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Abstract—An outdoor crop-bed was prepared to observe scatterom-
eter response in the angular range of 20◦ to 70◦ at VV- and HH-
polarization. The soil moisture and crop variables like plant height,
leaf area index and biomass of crop ladyfinger were measured at differ-
ent growth stages of the crop ladyfinger. Temporal variation in scat-
tering coefficient was found highly dependent on crop variables and
observed to increase with the increase of leaf area index and biomass
for both polarizations. In this paper, a novel approach is proposed for
the retrieval of soil moisture and crop variables using ground truth mi-
crowave scatterometer data and artificial neural network (ANN). Two
different variants of radial basis function neural network (RBFNN) al-
gorithms were used to approximate the function described by the input
output relationship between the scattering coefficient and correspond-
ing measured values of the soil moisture and crop variables. The new
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model proposed in this paper gives near perfect approximation for all
three target parameters namely soil moisture, biomass and leaf area
index. The retrieval with minimal error obtained with the test data
confirms the efficacy of the proposed model. The generalized regression
network was observed to give minimal system error at a much lower
spread constant.

1. INTRODUCTION

In the recent times, the applicability of microwave remote sensing has
made significant headways for monitoring the soil and crop variables.
A plethora of applications ranging from crop yield estimation, to
the monitoring of crop variables have been tried successfully. The
crop variables of interest generally include biomass, leaf area index,
chlorophyll content, plant height etc. Soil moisture content being one
of the most important parameters, its estimation becomes vital for
improving yield forecasts, scheduling irrigation and other activities of
crop management. The underlying principle behind the soil moisture
estimation being the difference between the dielectric properties of
wet and dry soil [1]. Leaf area index for a plant is a key functional
determinant of energy, and exchange of CO2 becomes possible between
the terrestrial ecosystems and atmosphere [2]. Leaf area index varies
both temporally and spatially, and is influenced by the soil conditions
and the change in the annual climate. The active microwave remote
sensing is affected by the vegetation cover because it absorbs and
scatters some part of microwave radiation incident on it [3]. Estimation
of biomass [4] and soil moisture content has been reported by several
researchers [5–7]. The estimation of crop variables may be used for
growth monitoring and identification of crop type. To use radar for
such purposes, direct models simulating the backscattering coefficient
of a canopy are generally developed. These models can be inverted
to estimate the crop variables and study the microwave response
of varying crop-soil variables. These models may be excellent tool
for understanding the scattering mechanism and estimating the crop
variables. However, they consist of rather complex set of equations. It
is also difficult to relate statistical properties of dielectric permittivity
of the canopy to crop variables. These models require numerous
biophysical and soil parameters for accurate estimation of the crop
variables. The involvement of large number of variables and parameter
make their inversion complicated and cumbersome task. For examples,
Cookmartin [8] developed a multilayer second order radiative transfer
model. The limitation of Cookmartin [8] model is that it needs
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the attenuation parameters of various layers and inversion of this
formulation is quite complex to retrieve the crop variables. Picard [9]
has developed multiple scattering coherent models for understanding
C-band radar backscatter from wheat canopy. In Picard [9] model, it is
difficult to calculate multiple scattering interactions which increase the
complexity of electromagnetic problem. Multiple scattering equations
were applied to the case of vertical cylinders over an infinite surface.
The major problem is to solve the multiple scattering equations.

Thus, these models are either very complex to solve or require
a large number of input data to retrieve the crop variables
and to understand the individual response of crop variables on
microwave scattering/absorption. The quantitative understanding of
the contribution by each crop variables to scattering, attenuation and
the relative magnitude of the scattering from the soil and the vegetation
is still a matter of debate for the most of crops.

Therefore, model free estimation techniques are the one which
are capable of providing the best results be it a classification task or
retrieval of crop-soil variables. The retrieval of crop variables using
soft computational techniques becomes all the more important in the
current technological scenario. Artificial neural networks (ANNs) hold
a lot of promise in this field. Artificial neural networks are abstract
computer systems which are inspired by biological nervous systems.
Inspired by the enormous capability of the human brain to organize
its structural constituents known as neurons, so as to perform certain
computations many times faster than the fastest digital computers
in existence today, neural networks try to mimic the aforementioned
properties of the human brain by acting like a massively parallel
distributed processor [10].

