
Progress In Electromagnetics Research M, Vol. 6, 1–8, 2009

A FORMAL APPROACH FOR CALCULATING THE
RADIATION FIELDS OF A LINEAR WIRE ANTENNA

A. J. Zozaya

Laboratorio de Electromagnetismo Aplicado
Universidad de Carabobo
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Abstract—In classical antenna books, the field radiated by a
filamentary antenna is calculated by integrating the electrical current
induced over the wires as if it is a primary (impressed) source. This is
not technically incorrect, but is not rigorous. In this paper some formal
steps are added to the classical procedure to do it more rigorously.

1. INTRODUCTION

In recent antenna books and papers [1, 2] and most of the classical
ones [3–5], the radiation field is calculated by integrating the electrical
current on the wire surface as if the wire itself does not exist. The
electrical current induced over the wire is treated as an impressed
source. This is not formally correct, unless the Uniqueness and the
Equivalence Theorems are properly invoked. The electrical current on
the wire surface is induced by the field itself and, in the electromagnetic
problem, must be treated as a boundary condition and not as an
impressed source. In some old antenna books, as in [6], this fact is
mentioned briefly. Nevertheless, it is well known that the radiation
process occurs because of the presence of wires that scatter the
radiation field. In this paper, a formal procedure is proposed to give
completeness to the classical approach for calculating the radiation
fields from a wire antenna.

This paper is organized in the following manner: in Section 2
the classical procedure for calculating the radiation field from a wire
antenna is revisited; in Section 3 some formal steps are added to the
classical procedure to make it more rigorous.
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2. RADIATION FIELDS OF A LINEAR WIRE
ANTENNA: THE CLASSICAL APPROACH

Given a linear wire antenna, infinitesimal, small or finite length
one, positioned symmetrically at the origin of the coordinate system
and oriented along the z axis, as shown in Fig. 1. A known
filamentary electrical current is supposed to exist in the form of ~J =
I(z′)δ(x)δ(y) ~az. The form of I(z′) has been studied intensively and
widely. Several analytical and numerical expressions for the current
distribution on an antenna have been obtained from the integral
equation formulation [7–10].

(a) (b)

Figure 1. A generic linear wire antenna. (a) Cylindrical antenna of
radio a ¿ λ. (b) When a ¿ λ the cylindrical antenna becomes a linear
wire antenna.

To calculate the field radiated by the antena, the conductive wires
are suppressed and the electrical current is let alone to generate an
electrical field ~E given by:

~E = −ω

[
1
κ2
∇(∇ · ~A ) + ~A

]
(1)

where ω is the angular frequency, κ is the wave number and ~A is the
Magnetic Vector Potential.

The Magnetic Vector Potential A is related to the current I(z′)



Progress In Electromagnetics Research M, Vol. 6, 2009 3

by a convolutional integral

~A(~r ) =
µ0

4π

∫

Γ
I(z′) ~az

e−κ|~r−~r ′|

|~r − ~r ′| dz′ (2)

where Γ is the locus of the electrical current.
The Magnetic Vector Potential is the solution of the inhomoge-

neous Helmholtz equation

∇2 ~A + κ2 ~A = −µ0I(z′)δ(x)δ(y)~az (3)

where I(z′) radiates alone in free space as if the wire does not exist.
As seen in Eq. (1) the electrical field has two components: the

quasi-static one, given by the expression: − ω
κ2∇∇· ~A, and the dynamic

component, given by −ω ~A. The former varies with 1
r2 , and the latter

with 1
r . In the far zone, the dynamic component predominates over

the quasi-static one, and the electrical field can be approximated in
the following way [3, 11]:

Er(~r ) ≈ 0 (4a)
Eθ(~r ) ≈ −ωAθ(~r ) (4b)
Eϕ(~r ) ≈ −ωAϕ(~r ) (4c)

where ~r must be in the far zone and Aθ,ϕ = µ0

4π
e−κr

r Nθ,ϕ, where ~N(~r )
is the Radiation Vector. The Radiation Vector is defined as:

~N =
∫

Γ
I(z′) ~azeκz′ cos θ dz′ (5)

By postulating a known function for the electrical current I(z′),
or by measuring it, the Radiation Vector is calculated using Eq. (5)
and then the Electrical Field ~E is obtained through Eqs. (4). The
Magnetic Field is determined as ~H = ~ar × ~E/η.

3. RADIATION FIELDS OF A LINEAR WIRE
ANTENNA: A FORMAL APPROACH

Given a linear wire antenna, as shown in Fig. 2, fed across a small
gap ∆ζ with an impressed voltage ∆V , the excited field is the solution
of a boundary value problem: an impressed source radiating in the
presence of wires.

The resulting total electrical field ~E can be separated in two
components: the impressed field ~Ei and the scattered field ~Es.
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(a) (b)

Figure 2. A generic linear wire antenna fed across a small gap ∆ζ
with an impressed voltage ∆V . (a) Linear wire antenna −a ¿ λ−.
(b) Field equivalent source for the delta-gap voltage.

Assuming the wires as perfect electric conductor bodies, the impressed
and scattered fields can be calculated by splitting the original problem
in two sub-problems as shown in Fig. 3.

The impressed and scattered fields can be viewed like the
particular and homogenous solutions, respectively, of the original
boundary problem.

