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Abstract—Ultra-short pulse is a promising technology for achieving
ultra-high data rate transmission which is required to follow the
increased demand of data transport over an optical communication
system. Therefore, the propagation of such type of pulses and
the effects that it may suffer during its transmission through an
optical waveguide have received a great deal of attention in the
recent years. Our goal in this paper is to study the propagation
characteristics of that pulse in a nonlinear optical fiber. In analyzing
these characteristics, the nonlinear effects along with the dispersion
are taking into account. Additionally, the considered nonlinear
effects include self phase modulation (SPM) and stimulated Raman
scattering (SRS). The problem to be processed is modeled using
the finite difference time domain (FDTD) technique which represents
an efficient tool in achieving the required purpose. Because of the
symmetrical structure of the optical waveguide, the FDTD modeling
of bodies of revolution (BOR) in cylindrical coordinates is the most
preferable algorithm in analyzing our problem. The FDTD treatment
of dispersion and nonlinearity of the optical waveguide is accomplished
through the direct integration method. In addition, the Lorentzian
model is chosen to represent the dielectric properties of the optical
fiber. The azimuthal symmetry of optical fiber enables us to use
a two-dimensional difference lattice through the projection of the
three-dimensional coordinates (r, ϕ, z) into the (r, z) plane. Extensive
numerical results have been obtained for various cavity structures.
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1. INTRODUCTION

Future telecommunication networks would require optical communica-
tion systems that can provide error-free transmission at a data rate
exceeding Tera-bits per second with a large span that may extend to
large distances over an optical waveguide without electronic signal re-
generation. The main challenges for achieving such high data rate
systems lie in pulse generation, dispersion and loss compensation, and
nonlinearity management. Reduction of the pulse width increases the
information rate that can be transmitted and this consequently leads
to significant increase in our ability to perform high-speed digital com-
munications and offers the potential for faster computational devices.
Thanks to the quantum structure of some semiconductor materials,
quantum cascade (QC) lasers can generate ultra-short pulses by gain
switching and active and passive mode-locking of this type of semicon-
ductor lasers due to the short relaxation times of electrons and the pho-
ton lifetime; both are of the order of a picosecond in these lasers. On
the other hand, due to the huge bandwidth and the high instantaneous
power associated with ultra-short pulses, dispersion and nonlinearity
represent critical issues for their practical applications [1–10].

Although the new manufacturing techniques of fabrication of
optical fiber have minimized its loss, long haul transmission still
requires high power optical amplifiers to compensate for the fiber loss.
In this situation, the pulse distortion due to the fiber nonlinearity
should be considered. On the other hand, dispersion is the spreading,
in the time domain, of a signal pulse as it travels through an optical
waveguide. From the spectral point of view, this means that the
spectral components of the propagating pulse reach their destination
at slightly different times. Both fiber’s loss and dispersion affect
the repeater spacing and the bandwidth of a long distance optical
communication system. Therefore, maintaining low dispersion is of
equal importance for ensuring increased system information capacity.

As the pulse width becomes shorter, our ability to accurately
model the propagation of the pulse becomes more complicated.
Therefore, it was necessary to develop a computational electromagnetic
tool that is capable of accurately modeling the propagation of pulses
with widths of the order of several femtoseconds. The propagation of
pulses of shorter widths has some significant consequences. Firstly,
as the width of the pulse becomes shorter, its bandwidth becomes
larger and the dispersion property of the materials used to propagate
it becomes effective. Secondly, the propagation of these ultra-short
pulses needs to include the nonlinear effects of the media in which they
propagate. In other words, as the pulse becomes shorter, the nonlinear
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nature of the waveguide materials has a more significant contribution
on its propagation.