ANNs can be made to perform a particular function by adjusting
the values of connections between them. This process is known as
training [11]. ANNs are used for diverse tasks including pattern
recognition, function approximation, estimation, classification and
prediction, hence emerging in the present technological scenario as a
powerful computational tool as well as an integral part of the advances
made in the field of artificial intelligence [12]. The learning of an
ANN is a process by which the free parameters of a neural network
are adapted through a process of simulations by the environment in
which the network is embedded. There are many different mechanisms
of learning, roughly classified into two groups as supervised and
unsupervised learning. Many efficient algorithms have been designed
and tested upon a wide variety of problems successfully. Significant
efforts have been put in by the researchers in the past for the processing
of remotely sensed data [13].
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Radial basis function neural networks (RBFNN) have proved to be
very good function approximators as well as classifiers for a wide variety
of remotely sensed data. Generally the back-propagation algorithm [14]
is widely recognized as a powerful tool for training of the multilayer
neural networks (MLNN). But since it applies the method of steepest
descent to update the weights, it often suffers for very slow convergence
rates besides yielding suboptimal solutions [15]. In addition to the
aforementioned limitation of MLNNs, the non-linearities associated
with the network add considerable difficulties to theoretical analysis
of the network behaviour [16]. RBFNNs provide us with a better
alternative since they greatly reduce the training time. Since the
number of radial basis neurons is equal to the number of training
patterns, the practicability of RBFNNs gets confined to those problems
which have limited number of patterns in low dimensional space [17].

In this paper, two variants of RBFNN algorithms namely
conventional radial basis function neural network and generalized
regression neural network (GRNN) were used for the retrieval of soil
moisture content, biomass and leaf area index. The conventional
RBFNN employed in the study utilized the newrb function in the
MATLAB, whereas the newgrnn function is used to create the
generalized regression network. The conventional radial basis network
consists of two layers; one hidden radial basis layer of S1 neurons and
an output liner layer of S2 neurons. Radial basis network is created
iteratively by the newrb function. The neurons are added one by one
to the network until the sum squared error falls beneath an error
goal or a maximum number of neurons are reached. A generalized
regression neural network (GRNN) is a specialized one for function
approximation. The difference between the two lies in the architecture
of the linear layer. In both variants, the spread constant is the most
important parameter of the network. This determines the width of
an area in the input space to which each neuron responds. When
the spread is large enough, several radial basis neurons have fairly
large output at any given moment. This makes the network function
smoother and it results in better generalization.

Figures 1(a) and 1(b) depict the structures of the two networks.
As is evident from the Figs. 1(a) and 1(b), the difference between the
weight vector of a neuron and its input vector should be minimized.
This difference is denoted by the term ‘distance’. The radial basis
neurons with their weight vectors quite different from the input vectors
have near zero outputs. The vector IW1,1 represents the weight vector
to the first radial basis layer, from the first input vector, whereas LW2,1

represents the weight vector to the second linear layer from the first
radial basis layer. Unlike the conventional radial basis network, in
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generalized regression radial basis network, the LW2,1 is set equal to
the target, and a dot product of the second layer weights with the
output of radial basis layer is taken using the function nprod. One to
one correspondence between the ‘distance’ and targets is more likely
to be achieved using generalized regression radial basis networks and
hence it becomes somewhat more suited to the function approximation
problems than the conventional radial basis networks. The network
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(b)
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Figure 1. (a) A typical generalized regression radial basis function
network with one radial basis layer and one linear layer. (b) A typical
conventional radial basis function network. (c) Optimized ANN for
training with one dimensional input vector for conventional RBFN and
GRNN. (d) Optimized ANN for training with two dimensional input
vector for conventional RBFN and GRNN. (e) A typical radial basis
function neuron. (f) A typical radial basis transfer function curve.

