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Abstract—We study theoretically the propagation of electromagnetic
waves in an infinite and homogenous medium with both temporal and
spatial dispersion included. We derive a partial differential equation
connecting temporal and spatial dispersion to achieve negative group
velocity. Exact solutions of the equation are found and shown to lead
to the possibility of exciting constant negative group velocity waves.
We then investigate the effect of spatial dispersion on the power flow
and derive the first-, second-, and third-order corrections of power flow
due to the nonlocality in the medium. This derivation suggests a path
beyond the group velocity concept.

1. INTRODUCTION

The engineering and design of new artificial media is the essence of
the popular field of metamaterials. The idea is to manipulate the
microscopic structure in order to produce tangible effects that can be
recorded macroscopically by certain effective parameters like ε and μ.
The main focus so far has been directed to manipulating the temporal
dispersion of the medium.† However, with the steady improvement in
technology, new spatial scales can be probed and manipulated, leading
to interesting applications that were not possible before. One of these

Corresponding author: S. M. Mikki (makkisaid@hotmail.com).
† Roughly speaking, temporal dispersion is captured by the functional dependence of ε
and μ on ω.
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(a)

(b)

Figure 1. General philosophy of the study of electromagnetic wave
propagation in dispersive media. (a) Physics approach, (b) engineering
approach.

new phenomena is the nonlocal interaction between spatially separated
parts of the materials, leading to what is called spatial dispersion.‡ In
this case, the electromagnetic response of the medium fails to depend
only on the position where we apply the external field, but depends
also on the value of this field at other locations.§

It was observed that taking spatial dispersion into consideration
may lead to qualitatively new phenomena not seen in conventional
materials obeying classical optics (spatial dispersion is ignored).
In particular, spatial dispersion can allow electromagnetic wave
propagation with negative group velocity to occur, even when
both the permittivity and permeability are positive [1, 2]. Such
interesting behavior was originally anticipated in connection with
natural materials in crystal form, where spatial dispersion is manifest,
for example, in the phenomena of exciton. Recently, the same original
conclusions in [1] were reinstated [3, 4]. It is still possible, however,
to put the problem in a wider context by referring not only to natural
crystals, but also to any type of artificial materials. To demonstrate the
philosophy of the engineering approach, consider Fig. 1 where we take
the medium function to be ε(ω,k). The physics approach is illustrated
in Fig. 1(a) where the starting stage is assuming certain models for the
natural material under consideration (usually crystal). Then, Taylor
‡ Following the literature, we use ‘spatial dispersion’ and ‘nonlocality’ synonymously.
§ Spatial dispersion manifests itself in the functional dependence of the medium parameters
on the wave vector k. Thus, when both temporal and spatial dispersion are present, we
write the permittivity and the permeability functions as ε = ε(ω, k) and μ = μ(ω, k).
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series expansion of some parameters in the model (the exciton model
as in [5] or the permittivity function itself as in [1]) can be applied to
estimate the medium function ε(ω,k). The next step is to apply the
electromagnetic theory to study the resulted propagation. However,
it is possible to invert this logic in the following way. In Fig. 1(b),
we start from certain wave propagation characteristics (e.g., negative
group velocity, negative-refraction propagation, etc), and then derive
the medium function, ε(ω,k), such that Maxwell’s theory will allow
the desired wave propagation characteristic. The future step is to
find experimental methods to synthesize an artificial medium with this
calculated function ε(ω,k).

In this paper, we develop a general theoretical scheme for
the engineering approach to electromagnetic wave propagation in
dispersive materials. Our investigation is carried out through two
stages. First, we focus on the special case where the group velocity
is negative, which may lead (if the medium is lossless) to negative
refraction. In the second stage, we go beyond the first-order
approximation of the group velocity by deriving the second-, and third-
order corrections of the power flow due to the spatial dispersion profile.

2. LINEAR PHENOMENOLOGICAL MODEL FOR THE
MEDIUM RESPONSE

In this section, we review the basic theory of electromagnetic
wave propagation in a homogenous, isotropic, and nonlocal medium
described by the dielectric function ε(ω,k). In this paper, we set μ = 1.

The general relation between the electric displacement D and the
electric field E is given by [7]

D (r, t) =
∫
dt′

∫
d3r′ε0ε

(
r−r′, t−t′)E

(
r′, t′

)
, (1)

where it has been assumed that the medium is time-invariant and
spatially homogeneous. The Fourier transform of the field is defined
as

D (ω, k) =
∫
dt

∫
d3rD(r, t) ejk·re−jωt, (2)

which when applied to (1) will give

D (ω, k) = ε0ε (ω, k)E (ω, k) , (3)

where we have

ε (ω, k) =
∫
dτ

∫
d3rε (r, τ) ejk·re−jωτ . (4)
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Assume that a plane monochromatic wave is excited and propagated
with fields given by

E (r, t) = E0 (ω,k) ejωt−jk·r, H (r, t) = H0 (ω,k) ejωt−jk·r. (5)

Substituting these fields into the two source-free curl Maxwell’s
equation, taking the curl of both sides, and using (3), we obtain

k× k× E0 (ω,k) − (
ω2/c2

)
ε (ω,k)μE0 (ω,k) = 0. (6)

From the divergence Maxwell’s equation, we find

ε (ω,k)k · E0 (ω,k) = 0. (7)

We distinguish here between the transverse (T) and longitudinal (L).
Let us assume that

ε(ω,k) �= 0. (8)

Then, from (7), we obtain k · E0 (ω,k) = 0. This condition
when applied to (6) immediately gives the dispersion relation for the
transverse waves

k · k = (ω/c)2 n2 (ω,k) , (9)

where we have defined the index of refraction as

n (ω,k)2 ≡ ε (ω,k)μ. (10)

The longitudinal modes can be obtained by setting ε(ω,k) = 0.
Therefore, (7) is satisfied with k·E0 (ω,k) �= 0. That is, contrary to the
transverse wave, the wave vector here is not orthogonal to the electrical
field amplitude.‖ Strictly speaking, the dispersion relations for the L
and T modes are different and should be distinguished from each other
by using appropriate subscripts whenever possible. However, in this
paper the main focus will be on transverse waves so these subscripts
will be omitted for the simplicity of notation.