The nonlinear behavior of electromagnetic fields in optical fiber
is due to the nonlinear relation between the electric field and the
induced electric polarization. Different approximations have been
suggested to yield an analytical solution for Maxwell’s equations for
the case of electromagnetic problems. The most popular one of
these approximations is to formulate the problem as a set of scalar
nonlinear equations with slowly varying envelope. These non-linear
equations have the form of non-linear Schrödinger’s equation (NLSE)
which can be solved either analytically or numerically. The analytical
version of these solutions, for very little special cases, is obtained
by using the method of inverse scattering transformation [5]. The
numerical solution, on the other hand, is carried out by different
methods such as split step Fourier method and the beam propagation
method [1]. However, these approximations are based mainly on
the assumption that the temporal variation of the envelope is
relatively small with respect to the carrier and this condition is not
fulfilled in the case of ultra-short pulse. Due to the rapid increase
in computational capabilities, finite-difference time-domain (FDTD)
technique has become a fertilized alternative method to study such
type of complex problems.

Based on the previous discussion, it is necessary to develop a
full-wave analysis for Maxwell’s vector field equations taking into
account the effects of dispersion and nonlinearity. Solving 1-D
nonlinear Maxwell’s equations by using FDTD was discussed by several
authors [3–7]. In their solutions, they used different techniques to
include the nonlinear effect in the FDTD formulation such as z-
transform [4], recursive convolution method [5], and direct integration
method [6, 7]. Although the 3-D formulation of that problem represents
a more practical view of applications, the direct solution using 3D-
FDTD requires huge storage and computational time. Different
techniques have been introduced [8, 9] to simplify this case of the
problem under investigation to become more suitable for simulation
by using the available computational resources. Scalar FDTD,
moving frame technique, and parallel processing are the most familiar
candidates of these techniques.

Another significant simplified treatment of this problem can be
obtained by using the rotational symmetry of the optical fiber’s
geometry. In this treatment, the azimuthal dependence of the field
components would be represented by a Fourier series expansion and
it would be sufficient to simulate the problem at a single φ-plane
in cylindrical coordinates. This technique is known as FDTD of
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bodies of revolution BOR-FDTD [15]. It was already used to solve
the problem in a type of optical fiber which is free of dispersion and
non-linearity [12]. Additionally, it was employed to solve bodies of
revolution of dispersive material [14]. The scope of our manuscript is
to introduce an extension of this BOR-FDTD technique to combine the
nonlinear effects with the dispersion effect and to show their influence
on the behavior of an ultra-short pulse as it propagates over an optical
fiber. This paper is organized as follows: Section 2 formulates the
problem under consideration after presenting the basic assumptions
which are taking into account in this formulation. The outlines of the
proposed algorithm for solving this problem are explained in Section 3.
Section 4 is devoted to the presentation of our numerical simulation
results and Section 5 summarizes our concluded remarks.

2. BASIC ASSUMPTIONS AND PROBLEM
FORMULATION

In this section, we are concerned with formulating our problem
and stating the basic assumptions under which this formulation was
achieved. The backbone of any electromagnetic problem is the coupled
Maxwell’s relations. They describe the variation of the electric field of
this problem as a function of its associated magnetic field. Let us now
start our analysis by writing these two coupled equations:

∇× �E = −µ
∂ �H

∂t
(1a)

and

∇× �H =
∂ �D

∂t
+ σ �E (1b)

In the above expressions, �E and �H represent the electric and magnetic
field vectors, respectively; µ and σ denote the permeability and
conductivity of the medium in which the pulse propagates. In the case
where this medium is of type nonlinear, the electric field displacement
�D is related to the electric field through the formula [12]:

�D = ε0ε∞ �E + �PLN + �PNL (2)

ε0 and ε∞ represent the free space and the medium relative
permittivity at infinite frequency, respectively. The linear �PLN and
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nonlinear �PNL polarization vectors are defined as [9]:

�PξLN (r, t) = ε0

∞∫
−∞

χ(1)
(
t− t′

)
�Eξ

(
r, t′

)
dt′ (3a)

and

�PξNL (r, t) = ε0

∫∫∫ ∞

−∞
χ(3) (t− t1, t− t2, t− t3)

�Eξ (r, t1) �Eξ (r, t2) �Eξ (r, t3) dt1 dt2 dt3 (3b)

where ξ represents either r-, ϕ- or z-component in cylindrical
coordinates; χ(1)(t) and χ(3)(t) denote the 1st- and the 3rd-order
susceptibility functions, respectively, which are assumed to be
independent of the direction of the electric field. It is well known
that the 2nd-order, χ(2)(t), along with all even orders of susceptibility
functions, equals to zero in media that display inversion symmetry in
its crystal structure. It is of importance to note that the optical fiber
is fabricated from one of these materials [14].

