clearly,

‖P̃‖ = ‖Re{Ω̃·}‖ = ‖ ∑
p∈N

UpIp cosϕpσ0‖ is the active power or

average value of the instantaneous power in the time domain. ‖Q̃‖ =
‖Im{Ω̃·}‖ = ‖ ∑

p∈N

UpIp sinϕpσ0‖ is called reactive power and is merely

the geometric complement of the active component. The complex
bivector, deduced from (B7), is given by

Ω̃∧=
∑

p6=q
Linear

{
(UpIqe

jϕq − UqIpejϕp)ej(αp−αq)
}

σpq+
∑

p 6=q
Non Linear

UpIqe
j(αp−βq)σpq (27)

and it is associated to distortion power.
The components Im{Ω̃·} and Ω̃∧ have a non-independent physical

nature: they constitute non-active power. Note that, consistent
with (D1), the squared value ‖S̃‖2 in (26), may be represented as
‖S̃‖2 = ‖Ũ ¯ Ĩ∗‖2 = |Ũ |2|Ĩ|2 and ‖S̃‖2 = ‖{Ω̃·}‖2 + ‖{Ω̃∧}‖2. This
expression is identical to any classic squared value of the apparent
power.

From electromagnetic theory, (26) can be verified to have not
only a formal meaning, but also a physical meaning. For clarity of
presentation and without loss of generality, it is possible to consider
that the electric field ep(t) vector is parallel with the X axis and
associate it with up(t). Similarly, the magnetic field hq(t) vector is
parallel with the Y axis and associated to the harmonic current iq(t).
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Since the harmonic electric and magnetic fields are supposed to vary
in time and space, these quantities (18), (19) are given by

ep(t) = Im(ẽp · σp) = Im
{
|ẽp|ej(ωpt+αp)~1X

}

= |ẽp| sin(ωpt + αp)~1X ⇒ e(t) =

[∑
p

ep(t)

]
~1X (28)

hq(t) = Im(h̃q · σq) = Im
{
|h̃q|ej(ωqt+βq)~1Y

}

= |h̃q| sin(ωqt + βq)~1Y ⇒ h(t) =

[∑
p

hp(t)

]
~1Y (29)

By considering the conservation law of the electrical charge and
magnetic flux, iq(t) = −dqq

dt = hq(t) · lH and up(t) = −dφp

dt = ep(t) · lE ,
then the harmonic vector phasors ẽp(t) and h̃∗q(t) of (28) and (29) can
be expressed as

ẽp(t) =
√

2
lE

[
Upe

j(ωpt+αp)σp

]
~1X (30)

h̃∗q(t) =
√

2
lH

[
Iqe

−j(ωqt+βq)σq

]
~1Y (31)

The corresponding harmonic spatial geometric phasors are therefore
given by

Ẽp =
(

l

lE
Upe

jαpσp

)
~1X (32)

H̃∗
q =

(
l

lH
Iqe

−jβqσq

)
~1Y (33)

where lE and lH are average lengths of flux lines of the vector fields.
Thus, returning to the Generalized Poynting Multivector (S̃)

concept (23), when n = ~1Z , this equation becomes
∫∫

s

~1Z · S̃ ds =
∫∫

s

∑
p

~1Z · P̃ ds +
∫∫

s

∑

p6=q

~1Z · D̃ ds

=
∫∫

s

∑
p

~1Z ·(Ẽp¯H̃∗
p) ds +

∫∫

s

∑

p6=q

~1Z ·(Ẽp¯H̃∗
q+Ẽq¯H̃∗

p) ds (34)

and by combining (32), (33), and (34), two cases can be identified:
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• First case: If p = q, then (34) can be written as
∫∫

s

∑
p

~1Z ·(Ẽp ¯ H̃∗
p) ds =

∫∫

S

~1Z ·
(

1
lElH

∑
p

UpIpe
jφpσ0

)
ds

=
∑

P

UpIpe
jφpσ0 = Ω̃· (35)

Hence, by virtue of (35), one obtains∫∫

s

∑
p

~1Z · P̃ ds =

∫∫

s

∑
p

~1Z · (Ẽp ¯ H̃∗
p) ds =

∑
P

UpIpejφpσ0 (36)

The multivector P̃ =
∑
p

Ẽp ¯ H̃∗
p, (Poynting Multivector), is

associated to the power density at a point on the surface, in
terms of the harmonic spatial geometric phasor of electric and
magnetic fields at that point. The real part of (36) permits a
direct interpretation in terms of average power flow, (i.e., active
power), P. Consequently, a net energy flow occurs in any linear
or non-linear system when voltage and current components of the
same frequency exist.
• Second case: If p 6= q then (34) yields∫∫