3. NEGATIVE GROUP VELOCITY MEDIA

Let us start with a very general index of refraction given by n =
n(ω,k). The resulted dispersion relation for the transverse mode
‖ Notice that when spatial dispersion is ignored, ε (ω, k) = ε (ω). Hence, for the L modes
the equation ε (ω, k) = 0 can be satisfied only at discrete frequencies. In other words, the
group velocity ∂ωL/∂k is zero and no energy flow can be associated with this type of modes
(an exception is some forms of plasmas [7]). Now, when spatial dispersion is considered,
relation (8) is not only satisfied at continuous range of frequencies, but may lead also to
nonzero group velocity, contributing to the power flow in the medium.
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propagating in infinite, homogeneous, and isotropic medium is given
by (9). The group velocity is defined as [10, 11]

vg =
∂ω

∂k
= ∇kω = x̂

∂ω

∂kx
+ ŷ

∂ω

∂ky
+ ẑ

∂ω

∂kz
. (11)

Our goal now is to derive an equation connecting the spatial and
temporal dispersion such that the resulted medium supports negative
group velocity propagation.

Differentiate both sides of (9) with respect to kα, where α =
x, y, z, we get

kα

k
=
∂n (ω,k)
∂kα

ω

c
+

∂ω

∂kα

n (ω,k)
c

. (12)

Using the following chain rule

∂n (ω,k)
∂kα

=
∂n (ω,k)

∂k
· ∂k
∂kα

+
∂n (ω,k)
∂ω

∂ω

∂kα
, (13)

Equation (12) can be solved for ∂ω/∂kα to give

vgα =
∂ω

∂kα
=

kα

k
− ω

c

∂n

∂k
· ∂k
∂kα

n

c
+
ω

c

∂n

∂ω

. (14)

Let us now calculate the dot product between vg and k. We write

vg · k =
∑
α

vgαkα =
1

n

c
+
ω

c

∂n

∂ω

∑
α

[
kα

k
− ω

c

∂n

∂k
· ∂k
∂kα

]
kα. (15)

By multiplying the numerator and the denominator of (15) by k, we
obtain

vg · k =
k

n

c
+
ω

c

∂n

∂ω

∑
α

[
k2

α

k2
− ω

c

∂n

∂k
· ∂k
∂kα

kα

k

]
. (16)

Notice that ∑
α

k2
α

k2
= 1 (17)

and
−

∑
α

ω

c

∂n

∂k
· ∂k
∂kα

kα

k
= − ω

c

∂n

∂k
· k
k

= −ω
c

∂n

∂k
, (18)
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where the relation ∂k/∂kα = âα (unit vector in the α-direction) has
been used. Therefore, Equation (16) reduces to

vg · k = k
c− ω∂n/∂k

n+ ω∂n/∂ω
. (19)

It can be shown by the same procedure that |vg| |k| = |vg · k|; i.e., the
angle cosine cos θ = vg · k/|vg| |k| is either 1 or −1. This is because we
assumed the medium to be homogenous and isotropic.¶ Therefore,
we define the negative group velocity as the case when the angle
between vg and k is 180◦. By defining γ ≡ |vg| and assuming k > 0,
Equation (19) can give the following result for negative group velocity

ω

c

∂n (ω,k)
∂k

− γ

c

(
1 + ω

∂

∂ω

)
n (ω,k) = 1. (20)

We call this partial differential equation the dispersion engineering
equation for negative group velocity. In Sec. 4 and Sec. 5, we will study
the physical and mathematical behavior of its solutions, respectively.

4. THE PHYSICAL MEANING OF NEGATIVE GROUP
VELOCITY

Negative refraction must occur at the interface separating the
conventional and the meta- materials if the Poynting vector S and
the wave vector k in the metamaterial are oriented opposite to each
other [8]. That is, if we have

S · k < 0. (21)

Here, Equation (21) is one sufficient condition for obtaining negative
refraction in our metamaterial. Notice that also Snells law has to
hold true in addition to condition (21) in order to obtain negative
refraction. For detailed discussion of the application of boundary
conditions at the interface between spatially dispersive media and a
conventional medium, see [1, 3], and [4]. The question now is whether
the requirement

vg · k < 0 (22)

is equivalent to condition (21). This is identical to asking whether the
Poynting vector S and the group velocity vg are oriented in the same
direction. The answer is that in general they are not [1, 9]. The two
¶ In other words, the dependence of the refraction index n on the wave vector k can be
written identically as either n(k) or n(k).
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vectors vg and S become parallel if the medium is lossless or has small
dissipation. In this case, it is possible to write [1, 9–11]

S = Wvg, (23)

where W is the total energy density stored in the medium. Since at
thermodynamic equilibrium W > 0 [10], it follows that S and vg are
parallel. For lossy media, the angle between these two vectors may
vary considerably depending on the material parameters; no a priori
conclusion can be stated without examining the specific dispersion and
losses profile.

In some of the published literature about metamaterials, and
following the original work of Veselago [12], it is common to associate
negative-refraction media with the “handedness” as being left-handed,
in contrast to the normal right-handedness of conventional materials.
However, it has been noticed long before Veselago’s work that negative
refraction is a general phenomenon that should be addressed in terms
of group velocities, not merely the algebraic signs of the medium
parameters [8, 13]. In particular, it was predicted that negative
refraction may occur even when both ε and μ are positive [1], a
situation consistent with Equation (20), which gives the exact details of
how to choose the temporal and spatial dispersion of the medium such
that the resulted waves propagate possesses negative group velocity. If,
furthermore, the medium has low dissipation, Equation (21) is satisfied
and the medium will support negative refraction.

