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Abstract—Thresholded Landweber Iteration (TLI) is an attractive
algorithm since it has the advantage of simplicity for the problem
of sparse reconstruction. However, this algorithm depends heavily
on the coherence property of the redundant dictionary, and its
convergence rate is slow. In this paper, we develop a modified
version of TLI by using a sensing dictionary. The proposed
algorithm significantly improves the reconstruction performance and
the convergence properties when compared to the classical TLI. We
provide a sufficient condition for which the modified TLI algorithm can
be guaranteed to exactly identify the correct atoms and also discuss the
convergence properties for this algorithm. Finally, simulation results
are presented to demonstrate the superior performance of the proposed
algorithm.

1. INTRODUCTION

In the last decades, sparse signal expansion over overcomplete or
redundant dictionaries has attracted a lot of attention, such as image
reconstruction [1], sources localization [2] and many more. The goal
of this problem is to represent a signal as a linear combination of
a few elementary waveforms, termed as atoms, selected from a large
collection of basis functions. Unfortunately, this problem is known
to be NP-hard. In order to get the sparsest solution to this problem,
some suboptimal algorithms have been developed. One such algorithm
is orthogonal matching pursuit (OMP) [3]. This algorithm is easy to
implement since it provides sparse solution through iteratively selecting
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an atom at each step. However, OMP is too computationally complex
when the sparse reconstruction with large scale is considered.

Recently, thresholded Landweber iteration (TLI), also named as
iterative shrinkage thresholding (IST), has been proposed as a simple
method to solve this linear inverse problem [4]. This algorithm
combines the Landweber iteration with thresholding technique.
It has been developed independently through various techniques,
such as surrogate-functions [4], marjorization-minimization (MM)
algorithm [5], expectation-maximization (EM) algorithm [6] and fixed
point strategy [7]. The best advantage of TLI algorithm is its simplicity
since this algorithm only requires matrix-vector multiplication at
each iteration. However, the performance of this algorithm depends
heavily on the coherence property of the redundant dictionary, and
the identification of correct atoms can be guaranteed only under very
strict conditions [8]. In most situations, redundant dictionaries for
the decomposition of practical signals may be highly coherent, and the
reconstruction performance decays greatly in these cases. Additionally,
the classical TLI is known to converge slowly.

The primary purpose of this paper is to develop a variation of TLI
to improve the performance of the classical TLI algorithm. Motivated
by the work of Schnass and Vandergheynst [9], we modify the classical
TLI algorithm by introducing a sensing dictionary. The proposed
algorithm keeps computational complexity similar to the classical
TLI while significantly improving the reconstruction performance and
the convergence properties, especially in the case of highly coherent
dictionaries. Theoretical analysis and simulation results are provided
in this paper.

The remaining sections are organized as follows. In Section 2,
we formulate the classical TLI algorithm. Section 3 develops a
modified TLI algorithm by introducing a sensing dictionary and
provides a sufficient condition for this algorithm. Convergence analysis
for the modified TLI algorithm is discussed in Section 4. And
simulation results are presented in Section 5 to illustrate the improved
performance of the proposed algorithm. Finally, conclusions are given
in Section 6.

2. CLASSICAL THRESHOLDED LANDWEBER
ITERATION

Consider a redundant dictionary Φ composed of N vectors φi ∈ R
M×1

(i ∈ Ω = {1, . . . , N},M < N) from a Hilbert space. In general, these
vectors are normalized and called atoms. Assume a signal y ∈ R

M×1

can be exactly represented as a linear combination of a small number
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of atoms in this dictionary, i.e., y = Φx = Φoptxopt, where Φopt is the
matrix containing the optimal collection of atoms with index set Λopt.
The signal is called K -exact sparsity if |Λopt| = K, where K � N and
|·| returns the cardinality of a set.