S

∑

p6=q

~1Z ·D̃ ds =
∫∫

S

∑

p6=q

~1Z ·(Ẽp¯H̃∗
q +Ẽq¯H̃∗

p) ds = Ω̃∧ (37)

where D̃ =
∑
p

(Ẽp¯H̃∗
q +Ẽq¯H̃∗

p) is the Complementary Poynting

Multivector. Combining (32), (33) with (37) yields

Ω̃∧ =
∑

p6=q

Linear

{(
UpIqe

jϕq − UqIpe
jϕp

)
ej(αp−αq)

}
σpq

+
∑

p6=q

UpIqe
j(αp−βq)σpq (38)

Equation (38) represents the power contribution due to the cross-
frequency products. In this way, the power multivector that
originates from the surface of the source equals the power that
enters in the load surface. Finally, through (36) and (37), it can
be observed that∫∫

S

∑
p

~1Z · (Ẽp ¯ H̃∗
p)ds +

∫∫

S

∑

p6=q

~1Z · (Ẽp ¯ H̃∗
q + Ẽq ¯ H̃∗

p)ds

= Ω̃· ⊕ Ω̃∧ (39)
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Equation (39) coincides with (26) and represents to apparent power
multivector given by

S̃ = Ω̃· ⊕ Ω̃∧ (40)

It is important to notice that in our framework, the Re{Ω̃·} and
Im{Ω̃·} components are associated to a scalar plane perpendicular to
the Z axis and each Ω̃∧pq is associated to a pq complex bivector plane
pertaining to the set of planes that contains the Z axis. Under these
conditions, is obvious that the average value of the second integral on
the right-hand side of (39) is zero. However, this component must
be considered in order to understand the complete physical meaning
of the power equation. Consequently, this new analysis demonstrates
that (39) not only justifies the net flow of energy, but also provides
powerful information for the analysis of power theory. In short, the
complex scalar in (35) and (36), is similar to the complex power
equation in sinusoidal operation. However, a new quantity, given
by (38), is identified with the Complementary Poynting Multivector
(D̃).

6.2. Relative Quality Index and Power Factor

Regarding the power factor improvement, the suggested representation
in (34) can be particularly useful. Thus, the multivectorial relative
quality index (RQI) [18] expressed in terms of S̃, P̃ and D̃ is reduced
to

δ̃ =

∫∫
s

~1Z · S̃ ds

Re

{
∫∫
s

∑
p

~1Z · P̃ ds

}

= 1 + j

Im

{
∫∫
s

∑
p

~1Z · P̃ ds

}

Re

{
∫∫
s

∑
p

~1Z · P̃ ds

} +

∫∫
s

∑
p6=q

~1Z · D̃ ds

Re

{
∫∫
s

∑
p

~1Z · P̃ ds

} (41)

and the power factor (PF) can be written as

PF =
1
‖δ̃‖ =

∥∥∥∥∥Re{∫∫
s

∑
p

~1Z · P̃ ds}
∥∥∥∥∥

∥∥∥∥
∫∫
s

~1Z · S̃ ds

∥∥∥∥
(42)
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Equation (41) shows that on this index all its electromagnetic
quantities, with their direction and sense, are accessible for possible
control of the power factor improvement.

7. NUMERICAL EXAMPLE

In this section, a numerical example is developed. Units of physical
quantities are the standard units of the MKSA system and thus are
omitted.

In order to validate this approach, an elementary circuit, Fig. 2,
constituted by a non-linear load supplied from a simple transmission
line [12], is analyzed in the CGn-R3 framework.

Two parallel plane conductors in linear media are considered.
Both conductors, of thickness λ and width γ, are separated by
a dielectric material of thickness ρ. We suppose that γ À λ, ρ.
Consider that a non-sinusoidal voltage u(t) =

√
2(200 sinω1t +

100 sinω2t), applied at the sending end, supplies a non-linear load.
The resulting current has hypothetic instantaneous value given by
i(t) =

√
2[10 sin(ω1t − 30◦) + 5 sin(ω2t + 45◦) + 10 sin(ω3t + 60◦)].

m 

m 

y 

z 

x 

i ( t ) 
+ 

u ( t ) 

Load 

i ( t ) 

H l 

E l 

Load Σ 

Source Σ E 

H 
S

~

~
~

Figure 2. Elementary circuit.
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By ignoring eddy currents, line impedance, fringing effects, then (32)
and (33) can be expressed as

Ẽ =
1
lE

(200ej0σ1 + 100ej0σ2)~1X (43)

H̃∗ =
1
lH

(10ej30σ1 + 5e−j45σ2 + 10e−j60σ3)~1Y (44)

However, from (35) and (36), it follows that
∫∫

s

∑
p

~1Z · P̃ ds = [(1732 + 353.5) + j(1000− 353.5)]σ0~1Z

= (2085.5 + j646.5)σ0~1Z (45)