The correct interpretation of the group velocity is that it is
the velocity of propagation of the smoothly varying wave packet’s
envelope of relatively small bandwidth (first-order approximation).
This velocity is the same as the energy velocity in lossless media but
in lossy materials this is not correct in general [9, 15].

From (19), we write

vg =
c− ω∂n/∂k
n+ ω∂n/∂ω

âk. (24)

The phase velocity is given by

vp =
ω

k

k
k

=
c

|n| âk, (25)

where âk is a unit vector in the direction of k. Assume that a
reference was chosen in the spatial direction pointing away from a
given (observation) point. Thus, with respect to this direction, each
of vg and vp can be either positive or negative. We will show now
that the condition (21) is a candidate for defining metamaterials.
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We accomplish this by identifying the following four distinct cases,
depending on the algebraic signs of the group velocity and the wave
vector+

I. vp > 0, vg > 0, n > 0. This is the conventional medium. Here
the wave envelope and phase propagate away from the observation
point. Positive refraction occurs all the time.

II. vp < 0, vg > 0, n < 0. This is the so-called Veselago medium. Here
the wave envelope propagates away from the observation point
while phase propagates towards the point. Negative refraction
occurs in this case.

III. vp > 0, vg < 0, n > 0. This is the main interest of the present
paper. Here the wave envelope propagates toward the observation
point while the phase propagates away from the observation point.
However, although n is positive, negative refraction may occur if
the medium has small dissipation and a carefully chosen profile of
the spatial dispersion is implemented.

IV. vp < 0, vg < 0, n < 0. Here, both the wave envelope and the phase
propagate toward the observation point. In this case, negative
refraction may occur assuming small losses, but this cannot be
achieved through temporal dispersion only (see Apendix A).

To obtain better understanding of the four cases listed above, we need
to resort to the important distinction between normal and anomalous
dispersion.∗ We will prove now the previous statements. Cases I
and II are self-evident and no further illustrations are needed here.
For Case III, assume first that the medium has small losses so we can
apply (23) and (24) to write

S · âk = W
c− ω∂n/∂k
n+ ω∂n/∂ω

. (26)

Consider first a medium exhibiting only temporal dispersion (∂n/∂k =
0). Since n > 0, then the only way to possibly achieve negative S · âk
is to have ∂n/∂ω < 0. This is, however, the region of anomalous
dispersion, which corresponds usually to high losses. This means that
negative refraction is not guaranteed in this case. We must stress
+ Strictly speaking, the quantities vp and vg appearing below are the dot products of the
corresponding vectors in (24) and (25) with a unit vector in the direction of the chosen
reference.
∗ Normal dispersion is characterized by a medium function, say n for example, which is
monotonically increasing. Hence, ∂n/∂ω > 0. Anomalous dispersion is then defined as the
opposite case when ∂n/∂ω < 0. In general, we know from experiments that anomalous
dispersion is correlated with lossy media [14, 15]. For a rigorous proof that anomalous
dispersion is a necessary condition for the medium to be lossy see [10].
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here that a metamaterial in which the group velocity is negative is still
meaningful even when there is no negative refraction. We need to refer
to vg as only the velocity in which a wave packet propagates without
appreciable distortion [15]. Such media has been already demonstrated
experimentally more than three decades ago where the group velocity
was reportedly measured with supraliminal negative values in carefully
designed media having anomalous dispersion [16–18].

When considering spatial dispersion, the quantity S · âk in (26)
can be made negative by solutions of Equation (20) as we will show
in Sec. 5. In this case, no assumption like ∂n/∂ω < 0 is necessary
and condition (21) can be satisfied in low dissipation media, leading
to negative refraction. Thus, spatial dispersion is the decisive factor in
achieving negative refraction in such kind of metamaterials (Case III).

Finally, Case IV will be treated briefly here. Consider first
the scenario when the spatial dispersion is neglected. Here, since
n is already negative, Equation (24) may suggest that obtaining
negative group velocity in a negative phase velocity medium is possible
without operating in the region of anomalous dispersion. However,
in Appendix A, we show that causality considerations does not allow
this. Experimental data in [19], [20] are consistent with this conclusion
as it shows that vg and vp become simultaneously negative in the
region of anomalous dispersion. Therefore, in Case IV it is not always
guaranteed to observe negative refraction even though n < 0. The
situation again will change when spatial dispersion is considered where
careful choice of the dispersion profile may lead to negative group
velocity in the normal dispersion region, leading therefore to negative
refraction.

5. EXACT SOLUTION FOR THE DISPERSION
ENGINEERING EQUATION

5.1. Development of the Exact Solution

Before proceeding into the analytical solution of (20), it will be
insightful to provide a geometrical interpretation of this solution. The
relation ω = ω(k) is nothing but the dispersion law of the medium.
We may say that this equation determines a family of curves in the
plane over which the general solution n = n(ω, k) will be constructed.
Notice that this function is a surface in the ω-k-n 3-dimensional space.
Therefore, as shown in Fig. 2, one can consider the family of curves
ω = ω(k) as base curves upon which the solution surface would be
found.

Let us consider the dispersion relation ω = ω(k) as an implicit
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parametrization in terms of k. Then, it is possible to write

d

dk
n (ω (k) , k) =

∂n

∂k
+
∂n

∂ω

dω

dk
. (27)

Using the definition of group velocity and the dispersion relation, we
have

dω

dk
= −γ (ω, k) . (28)

Thus, from (27) and (28) we obtain

ω

c

dn

dk
− γ

c
n =

ω

c

{
∂n

∂k
+
∂n

∂ω

dω

dk

}
− γ

c
n

=
ω

c

{
∂n

∂k
− γ

∂n

∂ω

}
− γ

c
n

=
ω

c

∂n

∂k
− ωγ

c

∂n

∂ω
− γ

c
n. (29)

From (27), we readily get the following ordinary differential equation

ω (k)
c

dn (ω, k)
dk

− γ (ω, k)
c

n (ω, k) = 1. (30)

Therefore, the solution to the original partial differential Equation (20)
can be thought of as solving the ordinary differential Equation (30)
along the path (curve) described by the solution of the ordinary
differential Equation (28). Notice that γ is in general an arbitrary
positive function of both ω and k. Therefore, although the problem has
been reduced into two ordinary differential equations, still no general
solution is available analytically.