The classical Landweber iteration is one of the simplest methods
to solve the linear inverse problem y = Φx. It generates a sequence
to approximate the true solution. The iterative procedure can be
described as

x(l+1) = x(l) + ΦT
(
y − Φx(l)

)
, (1)

where T denotes transpose. Using the thresholding operation at each
iteration step, we can get the TLI as

x(l+1) = H
(
x(l) + ΦT

(
y − Φx(l)

))
, (2)

where H(·) is thresholding operators.
For a K -exact sparsity signal y, the K -term sparse problem can

be formulated as the following constrained optimization

y = Φx, s.t. ‖x‖0 = K, (3)

where ‖·‖0 denotes the l0 quasi-norm which counts the number of non-
zero coefficients. Using a hard thresholding operator, Thrumber and
Davis derived the following TLI algorithm [1]

x(l+1) = HK

(
x(l) + ΦT

(
y − Φx(l)

))
, (4)

where HK(x) is element-wise hard thresholding operator defined as

HK(xi) =
{

xi, |xi| ≥ x̃K
0, |xi| < x̃K

, (5)

where x̃K denotes the K -th largest absolute value of the coefficient
vector x. In other words, HK(x) is nonlinear thresholding operator
which only retains K coefficients with the largest magnitude. Starting
from an initialization x(0), this iterative algorithm can generate a
sequential estimation to approximate the solution.

3. A THRESHOLDED LANDWEBER ITERATION
BASED ON SENSING DICTIONARY

As described in the last section, the classical TLI algorithm updates the
coefficients through calculating the correlation between atoms and the
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residuals. When the dictionary is highly coherent, the reconstruction
performance will be deteriorated due to the interference between
atoms. Here, we modify the classical TLI algorithm by using a sensing
dictionary.

Assume that we can construct a lower coherent dictionary D =
BΦ by using an invertible matrix B ∈ R

M×M . With the matrix B
and the observation data y, we can get a new vector z = By = Dx.
Therefore, the sparse solution can be obtained through equivalently
solving the new optimal problem

z = Dx, s.t. ‖x‖0 = K. (6)

Similarly, we can derive a hard TLI algorithm for K -term sparse
problem as

x(l+1) = HK

(
x(l) +DT

(
z −Dx(l)

))
. (7)

Define the sensing dictionary as Ψ = BTBΦ, it is easy to obtain
DT z = ΨT y and DTD = ΨTΦ. Substituting these relations to (7),
we can get a variation of the classical TLI as

x(l+1) = HK

(
x(l) + ΨT

(
y − Φx(l)

))
. (8)

This algorithm extends the classical TLI to a more general case and
relaxes the strong requirement of incoherence for redundant dictionary.
The iteration procedure (8) reduces to the classical TLI if the sensing
dictionary is selected as Ψ = Φ for incoherent dictionary.

Now, we provide a sufficient condition for which the modified TLI
can be guaranteed to recover the K -term sparse signal. In order to
simplify the presentation, the cross cumulative coherence of redundant
dictionary is defined as [9]

μ̃1(k) = max
|J |=k

max
i/∈J

∑
j∈J

|〈ψi, φj〉|, (9)

where ψi(i = 1, . . . , N) denote the atoms of the sensing dictionary
Ψ. The above definition reduces to the cumulative coherence μ1(k) if
Ψ = Φ [8]. In this paper, we are concerned with 0–1 sparse signal of
which the coefficient vector contains only ones and zeros.
Theorem 1: Assume that a signal can be represented as y = Φoptxopt
with |Λopt| = K and the nonzero entries of the coefficient vector are
ones. With the initialization x(0) = 0, the modified TLI based on a
sensing dictionary Ψ can identify correct atoms if

μ̃1(k) + μ̃1(k − 1) < 1. (10)
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Proof: With the initialization x(0) = 0, the modified TLI algorithm at
the first step is x(1) = HK(ΨT y). It is easy to bound the inner product
of atoms ψi and the signal y as

i ∈ Λopt, |〈ψi, y〉| =

∣∣∣∣∣∣
∑
j∈Λopt

〈ψi, φj〉
∣∣∣∣∣∣

≥ |〈ψi, φi〉| −
∑
j∈Λopt

j �=i

|〈ψi, φj〉| ≥ 1 − μ̃1(k − 1),

(11)

and

i ∈ Λ̄opt, |〈ψi, y〉| =

∣∣∣∣∣∣
∑
j∈Λopt

〈ψi, φj〉
∣∣∣∣∣∣ ≤

∑
j∈Λopt

|〈ψi, φj〉| ≤ μ̃1(k). (12)

If μ̃1(k) + μ̃1(k− 1) < 1, we have μ̃1(k) < 1− μ̃1(k− 1), and the inner
product corresponding to Λopt is larger than others. Therefore, this
algorithm can identify the correct atoms by only using one iteration.