The key point of the BOR FDTD is the analytical introduction of
the azimuthally field variation. Assuming that the non-linear response
of the material is also rotationally symmetric, the field components can

(a) (b)

Figure 1. Field component locations in finite difference representa-
tion. (a) 3-D representation in cylindrical coordinates. (b) Corre-
sponding 2.5-D problem by factoring out the φ dependence.
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be expanded in a Fourier series as:

�ξ (r, ϕ, z, t) =
∞∑

m=0

[
�ξme (r, z, t) cos (mϕ) + �ξmo (r, z, t) sin (mϕ)

]
(4)

In the above expression, �ξ stands for either �H or �D field vector. The
suffix m represents the mode number along the ϕ direction and the
suffix e or o represents either even or odd mode.

Substituting the displacement and magnetic field vectors, which
have special cases of Eq. (4), into Eq. (1), a new set of equations
will be obtained after factoring out the angular variable ϕ. These
new equations are referred to as 2.5-D versions of the original formula
(Eq. (1)). 2.5-D means six field components in 2-dimensional plane;
i.e., the six field components will be computed in a specified direction of
ϕ-plane. The locations of the electric and magnetic fields in the original
3-D and in 2.5-D situations are shown in Fig. 1. Then, following the
same notations as those used in the conventional FDTD [15], the finite-
difference form of this new set of equations can be formulated as:

Dn+1
r (i,j)=Dn

r (i, j) −
(

∆t

∆z

) (
Hn+1/2

ϕ (i, j) −Hn+1/2
ϕ (i, j − 1)

)

−
(
m ∗ ∆t

i ∗ dr

)
Hn+1/2

z (i, j) (5a)

Dn+1
ϕ (i,j)=Dn+1

ϕ (i, j) +
(

∆t

∆z

) (
Hn+1/2

r (i, j) −Hn+1/2
r (i, j − 1)

)

−
(

∆t

∆r

) (
Hn+1/2

z (i, j) −Hn+1/2
z (i− 1, j)

)
(5b)

Dn+1
z (i,j)=Dn+1

z (i, j) +
(

m ∗ ∆t

(i− 1/2)∆r

)
Hn+1/2

r (i, j)

+
(

∆t

(i−1/2)∆r

)(
i∗Hn+1/2

ϕ (i,j)−(i−1)∗Hn+1/2
ϕ (i−1,j)

)
(5c)

Hn+1/2
r (i,j)=Hn+1/2

r (i, j) −
(

m ∗ ∆t

µ0 (i− 1/2) ∆r

)
En

z (i, j)

+
(

∆t

µ0∆z

) (
En

ϕ (i, j + 1) − En
ϕ(i, j)

)
(5d)

Hn+1/2
ϕ (i,j)=Hn+1/2

ϕ (i, j) −
(

∆t

µ0∆z

)
(En

r (i, j + 1) − En
r (i, j))

+
(

∆t

µ0∆r

)
(En

z (i + 1, j) − En
z (i, j)) (5e)
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Hn+1/2
z (i,j)=Hn+1/2

z (i, j) +
(

m ∗ ∆t

µ0 ∗ i ∗ ∆r

)
En

r (i, j)

−
(

∆t

µ0∗i∗∆r

)(
(i+1/2)En

ϕ (i+1,j)−(i−1/2)En
ϕ(i,j)

)
(5f)

where

r = ∆r

(
i− 1

2

)
, z = j ∗ ∆z, and t = n ∗ ∆t (5g)

The next step in this analysis is to search how the singularity in Eq. (5),
as r → 0, can be handled. This problem of singularity was solved by
Chen et al. [15]. It was assumed that only one-half of the first cell
(0, j) is located in the computational domain as shown in Fig. 2. This
figure demonstrates that all the three components, Er, Hz, and Hϕ

exist for i = 0. However, as seen from Eqs. (5b) and (5c), only the
tangential components to this boundary, i.e., Hz, and Hϕ are needed
to update the adjacent Dϕ and Dz fields internal to this mesh, i.e., cell
(1, j). Furthermore, from Eq. (5c), it is shown that to compute Dz at
i = 1, Hϕ at i = 0 must be multiplied by a factor (i− 1) which is zero.
Hence, Hϕ at i = 0 is not needed. Thus, only Hz is needed at the
boundary i = 0 to update all field components in the computational
domain. It is of importance to note that, from Eq. (5b), Hz vanishes
at i = 0 for m �= 0. Consequently, the only one needed to be evaluated
is Hz for i = 0 and m = 0. The starting point to this evaluation is the