Figure 2. Geometric interpretation for solution of the dispersion
engineering Equation (20) [2]. The solution n = n(ω, k) is a surface in
the ω-k-n 3-dimensional space.
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5.2. Solution for k-dependent Group Velocity

Consider the boundary-value problem consisting of the partial
differential Equation (20) together with

∂γ

∂ω
= 0, n (ω, k = k1) = φ (ω) , (31)

where ω1 < ω < ω2, ω1 > 0, k1 > 0. Here, k1 < k2 and ω1 < ω2 are
positive real numbers and φ (ω) is a general function representing the
boundary condition of the problem. Since γ is function of k only, it is
possible to directly integrate Equation (28) to obtain

ω (k) = −
∫
dkγ + a. (32)

Substituting (32) into (33), we find(
−

∫
dkγ + a

)
dn

dk
− γn = c. (33)

Then we can write
dn

dk
− γ

−
∫
dkγ + a

n =
c

−
∫
dkγ + a

. (34)

This equation admits the following exact solution

n (k) = e−F

(
c

∫
dk eF

− ∫
dkγ (k) + a

+ b

)
,

F =
∫

dkγ (k)∫
dkγ (k) − a

,

(35)

where a and b are constants to be determined later. Since we are
solving the ordinary differential Equation (30) along the trajectory
specified by (28), then b is not independent of a, and we may write in
general b = f (a), where the function f is to be fixed by enforcing the
boundary condition imposed on the n = n(ω, k).

5.3. Solution for Constant Group Velocity

Let us evaluate the general solution for the case when γ is constant; i.e.,
we want to impose the condition that the group velocity is constant
but negative. In this case, (32) gives

ω (k) = −γk + a. (36)
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k 21 k k

1ω

ω2

ω (k) = -  k+a ω γ

Figure 3. The characteristic curves for the problem of solving (20)
under the assumption of constant negative group velocity [2].

In Fig. 3, we show the geometric structure of this case. The linear
segments shown between the two lines k = k1 and k = k2 in the k − ω
plane represent the permissible characteristic curves. Substituting (36)
into the general solution (35), evaluating the integrals, we obtain

n =
ck + f (a)
−γk + a

. (37)

By substituting a = ω + γk, we arrive to

n (ω, k) =
ck + f (ω + γk)

ω
. (38)

To find the function f , apply the boundary condition n (ω, k = k1) =
φ (ω) to get f (ω + γk1) = ωφ (ω) − ck1. Using the transformation
x = ω + γk1, the function f can be expressed as

f (x) = (x− γk1)φ (x− γk1) − ck1. (39)

Finally, the general solution will take the form

n (ω, k) =
c (k − k1)

ω
+

1
ω

[ω + γ (k − k1)]φ (ω + γ (k − k1)) . (40)

The importance of this general expression is evident. Dispersion
engineering in this case amounts to choosing the right spatial dispersion
profile, starting at initial data consisting of the temporal dispersion
φ defined at a specific value of the wavenumber k, such that the
resulted wave propagation exhibits a constant negative group velocity.
Therefore, while the desired anti-parallel nature of S and k is obtained
in low-loss media, the group velocity does not vary with frequency,
leading to minimal distortion in signal transmission.
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For a medium with small losses, Kramers-Kronig relations implies

∂n

∂ω
=

(k − k1) (c− γφ)
−ω2

+
γ (k − k1)

ω

∂φ

∂ω
> 0. (41)

Let us choose an initial data in the normal dispersion regime (low
losses) such that ∂φ/∂ω = Aω2, A > 0. In this case

∂n

∂ω
=

(k − k1) (c− γφ)
−ω2

+ γ (k − k1)Aω, (42)

which can be satisfied, for example, at sufficiently high frequencies.
Another possibility would be to choose φ (ω + γ (k − k1)) > c/γ > 0.

5.4. Zero-temporal Dispersion

The consideration of spatial dispersion will lead to a new picture for
the special case when temporal dispersion is ignored. We start by
the following simple theorem: Assuming constant γ > 0 (constant
negative group velocity), it is impossible to guarantee achieving negative
refraction when the temporal dispersion is zero. To prove this, notice
that it follows from (24) that for constant negative group velocity to be
achieved and ∂n/∂ω = 0, the corresponding spatial dispersion profile
is simply n = −c/γ. Thus, the refraction index is also independent of
k and negative. However, as we discussed in Sec. 4, to conclude that
the medium supports negative refraction we must have small losses;
negative refraction and n < 0 can be guaranteed to occur only with
double negative material (Case II in Sec. 4). However, we notice that
to obtain negative index of refraction in such a medium, the material
response must exhibit temporal dispersion [12]. Therefore, we conclude
that there is no physical solution corresponding to n in the sense above.

Moreover, from (24) it follows that in the case of zero-temporal
dispersion the group velocity takes the form

vg =
c

n
− ω

n

∂n

∂k
. (43)

We notice two important things here. First, although n does not
depend on frequency, the group velocity will have a linear dependence
on frequency for nonzero spatial dispersion. Thus, it is not true to state
that having a refraction index n independent of ω leads to constant
negative group velocity; this statement is true only if spatial dispersion
is ignored. Second, from (43), it is clear that one can achieve negative
group velocity if we choose ∂n∂k large enough. In particular, if n is
positive, we just need to satisfy ∂n/∂k > c/ω. Therefore, in the case of
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small losses, it is possible to achieve negative refraction in media that
have no temporal dispersion by careful choice of the spatial dispersion
profile.

