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Abstract—In the wireless communication systems, the objective of
using array antennas is to extract the desired signal while filtering
out the unwanted interferences. New methods are developed for
the optimization and synthesis, in terms of the directivity and the
side lobe level. For the optimization of the array pattern, it is
proposed to adjust both the excitation and the spacing of the antenna
elements. The determination of the optimal excitation and spacing
is shown to be a polynomial problem; this is described in terms
of a unified mathematical approach to nonlinear optimization of
multidimensional array geometries. The approach utilizes a class of
limiting properties of Legendre functions that are dictated by the array
geometry addressed. The objective of this paper is to describe a unified
mathematical approach to nonlinear optimization of multidimensional
array geometries.

1. INTRODUCTION

During the last years, wireless technology has grown at a formidable
rate. This has resulted in an increase in the number of subscribers
and a better quality of the system. The most practical solution to this
problem is to use spatial processing [1]. Spatial processing is the central
idea of the smart antennas technology. A system of smart antennas
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is constituted by array antennas and the processing related to each
element of antenna. With this processing it is possible to identify the
space location of each user and to establish a constant space filtering.

In a system of array antennas, an open problem is the synthesis of
the radiation pattern with characteristics of high directivity, minimized
side lobes, and adaptability to the radio channel. Within the synthesis
of the radiation pattern, the determination of the amplitude excitation
of the antenna elements that form an array, as well as, the structure
of the array, that improves the properties of radiation of the array,
is one of the issues of greater interest within the technology of smart
antennas in wireless communications. Side lobe level reduction has
been widely studied [1, 2]. Many of these techniques try to find the
right elements excitation to diminish side lobe level, other techniques
proposed in [3] and [4] were developed to reduce the side lobe level
using non-uniform spacing. More recently, genetic algorithms (GA)
and differential evolution (DE) illustrated in [5] and [6], respectively,
were used to solve the problem of the synthesis of the radiation pattern.
In this work we considered the use of unified mathematical approaches,
based on using Legendre functions [7, 8], in order to optimize the
synthesis of the radiation pattern in terms of small amplitude of side
lobes and maximum gain. The mathematical model has an additional
advantage, of being a generic model so that can be applied to different
types of antenna arrays geometries.

The emphasis of this work is to develop a model of array
antennas, seeking to optimize the directivity, the side lobe level and
the computation time of the algorithm improving the response time.

The paper is organized as follows: Section 2 presents the problem
formulation to describe the linear and the planar array factor in terms
of Legendre polynomials. Section 3 presents the numerical results for
the directivity, side lobe level and the computation time. Finally,
Section 4 states the conclusion of this work.

NOMENCLATURE

k = 2π/λ: free-space wave number.
dn: element position.
In: element excitation.
εn: position perturbation of the element.
Δu: sampling interval.
M : sampled points.
αp, βn: transformation vectors.
Pm−1/2(cos α): Legendre function of fractional order.
ϕ: progressive phase.
θd: direction of the main lobe.
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2. PROBLEM FORMULATION

2.1. Linear Array Synthesis Using Legendre Functions

The linear antenna array considered in this work is a symmetric linear
array of 2N + 1 elements as shown in Fig. 1.

The characteristics of the array factor and the field of the array can
be controlled varying the separation and excitation between elements.
The array factor is given as follows [1]

AF = E(u) =
N∑

n=0

εnIn cos(kdnu) (1)

where u = cos(θ) + ϕ, in the limit 0 ≤ θ ≤ π radians. In order
to establish the array factor in terms of Legendre polynomials is
considered a desired array pattern defined as [7]:

Ed(u), in the interval − 1 ≤ u ≤ 1. (2)

According to the Figure 1, the array factor is symmetric, i.e., E(−u) =
E(u) [4], therefore, we consider the synthesis problem in the interval
0 ≤ u ≤ 1. Its response is uniformly sampled at M points (M � 1) in
the interval 0 ≤ u ≤ 1 to obtain

E(um) =
N∑

n=0

εnIn cos(mβn − ϕn);

m = 0, 1, 2, . . . , M − 1 (3)

where Δu = 1/(M − 1), um = mΔu, ϕn = kdn cos(θd) and βn =
kdnΔu. The following step is to apply the Legendre transformation

Figure 1. Geometry of 2N + 1 element no periodic symmetric linear
array.
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F (αp) to the array factor. The transformation is implemented to get
a triangular set of equations and the final expression is:

F (αp) =
M−1∑
m=0

εmEd(um)Pm−1/2(cos αp);

p = 0, 1, 2, 3, . . . , N (4)

where εm = 1, m = 0; εm = 2, m > 0; the Legendre transformation of
the desired array pattern Ed(u) is motivated by the following limiting
relation for the Legendre polynomial of fractional order [9]:

f(α, β) =
∞∑

m=0

εmPm−1/2(cos α) cos(mβ)

= [2/(cos β − cos α)]1/2 , 0 ≤ β < α

= 0, α < β < π (5)

Utilizing (4) and (5), we obtain the following triangular system of
equations:

F (αp) =
p∑

n=0

Inf(αp, βn) (6)

From (6), this system is invertible to obtain the value of first element
current and the p-th element current.

I0 = F (α0)/f(α0, β0)

Ip =
F (αp) −

p−1∑
n=0

Inf(αp, βn);

f(αp, βp)
;

p = 1, 2, 3, . . . , N (7)

with the above parameter (I), it is possible to synthesize the radiation
pattern of linear antenna arrays, in a fast and simple manner.

2.2. Planar Array Synthesis Using Legendre Functions

Consider a symmetric planar array of N1 × N2 elements as show in
Fig. 2.

A desired 2-D array pattern is defined as follows [8]:

Ed(u, v), in the interval − 1 ≤ u ≤ 1; −1 ≤ v ≤ 1 (8)
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Figure 2. Geometry of N1 × N2 element planar array.

where u = sin(θ) cos(φ), v = sin(θ) sin(φ) in the limits 0 ≤ θ ≤ π;
0 ≤ φ ≤ 2π radians. The desired pattern is sampled uniformly M1×M2

points (M1, M2 � 1) in the interval 0 ≤ u ≤ 1, 0 ≤ v ≤ 1 to yield

E(um1, vm2) =
N1−1∑
n1=0

N2−1∑
n2=0

εn1n2In1n2 cos(m1βn1) cos(m2βn2);

m1 = 0, 1, 2, . . . , M1 − 1; m2 = 0, 1, 2, . . . , M2 − 1 (9)

where βn1 = kdn1Δu; βn2 = kdn2Δv, the sampling interval Δu =
1/(M1 − 1); Δv = 1/(M2 − 1), In1In2 is the current distribution of
the array and (dn1, dn2) represent the (x, y) position of the element in
the array. Since the array factor is symmetric in each quadrant of the
u−v space, i.e., E(u, v) = E(u, −v) = E(−u, v) = E(−u, −v) [4], the
synthesis problem is considered in one quadrant only, i.e., 0 ≤ u ≤ 1,
0 ≤ v ≤ 1. The following step is to apply the Legendre transformation
F (αp1, αp2) to the planar array factor, defined as follows:

F (αp1, αp2) =
M1−1∑
m1=0

εm1

M2−1∑
m2=0

εm2E(um1, vm2)

×Pm1− 1
2
(cos αp1)Pm2− 1

2
(cos αp2);

p1 = 0, 1, 2, N1 − 1, p2 = 0, 1, 2, . . . , N2 − 1 (10)

where εm = 1, m = 0; εm = 2, m > 0; this transformation of the
planar array factor E(u, v) is motivated by the limiting relation for
the Legendre polynomial of fractional order presented in (5). The
application of (10) and (5) yields the following triangular system of
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equations:

F (αp1, αp2) =
N1∑

n1=0

N2∑
n2=0

In1n2f(αp1, βn2)f(αp2, βn1) (11)

From (11), we can determine the first p-th and q-th element current.

I00 =
F (α0, α0)

f(α0, β0)f(α0, β0)
(12)

Ipqf(αq, βq)f(αp, βp) = F (αp, αq)−
p−1∑
i=0

q−1∑
j=0

Iijf(αp, βi)f(αq, βj) (13)

The simulation results for uniform and non-uniform spacing in a planar
array are given in the next Section. The processor used during the
experiment was an Intel CoreTM2 Duo T5600 @1.83 GHz. (1 GB RAM)
with platform MATLAB 7.8 for Windows Vista Service pack 1, 32-bit
Math Works

3. SIMULATION AND RESULTS

The following section presents the results of simulation for the linear
and planar geometries described in the previous sections.