Unit Cell ( 0, j)

HZ HZ

HZHZ

E r

E r E r

Er

HQ HQ

HQ HQ

EQ EQ

Hr Hr

EZ EZ

Z

r

Figure 2. A section of the FDTD lattice at r = 0.



226 El Mashade and Nady

integral form of Faraday’s law which is:∮
∆c

�E · d�l = −
∫∫

∆s
µ
∂ �H

∂t
· d�s (6)

The contour of integration ∆c is taken as a loop around the z-axis with
radius r0 = ∆r/2 and ∆s denotes an element area inside the loop, as
shown in Fig. 3. Now, apply Eq. (6) to the magnetic field Hz at the z-
axis and the electric field Eϕ around it. It is important to note that the
electric field Eϕ varies sinusoidally with ϕ, as previously mentioned.
For m = 0, the electric field En

ϕ (0, j) is assumed to be constant over
the integral path, so Eq. (6) becomes:

2π
dr

2
En

ϕ = −µπ

(
dr

2

)2 H
n+1/2
z −H

n−1/2
z

dt
(7)

After simplifying this equation, the following time update formula for
Hz at i = 0 and m = 0 is obtained

Hn+1/2
z (0, j) = Hn−1/2

z (0, j) − 4dt
µdr

En
ϕ (1, j) (8)

Once Hz is computed at i = 0, the rest of the field components can be
easily evaluated, as Eq. (5) demonstrates.

Figure 3. Integral path for the evaluation of Hz at r = 0.

3. FDTD ALGORITHM FOR NONLINEAR DISPERSIVE
MATERIALS

In the previous section, we have formulated the finite difference basic
equations that govern the variation of the new magnetic field as a
function of the old electric and magnetic field components, Eqs. (5d)
and (5f), and that control the variation of the new displacement field
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with the old displacement and magnetic field components (Eqs. (5a)
and (5c)). Our goal in this section is to obtain the new electric field
components as a function of the displacement and polarization fields.
In nonlinear optics, the relation between the displacement vector �D and
electric field vector �E depends on the linear and nonlinear polarization
characteristics of the underlined medium, as Eq. (2) demonstrates.

To complete our analysis, a particular models for χ(1)(t) and
χ(3)(t) must be firstly proposed. Here, a Lorentzian model is chosen to
represent the linear dispersive susceptibility of the considered material.
The frequency-domain representation of such a model has a form given
by:

χ(1) (ω) =
(εs − ε∞)ω2

0

ω2
0 + 2jωδ − ω2

(9)

Furthermore, the material nonlinearity is taken as:

�PNL (r, z, t) = ε0χ
(3) �E(r, z, t)

∞∫
−∞

g (t− t̄ )E2 (r, z, t̄ ) dt̄ (10)

In the above formula, χ(3) represents the nonlinear coefficient. The
causal response function g (t− t̄ ) is normalized in such a way that its
integration over all the possible time values becomes unity. In other
words, this function can be defined as

g(t) = αδ(t) + (1 − α) gR(t) (11)

In this relation, δ(t) is the Dirac delta function representing the
instantaneous response of Kerr interaction; α is a weighting factor that
weights the relation between the Kerr and the Raman interactions; and
gR(t) is defined as:

gR(t) =
(
τ2
1 + τ2

2

τ1τ2
2

)
exp (−t/τ2) sin (t/τ1) (12)

It models a single Lorentzian line (single-pole) centered on the optical
phonon frequency, 1/τ1, and having a linewidth of 1/τ2. In FDTD
method, there are different techniques dealing with Eq. (2) to compute
the new electric field. Among them, there are Z-transform technique,
recursive convolution method, and auxiliary differential equation
method which is known as direct integration method. Due to its high
precision, the last technique is chosen here to carry out our analysis.
It derives a system of coupled second order differential equations, the
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solution of which can be handled by defining two auxiliary functions
F (t) and G(t) that are proposed by Goorjian and Taflove [6]. Thus,