6. HIGHER-ORDER CORRECTION OF THE POWER
FLOW — BEYOND GROUP VELOCITY

In this section, we will re-examine the problem of electromagnetic wave
propagation in nonlocal media through the more general perspective
of power flow. There are several reasons for that. First, the group
velocity concept developed in the previous parts is inherently a first-
order approximation, limiting its applicability to a certain form of the
field (narrow-band signals). Second, the consideration of power and
energy quantities should lead naturally to a deeper understanding of
wave propagation in nonlocal media since comparison with microscopic
energy analysis can guide the interpretation of the results derived here
using the macroscopic field theory. Finally, newer phenomena appear
when spatial dispersion is considered in the problem. As we will
show by the end of this section, higher-order corrections to the power
flow will be generally dependent on the structure of the field assumed
throughout the discussion, in this case the quasi-monochromatic field
shown in (45) below.

To summarize, we consider here the effect of spatial dispersion on
the direction of power flow in dissipation-free media. The consideration
of higher-order corrections of the power flow, resulting from taking into
account the effect of nonlocality in the medium, leads to important
corrections, which can not be described within the group velocity
paradigm developed in the previous parts of this paper.

Our starting point will be the Poynting’s theorem

∇ · (Ē×H̄)
= −

(
Ē · ∂D̄

∂t
+ H̄ · ∂B̄

∂t

)
. (44)

The field is assumed to be in the form

Ē (r, t) = Re {E (r, t)} = Re
{
E0 (r, t) e−j(k0·r−ω0t)

}

=
1
2

{
E0 (r, t) e−j(k0·r−ω0t) + c.c.

}
, (45)

where E0 is the (lowpass) complex amplitude and and c.c. denotes
the complex conjugate term. We assume that the temporal spectrum
of the field, centered around ω0, is narrowband. However, the spatial
spectrum, centered around k0, could be wideband. By applying a
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simple change of variables in the Fourier transform of the field, we can
write the following

E (ω,k)=

∞∫
−∞

∞∫
−∞

dtdr3 E (r, t) ej(k·r−ωt) = E0 (ω−ω0, k−k0) , (46)

where E0 (ω, k) is the Fourier transform of E0 (r, t), from which we
can see the motivation for calling E0 the low-pass equivalent of the
field.

By applying the inverse Fourier transform to write D and E in (1),
differentiating the result with respect to time, we obtain

∂D
∂t

=
1
2π

∞∫
−∞

∞∫
−∞

dω dk3jωε0ε (ω,k)E (ω,k) e−j(k·r−ωt). (47)

Next, the dielectric function is expanded using Taylor series but we
retain only the first-order approximation for the temporal dispersion
while we keep the third-order approximation for the spatial dispersion�.
Therefore, we obtain

ωε (ω,k) = ω0ε (ω0,k0) + ∂ (ωε)/∂ωω̃

+ω0

(
k̃ · ∇k

)
ε+ (1/2)ω0

(
k̃ · ∇k

)2
ε

+(1/6)ω0

(
k̃ · ∇k

)3
ε, (48)

where k = k0 + k̃ and ω = ω0 + ω̃ and all derivatives are evaluated at
ω0 and k0. By substituting (48) into (47), we obtain

∂D
∂t

=
jω0ε0
2π

∞∫
−∞

∞∫
−∞

dω dk3ε (ω0,k0)E (ω,k) e−j(k·r−ωt)

+
ε0
2π

∞∫
−∞

∞∫
−∞

dω dk3 ∂ (ωε)
∂ω

(jω̃)E (ω,k) e−j(k·r−ωt)

+j
ω0ε0
2π

∞∫
−∞

∞∫
−∞

dω dk3
(
k̃ ·∇k

)
εE (ω,k) e−j(k·r−ωt)

� For the case of wideband signals, i.e., fields that vary rapidly in time, the time
average integration can not be performed without further information about the specific
mathematical function under study. To keep the derivations at the most general level, we
restricted our presentation in this paper to signals that are slow enough in time.
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+
jε0ω0

2
1
2π

∞∫
−∞

∞∫
−∞

dω dk3
(
k̃ ·∇k

)2
εE (ω,k) e−j(k·r−ωt)

+
jε0ω0

6
1
2π

∞∫
−∞

∞∫
−∞

dω dk3
(
k̃ ·∇k

)3
εE (ω,k) e−j(k·r−ωt). (49)

By applying the change of integration variables k = k0 + k̃ and
ω = ω0 + ω̃ and employing (46), Equation (49) can be reduced to

∂D
∂t

= jω0A

∞∫
−∞

∞∫
−∞

dω̃ dk̃3ε (ω0,k0)E0

(
ω̃, k̃

)
e−j(k̃·r−ω̃t)

+A

∞∫
−∞

∞∫
−∞

dω̃ dk̃3 ∂ (ωε)
∂ω

(jω̃)E0

(
ω̃, k̃

)
e−j(k̃·r−ω̃t)

+jω0A

∞∫
−∞

∞∫
−∞

dω̃ dk̃3
(
k̃·∇k

)
εE0

(
ω̃, k̃

)
e−j(k̃·r−ω̃t)

+
1
2
jω0A

∞∫
−∞

∞∫
−∞

dω̃ dk̃3
(
k̃·∇k

)2
εE0

(
ω̃, k̃

)
e−j(k̃·r−ω̃t)

+
1
6
jω0A

∞∫
−∞

∞∫
−∞

dω̃ dk̃3
(
k̃·∇k

)3
εE0

(
ω̃, k̃

)
e−j(k̃·r−ω̃t). (50)

where A = (ε0/2π) exp (−jk0 · r + jω0t). Using the Fourier transform
pair ∇r → −jk̃ and then applying to the result the inverse Fourier
transform definition of E0 (r, t), Equation (50) can be simplified as
follows

∂D
∂t

= jω0ε0εe
−j(k0·r−ω0t)E0 (r, t)

+ε0e−j(k0·r−ω0t) ∂ (ωε)
∂ω

∂

∂t
E0 (r, t)

−ε0ω0e
−j(k0·r−ω0t) (∇r ·∇k) εE0 (r, t)