In sub-problem A (see Fig. 3(a)) the wires are suppressed and the
impressed sources are retained so that they radiate in free space. This
problem is governed by the equation:

∇2 ~F i + κ2 ~F i = −ε0
~M i (6)

where ~F i is the Electric Vector Potential and ~M i = ∆V
∆ζ ~aϕ, for

−∆ζ/2 ≤ z′ ≤ ∆ζ/2 ≤ and ρ = a is an impressed magnetic current
density equivalent to the delta-gap impressed voltage (see Fig. 2(b))
[1]. The solution of Eq. (6) is:

~F i =
ε0

4π

∫

Sgap

∆V

∆ζ
~aϕ

e−κ|~r−~r ′|

|~r − ~r ′| ds′ (7)

The impressed electric field is thus obtained as ~Ei = − 1
ε0
∇× ~F i.
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(a) (b)

Figure 3. Subdivision of the original problem in two sub-problems
because of linearity. (a) Sub-problem A: impressed source ~M i radiates
in an unbounded free space generating the electrical field ~Ei. (b) Sub-
problem B: the current on wire surface gives up a boundary problem,
the solution of which is the scattered electrical field ~Es.

In sub-problem B (see Fig. 3(b)) the wires and their induced
surface current are retained and the impressed sources are suppressed.
A homogeneous boundary problem is obtained. While the scattered
magnetic field ~Hs is the solution of the homogeneous equation

(∇2 + κ2) ~Hs = 0 (8)

with a boundary condition given by ~Js = ~an × ~H(SC), where ~H(SC)
is the total Magnetic Field over the wire surface; the scattered electric
field is the solution of the homogenous equation

(∇2 + κ2) ~Es = 0 (9)

with a boundary condition given by ~an × ~E(SC) = 0, where ~E(SC) is
the total Electric Field over the wire surface.

It is known that only one of these two equations (Eqs. (8) and (9))
need to be solved. A simple analytical solution to the problem given
by Eq. (8) (or Eq. (9)) doesn’t exist [12], but assuming that I(z′) is
known and wires are PEC bodies, the classical approach for finding
the radiation fields can be still used. To do that, some considerations
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(a) (b)

Figure 4. Equivalence Principle formulation. (a) Definition of a
Huygens surface around the wires. (b) Suppression of wires.

which are described next must be made. First of all, the Uniqueness
theorem must be invoked in the sense that if ~Js is known, it implies
that the tangential component of the magnetic field is also known, and
assuming that fields vanish at infinity, the solution to the problem is
unique.

Then, we can use the Equivalence Principle (see Fig. 4) to
formulate an equivalent problem [13]. To do that, a Huygens surface
SH around the cylindrical wires, infinitesimally separated from them, is
constructed as shown in Fig. 4(a). The surface current ~Js = ~an× ~H(SC)
on SH is retained acting like an equivalent source. Wires are then
suppressed (Fig. 4(b)) and, finally, a zero field inside SH is set up.
Such an equivalent current ~Jeq

s = ~an × ~H(SC) radiates in free space in
the absence of wires, supporting the scattered electrical field ~Es.

The scattered electric field is given by

~Es = −ω

[
1
κ2
∇(∇ · ~As) + ~As

]
(10)

where ~As is the (scattered) Magnetic Vector Potential

~As(~r) =
µ0

4π

∫

Γ
[Jeq

s (z′)2πa] ~az
e−κ|~r−~r′|

|~r − ~r′| dz′ (11)
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where ~r must be taken outside of wires and I(z′) = Jeq
s (z′)2πa is the

equivalent current acting like a filamentary one.
At this point, the procedure described in Section 2 can be used in

determining the radiation component of the scattered electrical field.
It is well known that the impressed voltage ∆V across the delta-

gap generates an impressed field which is mostly an induction field,
with an intangible (practically) radiation component. The converse
occurs to the scattered field, which is mostly dynamic. Due to
this fact, in the far zone of the wire antenna, the radiation field is
approximatively equal to the scattered field: ~E(~r ) ≈ ~Es(~r ), with ~r in
the far zone.

4. CONCLUSION

In almost all antenna text books the current on wires is treated as
impressed source. Even though this leads to a correct result, it is
not rigorous. In this paper some considerations for the calculation
of radiation fields from a wire linear antenna were suggested. By
invoking the Uniqueness and Equivalence theorems the completeness
of the classical approach was achieved.
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Erratum to A FORMAL APPROACH FOR CALCU-
LATING THE RADIATION FIELDS OF A LINEAR
WIRE ANTENNA
by A. J. Zozaya, in Progress In Electromagnetics Research M, Vol. 6,
pp. 1–8, 2009

On page 6 the Equivalence Principle was incorrectly formulated.
“Wires are then suppressed (Fig. 4(b)) and, finally, a zero field

inside SH is set up. Such an equivalent current ~Jeq
s = ~an × ~H(SC)

radiates in free space in the absence of wires, supporting the scattered
electrical field ~Es.” should be changed to:

Wires are then suppressed (Fig. 4(b)) and, finally, a field −Ei

(and −Hi) inside SH is set up. Such an equivalent current ~Jeq
s =

~an × ~H(SC) radiates in free space, supporting the scattered electrical
field ~Es outside the wires.