3.1. Linear Array

The purpose of this section is to evaluate the performance of a linear
array, which has been synthesized by Legendre functions. First, for
comparison purposes, the number of the elements of the linear array
was set as 17 and the main lobe was steered to 90◦, following the
results presented in [7]. Fig. 3 illustrates the results comparatives for
uniform and non-uniform array patterns in a linear array. From the
results, we observe a side lobe level (SLL) improvement by ∼ 6 dB for
the non-uniform array (−20.13 dB) with respect to the uniform array
(−13.89 dB).

On the other hand, since the focus of the technique is the
minimization of SLL, half power beam width (HPBW) presents a slight
increase of 3% (∼ 0.18◦) in reference to a non-uniform linear array.
With these improvements we reaffirm the results reported in [5], that
for a non-uniform array we obtain better performance on SLL and
HPBW.

However, in order to report an extended evaluation of the
performance of the arrays, Fig. 4 illustrates the SLL when the main
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lobe has been steered in a range of −60◦ ≤ θ0 ≤ 60◦ using the non-
uniform spacing. With the same procedure, the HPBW was evaluated
and shown in Fig. 5. This analytical technique has a characteristic that
it can change the SLL by modifying its space-broadening factor (Δ),
this Δ factor was chosen from [7]. Both cases present the performance

Figure 3. Array pattern for the Legendre functions synthesis with
uniform (dashed line) and non-uniform spacing (solid line) of a 17
element array.

Figure 4. Sidelobe level (SLL) when the main lobe is steered in the
range −60◦ ≤ θ0 ≤ 60◦ with non-uniform spacing in a 17 element array
for different space broadening factors Δ.
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Figure 5. Half power beam width (HPBW) when the main lobe is
steered in the range −60◦ ≤ θ0 ≤ 60◦ with non-uniform spacing in a
17 element array for different space broadening factors Δ.

of the Legendre functions, but with different space broadening factor
(Δ). In the range of |θ0| ≤ 12.29◦ has a reduction in the SLL of 1.13 dB
and an increment of 0.16◦ in HPBW for a Δ factor of 0.345.

But if now the angular region is evaluated on |θ0| ≤ 15.8◦, 5.7 dB
reduction in SLL and an increment of a maximum of 0.29◦ in HPBW
are illustrated, for a Δ factor of 0.298. If these results are compared
with differential evolution (DE) [6], we have a disadvantage, because
the range of steering diminishes 47.33% (28.40◦). But the principal
advantage using Legendre functions is that we obtain a narrower beam
width.

3.2. Planar Array

For comparison purposes, a 31-element symmetric linear array is
selected, therefore the number of variables to calculate is 15, which is a
typical number of variables used to test optimization algorithms [5, 6].
As was proposed in the Section 2, the Legendre functions were
applied to synthesize the position of 15 elements of a symmetric linear
array. Fig. 6 illustrates the array factor obtained to use the Legendre
functions with uniform spacing (λ/2). In this case, it is achieved a SLL
of −16 dB in the planar array. The unique parameter that has a better
result is in the SLL. However, we need to use non-uniform spacing
between elements of antenna, for obtaining a better performance in
the array factor.
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Figure 6. Array factor for the 31×31 uniform element spacing planar
array.

Figure 7. Array factor for the 31 × 31 non-uniform element spacing.

The array factor obtained for the 31 element planar array with
non-uniform spacing is shown in Fig. 7. The SLL achieved with non-
uniform spacing is −22 dB. In addition to, we obtained a HPBW of
3.18◦×3.18◦ and 35.05 dB of directivity. With these results we achieved
a reduction of 27.27% (6 dB) in the SLL. In the sense of the HPBW,
we obtained a decrease of 8.36% (0.29◦), and the directivity presents
an increase of 2.14% (0.75 dB) with respect to Legendre functions with
uniform spacing.

3.3. Computation Time

In order to know the computation time for a linear array, we used
an average time of 1000 repetitions, varying the number of antenna
elements from 5 to 37 elements. The processor used during the
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Figure 8. Computation time in a linear array applying Legendre
functions.

Figure 9. Computation time in a planar array applying Legendre
functions.

experiment was an Intel CoreTM2 Duo T5600 @1.83 GHz. (1 GB RAM)
with platform MATLAB 7.8 for Windows Vista Service pack 1, 32-bit
Math Works.