+
jω0ε0

2
e−j(k0·r−ω0t) (∇r ·∇k)2 εE0 (r, t)

+
ω0ε0

6
e−j(k0·r−ω0t) (∇r ·∇k)3 εE0 (r, t) , (51)
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which contains only the complex low-pass equivalent representation
of the field, i.e., E0. Since the field was assumed to be slow
enough in time (narrowband temporal frequency spectrum), we can
compute the time-average as

〈
Ē · ∂D̄

∂t

〉
= (1/T )

∫ T
0 dt Ē · ∂D̄/

∂t �
(1/4)E∗ (r, t) · ∂D (r, t)/∂t+ c.c., where T is the period [7, 11]. Since
the medium is taken to be lossless (ε∗ = ε, k = k∗), it follows from (51)
that
〈Ē ·∂D̄/

∂t
〉
=
ε0
4
∂ (ωε)
∂ω

∂

∂t
(E0 ·E∗

0) −
ε0ω

2
Re {E∗

0 ·(∇r·∇k) εE0}

−ε0ω
4

Im
{
E∗

0·(∇r·∇k)
2εE0

}
+
ε0ω

12
Re

{
E∗

0·(∇r·∇k)
3εE0

}
, (52)

where we replaced the arbitrary frequency ω0 by ω. In writing the first
term in the RHS of (52), the identity ∂/∂t (E∗

0 ·E0) = ∂E∗
0/∂t · E0 +

E∗
0 · ∂E0/∂t was used. Strictly speaking, if the medium is local, only

this term will survive, the rest becoming zero.
In order to obtain meaningful results about the power flow in the

medium, we must combine the second, third, and fourth terms in the
RHS of (52), which are due to spatial dispersion, with the divergence
of the Poynting vector appearing in the LHS of (44). Therefore, we
should be able to obtain

∇r · S = − (∂/∂t) (We +Wm) , (53)

where the electric and magnetic energies We and Wm are given by
We = (ε0/4)∂ (ωε0ε)/∂ωE0 ·E∗

0 and Wm = (1/4)∂ (ωμ0μ)/∂ωH0 ·H∗
0,

respectively. Therefore, it is seen that the problem now is a question of
operator algebra in which the goal is to move the operator ∇r outside
the terms in the RHS of (52) that are contributing to the power flow
due to spatial dispersion.

For the second term in the RHS of (52), i.e., the first-order
correction of spatial dispersion, this can be easily achieved by the
following identity

2Re {E∗
0 · (∇r ·∇k) εE0} = ∇r · {∇kεE∗

0 · E0} . (54)

The third and fourth terms in the RHS of (52), i.e., the second- and
third-order corrections, are rather more difficult to obtain. Special
identities were derived by the authors and presented in Appendix B and
Appendix C for the second- and third-order corrections, respectively.
Employing the identities (54), (72), and (80) to simplify (52), plugging
the results into the Poynting theorem (44), and after straightforward
manipulations, we finally obtain (53) with

S = S0 + S1 + S2 + S3, (55)
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which represents the total power density vector. The conventional
Poynting vector contribution is given by S0 = (1/2)Re {E∗ × H}. The
first-order correction is given by

S1 = −ε0
4
ω∇kεE∗

0 ·E0. (56)

The second-order correction is written as

S2 = −ε0ω
4

3∑
m=1

Im {E∗
0m (∇r · ∇k∇k) εE0m}. (57)

The third-order correction is given by

S3 =
ε0ω

24

3∑
m=1

E∗
0m [∇r · (∇r · ∇k∇k∇k)] εE0m

−ε0ω
24

3∑
m=1

(∇rE
∗
0m · ∇k)∇k (∇r · ∇k) εE0m

+
ε0ω

24

3∑
m=1

E0m [∇r · (∇r · ∇k∇k∇k)] εE∗
0m. (58)

We remind the reader that the formulation of the present section
is more general than the results related to negative group velocity,
which ere presented in the previous sections, for two reasons. First,
the final description of the power flow obtained in (55) is valid for any
kind of wave propagation, being excited by a source or merely normal
(eigenmodes) waves propagating in a source-free medium. Second, in
the present section we retained the vector dependence of the medium
on the wave vector, indicating that the spatial dispersion may introduce
preferred directions in the medium response. Thus, the final solution
is still able to capture this feature since we don’t replace k by k in
expressions like (56), (57), and (58).

On the qualitative level, the first-order vector correction S1

obviously explains the possibility to obtain negative group velocity
although both ε and μ are positive. Even though S0 is directed along
k (because both ε and μ are positive [12, 15]), the vector corrections
S1, S2 and S3 can reverse the direction of the total vector S, leading
to negative refraction.

On the quantitative level, the results of the first-order correction
in (56) and those obtained in Sec. 3 are in agreement with each other.
To see that, let us consider the case of isotropic non-magnetic material
with positive dielectric constant and focus on quasi-monochromatic
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waves. In this case, it is easy to see form Maxwell’s equations,
applied to each Fourier mode of the propagating wave packet, that
|E0| = |ηH0|, where η =

√
(μ0μ)/(ε0ε) [1, 7, 11]. Moreover, it also

follows from Maxwell’s equations that S0 is directed along k and the
same conclusion applies to S since the medium is isotropic. Therefore,
by ignoring the contribution of terms higher than the first-order
approximation, we can write

S=S0+S1 =
ε0 |E0|2

4

(
2nc−ω ∂

∂k
n2

)
âk=

nε0 |E0|2
2

(
c− ω

∂n

∂k

)
âk. (59)

where the definition (10) was used. The total energy stored in the
medium is given by

W = We +Wm =
1
4

[
ε0
∂ (ωε)
∂ω

|E0|2 + μ0
∂ (ωμ)
∂ω

|H0|2
]

=
|E0|2

4

[
ε0
∂ (ωε)
∂ω

+ μ0
∂ (ωμ)
∂ω

εε0
μ0

]
=
ε0 |E0|2

4

[
2ε+ ω

∂ε

∂ω

]

=
nε0 |E0|2

2

(
n+ ω

∂n

∂ω

)
. (60)

Therefore, using (59), (60), and (23), relation (19) follows immediately.
This provides a physical interpretation for the new quantity −ω∂n/∂k
in the numerator of (19). This term reflects the contribution of the
first-order vector correction of the power flow due to spatial dispersion.