The inequality (10) shows that this proposed algorithm can
be guaranteed to identify correct atoms when the cross cumulative
coherence grows slowly. This result extends previous results by
Tropp [8] to the less restrictive condition. If we can construct a sensing
dictionary satisfying μ̃1(k) < μ1(k), the modified TLI can be more
easily guaranteed to identify the correct atoms.

The remaining problem is how to design an effective sensing
dictionary. Schnass and Vandergheynst developed a method for
designing sensing dictionary based on alternating projection (AP)
algorithm [9]. Indeed, an appropriate sensing dictionary for sparse
reconstruction is the one of which the gram type matrix G = Ψ∗Φ is
closest to unity matrix as possible, where ∗ represents the complex
conjugate transpose. Therefore, we construct a sensing dictionary
through solving the following optimal problem

min
Ψ∈CM×N

‖Ψ∗Φ‖2
F , s.t. ψ∗

i φi = 1, for i ∈ Ω, (13)

where ‖·‖F denotes the Frobenius norm. Based on the definition of the
matrix norm, we can get

min
Ψ∈CM×N

‖Ψ∗Φ‖2
F = min

ψi∈CM×1

N∑
i=1

‖Φ∗ψi‖2
2. (14)
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With (14), the optimization problem (13) can be transformed to
minimize the following objective function

J(Ψ, λ) =
N∑
i=1

[
1
2
‖Φ∗ψi‖2

2 + λi(1 − ψ∗
i φi)

]
, (15)

where λ = [λ1, . . . , λN ]T is the vector composed of the Lagrange
multipliers. The necessary condition for (ψi, λi)(i = 1, . . . , N) to be
the minimizing solutions is that the partial differential of J(Ψ, λi) at
(ψi, λi) satisfies

∂J(Ψ, λ)
∂ψi

= ΦΦ∗ψi − λiφi = 0, i = 1, . . . , N, (16)

and
∂J(Ψ, λ)
∂λi

= 1 − ψ∗
i φi = 0, i = 1, . . . , N. (17)

Combine (16) with (17), we can obtain the column vectors of the
sensing dictionary as

ψi =
R−1φi
φ∗iR−1φi

, i = 1, . . . , N, (18)

where R = ΦΦ∗.

4. CONVERGENCE ANALYSIS

We have shown that the modified TLI can identify the correct atoms if
μ̃1(k)+ μ̃1(k−1) < 1 holds. In this section, we will provide theoretical
analysis for the convergence properties of the modified TLI algorithm.
Theorem 2: Assume that a signal can be represented as y = Φoptxopt
with |Λopt| = K and the nonzero entries of the coefficient vector
are ones. With the initialization x(0) = 0, the TLI algorithm based
on a sensing dictionary Ψ is used to recover this sparse signal. If
μ̃1(k) + μ̃1(k − 1) < 1, the coefficients obtained by this algorithm at
n-th iteration step satisfy

1 − (μ̃1(k − 1))n ≤ x
(n)
i ≤ 1 + (μ̃1(k − 1))n, for i ∈ Λopt. (19)

Proof: With the initialization x(0) = 0, after one iteration we can get

x
(1)
i = 〈ψi, y〉 =

∑
j∈Λopt

〈ψi, φj〉

= 〈ψi, φi〉 +
∑
j∈Λopt

j �=i

〈ψi, φj〉, for i ∈ Λopt.
(20)
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With (9) and (13), we have

1 − μ̃1(k − 1) ≤ x
(1)
i ≤ 1 + μ̃1(k − 1), for i ∈ Λopt. (21)

Assume that the nonzero coefficients at l-th iteration satisfies

1 − (μ̃1(k − 1))l ≤ x
(l)
i ≤ 1 + (μ̃1(k − 1))l, for i ∈ Λopt. (22)

Theorem 1 has proved that the correct atoms are identified at only
one iteration if μ̃1(k) + μ̃1(k − 1) < 1. Then, the residual after l
steps can be represented as a linear combination of atoms Φopt, that
is y − Φx(l) = Φopth

(l), where h can be calculated as h(l)
i = 1 − x

(l)
i .