FJ(t) = ε0

t∫
0

χ
(1)
J (t− t̄ )E (r, z, t̄ ) dt̄ J = 1, 2, . . . , p (13)

p in the above expression denotes the number of poles

G(t) = ε0

t∫
0

gR (t− t̄ )E2 (r, z, t̄ ) dt̄ (14)

Using the definitions of F (t) and G(t), Eq. (2) becomes

E =

D − ∑
j
Fj − (1 − α)χ(3)EG

ε0

[
ε∞ + αχ(3) (E)2

] (15)

The functions F (t) and G(t) have the property that satisfies the
following coupled second-order differential equations

1
ω2

0

d2F

dt2
+

2δ
ω2

0

dF

dt
+

[
1 +

εs − ε∞
ε∞ + αχ(3) (E)2

]
F

+

[
(εs − ε∞) (1 − α)χ(3)E

ε∞ + αχ(3) (E)2

]
G =

[
εs − ε∞

ε∞ + αχ(3) (E)2

]
D (16)

1
ω̄2

0

d2G

dt2
+

2δ̄
ω2

0

dG

dt
+

[
1 +

(1 − α)χ(3) (E)2

ε∞ + αχ(3) (E)2

]
G

+
[

E

ε∞ + αχ(3) (E)2

]
F =

[
E

ε∞ + αχ(3) (E)2

]
D (17)

The finite difference form of this system of coupled equations, for the
r-component, becomes:

1
ω2

0 (∆t)2
(
Fn+1

r (i, j) − 2Fn
r (i, j) + Fn−1

r (i, j)
)

+
δ

ω2
0∆t

(
Fn+1

r (i, j) − Fn−1
r (i, j)

)
+

[
1 +

εs − ε∞
ε∞ + αχ(3) (En

r (i, j))2

]
Fn+1

r (i, j) + Fn−1
r (i, j)

2
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+

[
(εs − ε∞) (1 − α)χ(3)En

r (i, j)
ε∞ + αχ(3) (En

r (i, j))2

] (
Gn+1

r (i, j) + Gn−1
r (i, j)

)
2

=
[

εs − ε∞
ε∞ + αχ(3) (En

r (i, j))2

] (
Dn+1

r (i, j) + Dn−1
r (i, j)

)
2

(18)

and

1
ω̄2

0 (∆t)2
(
Gn+1

r (i, j) − 2Gn
r (i, j) + Gn−1

r (i, j)
)

+
δ̄

ω̄2
0∆t

(
Gn+1

r (i, j) −Gn−1
r (i, j)

)

+

[
1 +

(1 − α)χ(3) (En
r (i, j))2

ε∞ + αχ(3) (En
r (i, j))2

] (
Gn+1

r (i, j) + Gn−1
r (i, j)

)
2

+
[

En
r (i, j)

ε∞ + αχ(3) (En
r (i, j))2

] (
Fn+1

r (i, j) + Fn−1
r (i, j)

)
2

=
[

En
r (i, j)

ε∞ + αχ(3) (En
r (i, j))2

] (
Dn+1

r (i, j) + Dn−1
r (i, j)

)
2

(19)

Then, these simultaneous equations are solved for Fn+1
r and Gn+1

r to
give the new value of electric field which can be obtained by applying
Newton iteration method to the Eq. (15). Thus,

Ek+1
r (i, j) =

Dn+1
r (i, j)−∑

J

Fn+1
rJ

(i, j)−(1−α)χ(3)Ek
r (i, j)Gn+1

r (i, j)

ε0

[
ε∞ + αχ(3) (Ek

r (i, j))2
]

(20)

The staring value for this iteration would be the calculated field
at the previous time step En