Therefore, from (38),
∫∫

S

∑

p6=q

1̃Z ·D̃ ds=(−158.9−j1207.1)σ12+(1000−j1732)σ13+(500−j866)σ23 (46)

This example states that Re{Ω̃·1} = 1732σ0, Re{Ω̃·2} = 353.5σ0,
Im{Ω̃·1} = j1000σ0, Im{Ω̃·2} = −j353.5σ0 and that the linear complex
bivector component becomes Ω̃∧12 = (−158.9 − j1207.1)σ12, as well as
the nonlinear complex bivector components Ω̃∧13 = (1000− j1732)σ13,
Ω̃∧23 = (500− j866)σ23 with their corresponding directions and senses.
On the other hand, the rms values of voltage and current are given
by ‖Ũ‖2 = 2002 + 1002 = 5 · 104 and ‖Ĩ‖2 = 102 + 52 + 102 = 225
respectively. The values of P = ‖Re{Ω̃·}‖2, ‖Im{Ω̃·}‖2, ‖Ω̃∧‖2 are
found to add up to

‖S̃‖2 = P 2 + ‖Im{Ω̃·}‖2 + ‖Ω̃∧‖2 = 11.25 · 106 (47)

Therefore, apparent volt-amperes ‖S̃‖ at the terminals are found from
the relation ‖S̃‖2 = ‖Ũ‖2‖Ĩ‖2 = 11.25·106. Finally, from (41) and (42)
we obtain the relative quality index and power factor respectively

δ̃ = 1 +
j646.5σ0

2085.5σ0

+
(−158.9−j1207.1)σ12+(1000−j1732)σ13+(500−j866)σ23

2085.5σ0∥∥∥δ̃
∥∥∥ = 1.608

PF =
1∥∥∥δ̃
∥∥∥

= 0.62 (48)



Progress In Electromagnetics Research B, Vol. 15, 2009 417

The methodology in the above example differs greatly to that of circuit
theory. Furthermore, unlike the circuit theory approach, it can be
applied to solve and understand the operation of electric systems
designed to work in the frequency domain.

8. CONCLUSION

The suggestion that the power equation should be founded on
electromagnetic theory is analyzed in this paper. This goal remains
unexplained by simple mathematical models used in classical theory.
To this end, we propose a Generalized Poynting Multivector (S̃)
based on Clifford Algebras, which is decomposed into a Poynting
Multivector (P̃) and a Complementary Poynting Multivector (D̃).
From Equations (34)–(40), both quantities are considered as the
keystone of the bridge between electromagnetic theory and circuit
theory. Thus, the real part of the flow of Poynting Multivector (P̃)
coincide with active power, and imaginary part of the complex scalar
coincides with the power contribution due to like-frequency products.
The Complementary Poynting Multivector (D̃) is associated to the
complex bivector or to the power contribution due to cross-frequency
products. This analysis demonstrates that the power equation can
be founded on the multivectorial concept of the Generalized Poynting
Multivector (S̃). Consequently, the apparent, active, and non-active
powers can be expressed and differentiated in terms of S̃. The
application of the proposed Generalized Poynting Multivector (S̃) to
power theory should indicate important advances for any real future
research in this area.
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APPENDIX A. GENERALIZED COMPLEX
GEOMETRIC PRODUCT IN CGn

We define as C the complex-vector space, and Gn, the Clifford algebra
on n-dimensional real space Vn. We define the set

CG=
n





∑

k=1,2...n

Z̄1...kσ1...k



 (A1)
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where the coefficients Z̄1...k ∈ C and the basis σ1...k ∈ Gn. Obviously
CGn is a vector space over R. According to (A1) definition, in the

complex-vector case, we obtain the vector subspace [CGn]1 =
n∑

p=1
Z̄pσp,

where Z̄p ∈ C and σp ∈ Gn. The generic element Z̄pσp, is a p-
th complex-vector, and can be represented by the geometric phasor
Z̃p = (ap + jbp) σp. In the complex-bivector case, we obtain the vector
subspace [CGn]2 =

∑
p 6=q

Z̄pqσpq. The generic element Z̄pqσpq, is a pq-th

complex-bivector, and can be represented by Z̃pq = (apq + jbpq) σpq.
In the most general form, complex-multivectors, we obtain the vector
subspace [CGn]k =

∑
Z̄12...kσ12...k. The element Z̄12...kσ12...k, is the

12 . . . k-th complex-multivector, and may be represented by Z̃12...k =
(a12...k + j b12...k) σ12...k. Therefore, CGn (A1), also can be represented
as

CGn = C︸︷︷︸
complex
scalar

⊕ [CGn]1︸ ︷︷ ︸
complex
vectors

⊕ [CGn]2︸ ︷︷ ︸
complex
bivectors

⊕ · · · ⊕ [CGn]n︸ ︷︷ ︸
complex

pseudoscalar

The structure {CGn,¯} is a complex geometric algebra since the
following properties are fulfilled: associative, distributive with respect
to the sum and contraction.