With (22), h(l)
i can be bounded as

−(μ̃1(k − 1))l ≤ h
(l)
i ≤ (μ̃1(k − 1))l, for i ∈ Λopt. (23)

Then, at the (l+1)-th iteration, we can obtain

x
(l+1)
i = x

(l)
i + ψTi (y − Φopt)

= φTi ψi +
∑
j∈Λopt

j �=i

〈ψi, φj〉hj , for i ∈ Λopt. (24)

With (23), we can get

1− (μ̃1(k− 1))l+1 ≤ x
(l+1)
i ≤ 1 + (μ̃1(k− 1))l+1, for i ∈ Λopt. (25)

The above results show that the sequence of coefficients generated
by the modified TLI converges to the true value while the iteration
procedure put forward. Through constructing an appropriate sensing
dictionary with cross cumulative coherence small enough, the modified
TLI can obtain a sparse approximation with any expected tolerance in
a few iterations.
Theorem 3: Assume that a signal can be represented as y = Φoptxopt
with |Λopt| = K and the nonzero entries of the coefficient vector are
ones. With the initialization x(0) = 0, the modified TLI algorithm
based on a sensing dictionary Ψ is used to recover this sparse signal.
If μ̃1(k) + μ̃1(k − 1) < 1, the residual at n-th iteration step satisfies∥∥∥y − Φx(n)

∥∥∥
2
≤ C(μ̃1(k − 1))n, (26)

where C =
√
Kσmax.

Proof: With Theorem 2, we can get∥∥∥y − Φx(n)
∥∥∥

2
=

∥∥∥Φopth
(n)

∥∥∥
2
≤ ‖Φopt‖2,2

∥∥∥h(n)
∥∥∥

2
= σmax

∥∥∥h(n)
∥∥∥

2
, (27)
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where σmax denotes the maximal singular value of the sub-dictionary
Φopt. With (23), we can obtain

∥∥h(n)
∥∥

2
≤ √

K(μ̃1(k− 1))n. Substitute
this relation to (27), we complete the proof.
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Figure 1. Probability of exact recovery via different support size.

5. SIMULATION RESULTS

To illustrate the performance of the proposed algorithm, numerical
simulations are presented in this section. We generate a redundant
dictionary with the dimensions M = 128 and N = 256. The
entries of this dictionary were drawn independently from i.i.d. normal
distribution. And the coefficient vector contains only ones and zeros.
In our experiments, we fix the number of iteration for both TLI
algorithms as 10.

In the first experiment, we compare the performance of exact
recovery obtained by these methods. Simulation results are obtained
over independent 500 Monte-Carlo trails. Fig. 1 shows the probability
of exact recovery via different support size for different algorithms.
As shown in this plot, the exact reconstruction performance of the
modified TLI algorithm is better than both the classical TLI and OMP.
In the second experiment, the convergence rate for both TLI algorithms
is considered. We set the sparsity K = 6 since both algorithms can
identify the correct atoms in this case. Fig. 2 shows the residuals via
the number of iteration for both TLI algorithms. As shown in this
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Figure 2. Residuals via the number of iteration.

result, the convergence rate of the proposed algorithm is faster than
the classical TLI.

6. CONCLUSIONS

In this paper, we proposed a modified TLI algorithm for the problem
of sparse representation. Through constructing a sensing dictionary,
the proposed algorithm can significantly improve the performance
of the classical TLI. Theoretical analysis and numerical simulations
are presented to illustrate the superior performance of the proposed
algorithm.
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