We mention also that it is possible theoretically to have ∇kε = 0
at a frequency and wavelength in which ∇k∇kε �= 0. In this case, the
second-order term S2 becomes dominant and may lead to important
corrections even when the overall effect of spatial dispersion is weak.
A similar argument applies to the third-order term.

Finally, consider the higher-order corrections in (57) and (58).
We can see that S2 and S3 depend not only on the spatial dispersion
profile, i.e., the functional dependence of ε and μ on k, but also on
the rate of the spatial variation of the field, the functional dependence
of E and H on r. For example, if ω and k are chosen such that S1

vanishes while S2 is nonzero (the GV concept fails then to apply), then
the derivations above indicate that it is possible to increase the effect
of S2, while choosing its direction to be opposite to S0, in order to
achieve negative group velocity, by tuning the rate of the spatial field
variation, not just the dielectric and permeability dispersion profiles.
In a nutshell, the higher-order contributions of spatial dispersion to
the power flow are dependent on the structure of the field itself.
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7. SOME GENERAL REMARKS

We end this paper by some general remarks. The ultimate origin
of nonlocality is the non-vanishing finite spatial extension of the
wavefunctions of the particles constituting the medium under interest
[21]. This means that a self-consistent approach, at least in the semi-
classical sense, should directly provide expressions for the response
functions that include both temporal and spatial dispersion. While
many such methods are available in literature, e.g., see [1] and [21],
the computational complexity of a realistic problem comprising, say,
periodic arrangements of unit cells engineered to achieve desired
electromagnetic performance, makes the method very difficult to apply
in iterated design procedures. Instead, one may develop a suitable
effective-field theory, taking into consideration some of the physical
mechanisms that generate nonlocality in the electromagnetic response.
Then, this theory, once tested and refined, can be used in an iterative
optimization algorithm to achieve the required goals. Moreover, it
may be possible to achieve nonlocal effects even within the regime of
classical electrodynamics by carefully exploiting near-field interactions
at the nanoscale [22].

The reader should notice that, as mentioned in Section 5, our
design methodology is restricted to certain finite frequency and
wavenumber range of interest (i.e., ω1 < ω < ω2 and k1 < k <
k2.) This limitation relaxes considerably the restrictions imposed by
causality, as explicated in Kramers-Kronig relations. For example, the
requirement that the medium is lossless in the band of interest can be
achieved at the expense of permitting higher losses outside this band.
In other words, within the ω − k space, our method is meant to be
applied locally in order to preserve the consistency with the global
restrictions imposed by causality. On the other hand, within the the
spatio-temporal space, the conservation of energy is always satisfied
locally by the Poyntings theorem in Equation (44).

Some complications in the actual design may arise from the
phenomenon of additional waves in nonlocal media. There exist various
strategies to deal with this problem [1, 21]. In this case, there could
be other modes excited in the structure of interest in addition to the
transverse modes studied in this paper. Such waves may affect the
performance of the device/medium, for example by carrying part of the
energy of the incident beam. Further study of such modes is beyond
the scope of the present paper.

Finally, the mathematical results of our paper apply to the
simplest type of media, i.e., isotropic and homogenous media. It
is expected however, that actual designs, for example using periodic
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structure, will require relaxing one or both of these conditions. Our
work then aims to establish some conceptual understanding of what
is new in the physics of nonlocal medium in terms of results that
can be derived rigorously from (1) Maxwells equations, (2) energy
conservation, and (3) causality. It is still needed to investigate more
complicated media in order to demonstrate how the basic theory
developed in this paper should be modified.

8. CONCLUSION

A theoretical framework for synthesizing metamaterials exhibiting
negative group velocity was proposed. It was found that by carefully
exploiting the interplay between temporal and spatial dispersion new
phenomena can be observed. An exact solution consisting of a medium
profile supporting constant negative group velocity propagation was
obtained. The effect of higher-order terms, up to the third-order
approximation of the power flow correction, was also derived.
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APPENDIX A. PROOF FOR CASE IV IN SEC. 4

From (24) and (25) we can write

vg =
n

n+ ω∂n/∂ω
vp. (A1)

For negative phase velocity media, we have n = −√
με. Therefore, it

is possible to write

n+ ω∂n/∂ω = −√
εμ+ ω∂ (−√

εμ) /∂ω

= −√
εμ− ω

2
√
εμ

[
ε
∂μ

∂ω
+ μ

∂ε

∂ω

]

= −√
εμ

{
1 +

ω

2εμ

[
ε
∂μ

∂ω
+ μ

∂ε

∂ω

]}
. (A2)

From Kramers-Kronig relations, we know that in a medium with small
losses the identities ∂/∂ω (ωε) > 0 and ∂/∂ω (ωμ) > 0 hold [10]. This
in turn yields ∂ε/∂ω > −ε/ω and ∂μ/∂ω > −μ/ω. Noticing that both
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ε and μ are negative, the previous two inequalities, when combined
together, will give μ∂ε/∂ω + ε∂μ/∂ω < −2εμ/ω, or

1 +
ω

2εμ

[
ε
∂μ

∂ω
+ μ

∂ε

∂ω

]
< 0. (A3)

Therefore, (A1), (A2), and (A3) lead to group and phase velocities
with signs opposite to each other.