ξ . After sufficient k iterations, the
difference between Ek+1

ξ and Ek
ξ would be negligible which corresponds

to convergent solution. At this point the electric field Ek+1
ξ would

correspond to the new electric field component En+1
ξ . On the other

hand, Eq. (20) can be combined with the auxiliary functions Fξ(t)
and Gξ(t) to represent the modification that is introduced here,
on the traditional BOR-FDTD method, to include the nonlinearity
and dispersion effects. The term (1 − α)χ(3)Ek

ξ (i, j)Gn+1
ξ (i, j) in

Eq. (20) corresponds to the stimulated Raman scattering (SRS) effect.
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This effect can be canceled by setting α equal unity. The term
αχ(3)(Ek

ξ (i, j))2 in the same equation, on the other hand, corresponds
to the self phase modulation (SPM). Setting α equal zero would cancel
this SPM, which is practically unaccepted. The above two terms are
related to the nonlinear effects in optical fiber and can be canceled by
eliminating χ(3). Finally, the Fξ(i, j) term represents the dispersion
effect.

The proposed algorithm for solving the above complicated system
of mathematical equations can be summarized as follows: the updating
process starts with the calculation of the new values of the magnetic
field components on all the grid points of the computational domain
using Eqs. (5d) and (5f). By means of these values, the displacement
field components are updated in the same way using Eqs. (5a) and (5c).
Subsequently, new values of the electric field components are calculated
with reference to Eq. (20). This approach avoids the necessity of
updating the dielectric values of the material, which arising due to the
nonlinear effects, in the computational domain because these effects are
directly taken into account in calculating the electric field components,
through the computation of Eq. (20).

The numerical algorithm of the finite differences described above
requires a specific relation between time increment dt and spatial
increment of the lattice. This relation is necessary to avoid numerical
instability, which means increasing the results without limit as time
progress. In BOR FDTD, the numerical stability restriction on the
choice of the spatial and time increments is given by:

c∆t ≤ min (∆r,∆z)
s

(21)

where c is the speed of light in the medium, s =
√

2 for m = 0, and
s = m + 1 for m > 0. In our numerical calculations, a length of one
wavelength is divided into 30 spatial increments (spatial increment =
λ/30) to avoid numerical dispersion.

The present simulation results are based on the ratio of the
total field to the scattered field (TF/SF) excitation technique [11].
The source signal of this excitation is assumed to be a sinusoidally
modulated pulse with spatial Gaussian distribution of the form:

A(r, t) = A0
sin(2πct/λc)

cosh
(√

2(t− 4Te)/Te

) exp
(
−(r/r0)2

)
(22)

In Eq. (22), λc is the carrier wavelength in free space and Te is the
pulse width. This spatial Gaussian distribution corresponds nearly to
the field distribution of the fundamental mode in optical fiber [16]. Our
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numerical results are carried out for a pulse width (FWHM) of 20 fs
and a carrier wavelength of 2.2µm. On the other hand, r0 denotes the
radius of the fundamental mode. This radius has a mathematical form
given by [9]

r0 = a
(
0.65 + 1.619V −1.5 + 2.879V −6

)
(23)

where a is the core radius and V is the normalized parameter defined
by

V =
2πa
λ

√
εcore − εcladd (24)

To truncate the computational domain of the FDTD algorithm, it is
required to use an appropriate absorbing boundary condition. The
most effective absorbing boundary condition is the perfect matched
layer (PML). However, the formulation of PML in the r-direction would
be a quite complicated problem for nonlinear material as in the case
of our problem. Fortunately, the field is naturally decaying in the
cladding region in such a way that it would be quite sufficient to use a
simpler absorbing boundary condition for the geometrical specification
of the optical fiber. Thus, the results of the present paper are based
on Mur’s absorbing boundary condition which has much simpler form
in comparison with PML.