Fig. 8 illustrates the computation time for a linear array, where
this time is very fast using Legendre functions in comparison with
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heuristic techniques [5, 6]. Applying Legendre functions we obtained a
maximum value of 9.5 milliseconds using 37 elements of antenna.

Figure 9 illustrates the results for a planar array, using Legendre
functions; the computation time of the algorithm presents a maximum
value of 14.5 milliseconds. Likewise that a linear array we achieved an
almost linearly behavior, using planar arrays.

Results for both cases show that the computation time from this
analytical technique are faster in comparison with other techniques as
differential evolution [6]. The evaluation of this parameter is important
because we found that the principal advantage of using Legendre
functions is its computation time.

4. CONCLUSIONS

According to the results obtained in the simulation, the application of
Legendre functions in non-uniform arrays (linear and planar) obtain a
considerable improvement in the side lobe level (SLL) and also in the
half power beam (HPBW), obtaining with this a good directivity in the
radiation pattern. The disadvantage of this technique is the range of
steering, because it diminishes ∼ 28.4◦ in comparison with evolution
differential for a linear array, but this analytical technique presents
two advantages in comparison with DE, one is that, it is obtained
a narrower beam width without affecting the SLL and other is the
computation time.
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APPENDIX A.

A.1. Legendre Functions

In order to establish the array factor in terms of Legendre polynomials
we must initiate with the differential equation of second order [9].

(1 − x2)
d2y

dx2
− 2x

dy

dx
+ n(n + 1)y = 0; n = 0, 1, 2, . . . (A1)

The solutions are called Legendre functions. If n is zero or positive
integer, these functions denominate Legendre polynomials. A compact
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expression of Pn(x) is given by the following expression [9]:

Pn(x) =
1

2nn!
Dn

[
(x2 − 1)n

]
(A2)

where the operator symbol Dn denotes n-th derivative. The Legendre
polynomials have a property of using a recurrence relation, where the
equation defines a recurrent sequence, i.e.:

(n + 1)Pn+1(x) + nPn−1(x) = (2n + 1)xPn(x); n = 1, 2, 3, . . . (A3)

A.2. Legendre Functions of Fractional Order

In this paper we use a Legendre function of fractional order Pm−1/2,
and to obtain this function a recurrence relation is required. This
relation have Legendre polynomials of fractional order, the recurrence
relation is given for the values of m ≥ 2 and n ≥ 3

(n1 + 0.5)Pn(x) = 2n1xPn−1(x) − (n1 − 0.5)Pn−2(x) (A4)

For the value of m = 0, n = 1, the function Pm−1/2, will be equal to
P−1/2, therefore its value is [9]:

Pn(x) = Pm−1/2(x) =
2
π

K

[(
1 − x

2

)1/2
]

(A5)

According to the explicit expressions of Legendre [11], x = cos(θ)
and using identities trigonometric the Legendre polynomial in elliptical
integrals of first order is:

P−1/2(cos θ) =
2
π

K

[
sen

(
θ

2

)]
(A6)

where K
[
sen

(
θ
2

)]
=

∫ π/2
0

[
1 − (

senθ
2

)
sin2 θ

]−1/2
dθ.

In the same way for the value of m = 1 and n = 2, the function
Pm−1/2, will be equal to P1/2, therefore its value in elliptical integrals
of first and second order (K[sen(θ/2)] and E[sen(θ/2)]) is:

P1/2(cos θ) =
2
π

{
2E

[
sen

(
θ

2

)]
− K

[
sen

(
θ

2

)]}
(A7)

where E
[
sen

(
θ
2

)]
=

∫ π/2
0

[
1 − (

sen θ
2

)
sin2 θ

]−1/2
dθ

K
[
sen

(
θ
2

)]
=

∫ π/2
0

[
1 − (

sen θ
2

)
sin2 θ

]−1/2
dθ
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Now with these two Legendre polynomials and using the
recurrence relation will be simpler to obtain the following values of
the polynomials, for m ≥ 2 and n ≥ 3 from the equation (A4) we
obtained

Pn(x) = Pm−1/2(x) =
2n1xPn−1(x) − (n1 − 0.5)Pn−2(x)

(n1 + 0.5)
(A8)

Pn(cos θ) =
2n1(cos θ)Pn−1(cos θ) − (n1 − 0.5)Pn−2(cos θ)

(n1 + 0.5)
(A9)

where n1 = n − 2.
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