APPENDIX B. DERIVATION OF THE SECOND-ORDER
TERM IDENTITY

Our goal is to write the third term in the RHS (52) as a divergence of
vector. We expand

E∗
0 · (∇r · ∇k)2 εE0 − c.c. =

3∑
m=1

E∗
0m (∇r · ∇k)2 εE0m − c.c., (B1)

where the index m = 1, 2, 3 enumerates three Cartesian directions.
We introduce now the following identity

E∗
0m(∇r ·∇k)2εE0m − c.c. = ∇r ·{E∗

0m (∇r ·∇k∇k)εE0m − c.c.} . (B2)

Proof. Using the vector identity

∇ · (ψA) = ∇ψ ·A + ψ∇ ·A, (B3)

we find

∇r · {E∗
0m (∇r ·∇k∇k) εE0m − c.c.}

= ∇rE
∗
0m ·(∇r ·∇k∇k) εE0m + E∗

0m [∇r · (∇r ·∇k∇k)] εE0m

−∇rE0m ·(∇r ·∇k∇k) εE∗
0m − E0m [∇r ·(∇r ·∇k∇k)] εE∗

0m. (B4)

By applying the dyadic identities

ab · c = a (b · c) , c · ab = (c · a)b, (B5)

A · (C̄ ·B)
=

(
A · C̄) · B, (B6)

we find

∇rE
∗
0m ·(∇r ·∇k∇k) εE0m

=∇rE
∗
0m ·(∇k∇k ·∇r) εE0m = (∇rE

∗
0m ·∇k∇kε)·∇rE0m

=∇rE0m ·(∇rE
∗
0m ·∇k∇kε) = ∇rE0m ·((∇rE

∗
0m ·∇k)∇kε)

=∇rE0m ·((∇r ·∇k)∇kεE
∗
0m) = ∇rE0m ·(∇r ·∇k∇k) εE∗

0m. (B7)
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Next, using (B5) we find

(∇k · ∇r)
2 = (∇r · ∇k) (∇k · ∇r) = ∇r · (∇k (∇k · ∇r))

= ∇r · (∇k∇k · ∇r) = ∇r · (∇r · ∇k∇k) . (B8)

Finally, be employing (B7) and (B8) in (B4), the required identity (B2)
is obtained.

By using the identity (B2) in (B1), we obtain

− (ε0ω/4) Im
{
E∗

0 · (∇r · ∇k)2 εE0

}
= ∇r · S2, (B9)

where where S2 is given by (57).

APPENDIX C. DERIVATION OF THE THIRD-ORDER
TERM IDENTITY

Our goal is to write the fourth term in the RHS (52) as a divergence
of vector. We expand

E∗
0 · (∇r · ∇k)3 εE0 + c.c. =

3∑
m=1

{
E∗

0m (∇r · ∇k)3 εE0m + c.c.
}
. (C1)

We state now the following identity

E∗
0m (∇r · ∇k)3 εE0m + E0m (∇r · ∇k)3 εE∗

0m

= ∇r · {E∗
0m [∇r · (∇r · ∇k∇k∇k)] εE0m

− (∇rE
∗
0m · ∇k)∇k (∇r · ∇k) εE0m

+E0m [∇r · (∇r · ∇k∇k∇k)] εE∗
0m} . (C2)

Proof. By applying the identity (B3), the RHS of (C2) can be written
as

RHS = ∇rE
∗
0m · [∇r · (∇r · ∇k∇k∇k)] εE0m

+E∗
0m∇r · [∇r · (∇r · ∇k∇k∇k)] εE0m

−∇r (∇rE
∗
0m · ∇k) · [∇k (∇r · ∇k) εE0m]

− (∇rE
∗
0m · ∇k)∇r · [∇k (∇r · ∇k) εE0m]

+∇rE0m · [∇r · (∇r · ∇k∇k∇k)] εE∗
0m

+E0m∇r · [∇r · (∇r · ∇k∇k∇k)] εE∗
0m. (C3)

By applying the triadic identities

abc · d = ab (c · d) , d · abc = (d · a)bc, (C4)
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together with (B6), the third term in (C3) can be manipulated as

∇r (∇rE
∗
0m · ∇k) · [∇k (∇r · ∇k) εE0m]

= ∇r (∇rE
∗
0m · ∇k) · [(∇k∇k · ∇r) εE0m]

= [∇r (∇rE
∗
0m · ∇k) · ∇k∇kε] · ∇rE0m

= ∇rE0m · [∇r (∇rE
∗
0m · ∇k) · ∇k∇kε]

= ∇rE0m · [∇r (∇r · ∇k) · ∇k∇kεE
∗
0m]

= ∇rE0m · [∇r · (∇r · ∇k∇k∇k) εE∗
0m] . (C5)

Also, the fourth term in (C3) can be put in the form

(∇rE
∗
0m · ∇k)∇r · [∇k (∇r · ∇k)] εE0m

= (∇rE
∗
0m · ∇k) [∇r · (∇r · ∇k∇k)] εE0m

= (∇rE
∗
0m · ∇k) [(∇k∇k · ∇r) · ∇r] εE0m

= ∇rE
∗
0m · [(∇k∇k∇k · ∇r) · ∇r] εE0m

= ∇rE
∗
0m · [∇r · (∇r · ∇k∇k∇k)] εE0m. (C6)

Next, using the identities (C4), we find

(∇k ·∇r)3=(∇r ·∇k) (∇k ·∇r) (∇k ·∇r)
=∇r ·{∇k (∇r ·∇k) (∇k ·∇r)}=∇r ·{∇k [∇r ·(∇k (∇k ·∇r))]}
=∇r ·{∇k [∇r ·(∇k∇k ·∇r)]}=∇r ·{[∇k (∇k∇k ·∇r)]·∇r}
=∇r ·{[∇k∇k∇k ·∇r]·∇r}=∇r ·{∇r ·(∇r ·∇k∇k∇k)} . (C7)

Finally, by substituting (C5), (C6), and (C7) into (C3), the identity
(C2) is obtained.

Applying the identity (C2) to (C1), we obtain the desired relation

(ε0ω/12)Re
{
E∗

0 · (∇r · ∇k)3 εE0

}
= ∇r · S3, (C8)

where S3 is given by (58).
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