4. NUMERICAL SIMULATION RESULTS

After the presentation of our analysis for the propagation character-
istics of an ultra-short pulse in an optical waveguide of nonlinear be-
havior, the next logical step is to program the obtained mathematical
formulas on a digital computer to follow the movement of that pulse
and to show its shape variation as it progresses through the optical
fiber. Some numerical values must be given to the program for run-
ning. Our numerical results are obtained for a 20 fs FWHM input
secant pulse at 2.2 µm carrier wavelength. This pulse propagates in
a single pole material; the parameters of which are introduced in Ta-
ble 1, as a core material and the cladding material has a refractive
index which is 1% less than that of the core material. The radius of
the core is assumed to be 4.5 µm while the radius of the cladding is
taken as 7.5 µm. The displayed results are divided into two categories
of curves. The first category contains Figs. 4–8 while the second one
consists of Figs. 9–13. In the first group, the linear effects are the only
effects that are taken into account. In the second group, on the other
hand, both the linear and nonlinear effects are considered in evaluating
its candidates of figures.
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(a) (b)

(c) (d)

Figure 4. Spatial variation of Er, for fixed ϕ angle of 30◦, at instants
of: (a) 675 fs, (b) 1475 fs, (c) 2125 fs, (d) 3250 fs.

Table 1. Lorentz parameters of single-pole material.

Static permittivity εs 5.25
Infinite permittivity ε∞ 2.25
Resonant frequency ω0 4 × 1014 rad/sec
Damping coefficient δ 2 GHz

Let us start our discussion about the behavior of each one of the
figures of the first group. The family of curves of Fig. 4 shows the
variation of radial component of the electric field “Er”, as a function
of r and z at an azimuthal angle of 30◦ with time. Figs. 4(a)–
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Figure 5. Axial variation of the electric field radial component (Er)
at instants of: (a) 675 fs, (b) 1475 fs, (c) 2125 fs, (d) 3250 fs.

4(d) illustrate these variations at instants of 675, 1475, 2125, and
3250 fsec., respectively. From these figures, it is shown that as the pulse
propagates through the optical waveguide, it suffers from dispersion.
The characteristics of this dispersion are clearly demonstrated on the
shape of the pulse where its amplitude decreases as its distance of
propagation increases and its width broadens. It is of importance to
note that the scale of the amplitude axis in Fig. 4(a) is different from
that of Figs. 4(b)–4(d), where it varies from −1 to +1 in the first scene
while it changes from −0.4 to +0.4 in the other scenes. For these
characteristics to be explicitly clear, we repeat the presentation of the
same candidates of Fig. 4 as a surface scenes instead of volume scenes
by fixing the radial coordinate (r = const.). Figs. 5(a)–5(d) illustrate
the variation of Er with z at the same instant values as in Fig. 4
taking into account that r and ϕ are held constants. The amplitude
axis in each scene of this figure is the same as its corresponding one in
the previous figure. The displayed results of this figure demonstrate
clearly the effect of dispersion on the behavior of the propagated
pulse where its width increases and its amplitude decreases as it
travels along the optical waveguide. In the next family of curves,
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we are concerned with the intensity variation of the hybrid mode of
propagation (HE11) as a function of r at the same instant values as
the previous figures. Since the considered optical fiber is of monomode
type, the HE11 mode represents the fundamental mode of propagation.
The obtained results for these operating conditions are shown in
Figs. 6(a)–6(d). It is evident from the behavior of the intensity of
the mode under consideration that it maintains its peak always at
the center of the guide and decays as the radial distance increases.
The rate of decreasing is approximately unchanged while the peak
amplitude goes lower as the pulse travels along the waveguide, as we
have previously mentioned. The next candidate in the category under
investigation, which associates with the time-domain representation,
deals with the variation of the radial electric field component with time,
for different values of z, given that r & ϕ are maintained unchanged.
Figs. 7(a)–7(c) depict this variation at regular intervals of z, which
are 75, 150, and 225µm. This is also another way to demonstrate the
concept of dispersion. In the final figure of this category, it is required
to spectrally analyze the radial electric field associated with the pulse
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Figure 6. Intensity variation corresponds to the peak of the pulse at
instants of: (a) 675 fs, (b) 1475 fs, (c) 2125 fs, (d) 3250 fs.
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Figure 7. Temporal variation of the electric field radial component
(Er) at different points on the axis and corresponds to: (a) z = 75µm
(b) z = 150 µm (c) z = 225 µm.
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to show its frequency contents. The frequency-domain representations
of Figs. 7(a)–7(c) are illustrated in Figs. 8(a)–8(c), respectively. The
spectrum shown in these figures demonstrates that the frequency
content of Er has a resonance curve with its center located around
λ = 2.2 µm, which is the central frequency of the input pulse, and
approximately maintains its shape through out the z-axis, except a
slightly variation of its peak.