APPENDIX B. PARTICULAR CASE: GENERALIZED
COMPLEX GEOMETRIC PRODUCT FOR COMPLEX
VECTORS (GEOMETRIC PHASORS)

Let {σ1, . . . , σn} be a vector basis of CGn. For two vectors Z̃p =
Z̄pσp (p ∈ Ω) and Z̃ ′q = Z̄ ′qσq (q ∈ Ψ) where Ω,Ψ ⊆ {1, 2, . . . , n}, and
where complex numbers associated to each vector are

Z̄p = Zpe
jαp

Z̄ ′q = Z ′qe
jβq = Z ′qe

j(αq−ϕq)
(B1)

we define a new geometric product termed “generalized complex
geometric product”, ¯:

¯:
(<αp,αq ,⊗

)
(B2)

The symbol “⊗” represents the classic geometric product [21]
and <αp,αq is an application in the complex planes associated to any
multivector product when αp 6= αq, and is given by

<αp,αq

(
Z̄ ′p, Z̄

′
q

)
=

{
e−2j(αq−αp) if p > q, p, q ∈ N
1 otherwise, p and/or q /∈ N

(B3)
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where N = Ω ∩Ψ.
This new product for vectors Z̃p and Z̃ ′q is given by

Z̄pσp ¯ Z̄ ′qσq = Z̄pZ̄
′
qσpq (B4)

and the basis transposition states(
Z̄ ′qZ̄pσqp

)
= (−1)<αp,αq Z̄pZ̄

′
qσpq (B5)

Note that the transposition operation is involutive.
If αp = αq∀p, q ∈ N , then

<αp,αp = IdC (B6)

and “¯”, (B2), will then become the classic geometric product “⊗”. It
should be noted that when C is restricted to real numbers, the classic
Clifford Algebra is obtained.

In particular, for two complex vectors

Z̃ =
∑

p

Zpe
jαpσp and Z̃ ′ =

∑
q

Z ′qe
j(−αq+ϕq)σq,

where the angles αp and (−αq + ϕq) identify the phase of the p-th
and q-th harmonics respectively, the generalized complex geometric
product in linear operation (p, q ∈ N), can be written

Z̃ ¯ Z̃ ′ =
∑

p

ZpZ
′
pe

jϕp +
∑
p<q

ej(αp−αq)ZpZ
′
qe

jϕqσpq

+
∑
q<p

ej(αq−αp)ZqZ
′
pe

jϕpσqp =
∑

p

ZpZ
′
pe

jϕp

+
∑
p<q

{
ej(αp−αq)ZpZ

′
qe

jϕq−<αp,αqe
j(αq−αp)ZqZ

′
pe

jϕp

}
σpq (B7)

where

<αp,αqe
j(αq−αp)ZqZ

′
pe

jφpσq p = ej(αp−αq)ZqZ
′
pe

jφpσqp

APPENDIX C. REVERSE AND CONJUGATED
OPERATIONS

We define the bivector reverse element as(
Z̄q pσq p

)† = (−1)Z̄ pqσpq (C1)

where (†) is the “reverse” operation.
The “conjugated” operation (∗) is given by

(
Z̄pσp

)∗ = Z̄∗pσp (C2)
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APPENDIX D. NORM DEFINITION

The norm, value or magnitude, of a multivector Z̃ is the unique scalar∥∥∥Z̃
∥∥∥, Z calculated by

∥∥∥Z̃
∥∥∥

2
= 〈Z̃(Z̃†)∗〉0 (D1)

where we apply (∗) in C, and (†) in Gn.

APPENDIX E. TIME-DOMAIN FREQUENCY-DOMAIN
TRANSFORM: Γ-TRANSFORM

Let fk : R → CGt
n, fk(t) = Xke

j(ωkt+θk)σk be a continuous signal. The
Γ-transform of fk is given by

Γ {fk(t)} (ω) =
1
T

∫

T

fk(t)e−jωktdt = Xke
jθkσk (E1)

where j2 = −1.
Let f̃ : R→ CGt

n be a real-valued multivector function. Therefore
f̃(t) =

∑
A∈P ({1,...,n})∪0

fA(t) with fA(t) = kAej(ωAt+θA)σA, where

P ({1, . . . , n}) is the set of all the subsets of {1, . . . , n}.
According to the linearity of the Γ-transform:

Γ
{

f̃(t)
}

(ω) =
∑

A∈P ({1,...,n})∪0

Γ {fA(t)} (E2)

and
Γ

{
f̃(t)

}
(ω) =

∑

A∈P ({1,...,n})∪0

kAejθAσA = F̃ (ω) (E3)

where F̃ (ω) is a geometric phasor.
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