In the second category of curves, we repeat the drawing of the
same family of curves as in the first category except that the nonlinear
effects along with the linear ones are taken into account in evaluating
its numerical results. The numerical values of the nonlinear parameters
are taken as:

(a) (b)

(c) (d)

Figure 9. Spatial variation of Er, in 30◦ ϕ-plane, at instants of: (a)
675 fs (b) 1475 fs (c) 2125 fs (d) 3250 fs.
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Nonlinear susceptibility: χ(3) = 0.07 m2/V2

Reciprocal of the photon frequency: τ1 = 6.1 fs
Photon lifetime: τ2 = 32 fs sec
Relative strength of SPM to SRS is set to be: α = 0.7
Input amplitude: E0 = 2.4 Vm−1 [.]

Figs. 9(a)–9(d) illustrate the behavior of Er component at different
stages of propagation. In comparison with those of Fig. 4, it is clear
that both the amplitude and the width of the propagated pulse remain
nearly unchanged. This means that the pulse is not dispersive as it
progresses along the optical fiber. This predicted result belongs to the
existence of the nonlinear effects which causes anti dispersion. The
resulting anti dispersion tends to cancel out the dispersion caused by
the linear effects and the combination of the two effects results in
a soliton-like pulse, which means that the cancellation is not exact
between the GVD and nonlinear dispersion. Additionally, it is of
importance to note that there is a low intensity pulse that emerges from
the leading edge of the main pulse and travels much faster than it. The
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Figure 10. Axial variation of the radial component of the electric
field (Er) at instants of: (a) 675 fs (b) 1475 fs (c) 2125 fs (d) 3250 fs.
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generation of this new sub-pulse is owing to the effect of Stimulated
Raman Scattering SRS. Figs. 10(a)–10(d) show the same thing as
Figs. 5(a)–5(d) for the present operating conditions. The comparison
of this family of curves with those of linear case demonstrates the
role that nonlinear effects can play in maintaining the shape of the
propagated pulse through out the longitudinal direction of the optical
waveguide. In addition, the effect of the appearance of the secondary
low intensity pulse that propagates faster than the mother pulse is more
evident. The third family of curves, Figs. 11(a)–11(d) is concerned
with the radial variation of the intensity of the fundamental mode
at different z values. It is apparent that the maximum value of the
field, occurring at the center of the optical fiber, exceeds the unity
value. The gain, that the electric field attains, is owing to the nonlinear
effects and especially the SPM phenomena which have a fort influence
on the behavior of the pulse than the linear effects. In addition,
the envelope of the pulse has a bell shape which, approximately, rest
unchanged through out the length of fiber. As an introduction to the
spectrum of the field component, Figs. 12(a)–12(c) depict the time
variation of the radial component of the associated field at different
locations on the guide axis. The waveform of the field variation remains
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Figure 11. The peak intensity variation of the pulse at instants equal:
(a) 675 fs (b) 1475 fs (c) 2125 fs (d) 3250 fs.
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and at z equals to (a) z = 150 µm (b) z = 225 µm (c) z = 300µm.
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approximately of the same form without significant changes. As a
final step in our evaluation procedure, Figs. 13(a)–13(c) illustrate the
frequency-domain representation corresponding to Figs. 13(a)–13(c).
The comparison of this family of curves with those outlined in the
previous category reveals that the central frequency of the main pulse
is shifted downwards due to stimulated Raman scattering (SRS).

5. CONCLUSIONS

In this paper, we have developed a computational electromagnetic
algorithm that is capable of modeling the propagation of an ultra-
short pulse in an optical fiber which exhibits linear and nonlinear
effects. The nonlinear effects that are taken into account include the
self phase modulation SPM and the Stimulated Raman Scattering SRS.
Our analysis is based on FDTD-BOR technique with direct integration
method to model the dispersion and nonlinear effects. The presented
results show a significant importance of the nonlinearity effect in
reducing the overall dispersion along the optical fiber. The proposed
algorithm can be used as a design tool for different devices such as fiber
Bragg grating (FBG) which has many important practical applications.
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