for retrieval task was first configured as shown in Fig. 1(c). A one
dimensional input vector was chosen by taking sigma VV-polarization
data and sigma HH-polarization data separately. The error goal was
kept at zero and spread constant was varied. The configuration of
Fig. 1(c) was almost same for both conventional RBFNN and GRNN
networks except for weights and biases and some structural differences
as explained by Figs. 1(a) and 1(b). The MATLAB functions newrb
and newgrnn returned a network with 24 neurons in the hidden layer
and one neuron each in the input and output layers. Further, to
increase the complexity of the retrieval task, the input data was made
two dimensional by using both sigma VV-polarization data and sigma
HH-polarization data simultaneously in the same network. The input
layer now consisted of two neurons, the other parameters being the
same as shown in Fig. 1(d). The plots of variation in error with spread
constant as depicted in Figs. 4(a) and 4(b) are obtained by using the
network of Fig. 1(d) and GRNN and rest of the results are obtained
by using the network of Fig. 1(c) for both conventional RBFNN and
GRNN. Fig. 1(e) represents the basic structure of a radial basis neuron.
Fig. 1(f) depicts the radial basis transfer function. The function gives
a maximum value of 1 when its input is zero. The input to the radial
basis function is the ‘distance’ between the weight and input vectors.
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The choice of spread constant being the most important parameter
for the optimization of the network, the comparison between the two
variants of the radial basis network, involves the study of generalization
performance of the networks with different spread constants, for the
retrieval of different target parameters.

2. MATERIALS AND METHOD

Ground based scatterometer measurements were performed to study
the reflectivity/scattering coefficient of an outdoor crop-bed of crop
ladyfinger at its various growth stages. Fig. 2(a) shows the schematic
diagram of scatterometer system used in our field experiment. The
height and incidence angle of the antenna mounted on the wooden
platform can be varied. The height and look angle can be read from
the graduated linear and circular scales with the pointers provided
on the stand. The distance between the antennas and the centre of
the target was selected in order to work in the far field region, and
minimize the near field interactions. The polarization of radiated signal
was changed by using 90◦ E-H twists. The scatterometer system was
calibrated each day before and after microwave scattering measurement
of crop ladyfinger. The measuring system was calibrated with help of
an aluminium sheet of a known radar cross section. The radar cross
section of the aluminium was calculated by using equation as

AlσPP (θ) =
4πA2

λ2

(
sin(kb sin θ)

kb sin θ

)2

cos2 θ, P = V or H, (1)

where AlσPP (θ) is the radar cross section of the aluminium sheet, A is
the area of the sheet, λ is the wavelength of the incident wave, θ is the
incident angle, b is the dimension of the square sheet and k = 2π

λ . The
radar cross section of the aluminium sheet can be expressed in dB as

AlσPP (θ) = 10 log10[AlσPP (θ)], P = V or H. (2)

Firstly, the observations were carried out for aluminium sheet and
the scattered power from the aluminium sheet was noted. After that
scattered power was observed for crop ladyfinger at various growth
stages in the angular range of 20◦ to 70◦ for both VV- and HH-
polarizations. The scattering coefficient was calculated using equation

σ0
PP (θ) = cropbedPPP

ALPPP
×Al σPP (θ), P = V or H, (3)

where cropbedPPP is the scattered power from crop bed of ladyfinger.
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Figure 2. (a) Schematic diagram of scatterometer system. (b)
Angular variation of scattering coefficient for crop ladyfinger at
different stages of growth for VV-polarization. (c) Angular variation
of scattering coefficient for crop ladyfinger at different stages of growth
for HH-polarization.

In decibels, the scattering coefficient can be written as

σ0
PP (θ)(dB) = 10 log1]

[
cropbedPPP

ALPPP
×Al σPP (θ)

]
, P = V or H, (4)

For this study, the crop-bed having an area 4× 4 m2 of ladyfinger
was prepared especially for the microwave scattering/reflection
measurement. Ladyfinger is taken as a broad leafs crop and attained
the maximum average height of 71.5 ± 5 cm during observation. The
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leaf of crop ladyfinger was broad in shape and almost camouflaging
the background surface on which it was grown. The fruit filling stage
of this crop comes around 45 ± 5 days from the date of sowing. The
matured stage of this crop comes around 65 ± 5 days. The age of the
crop was counted from the date after sowing. Gravimetric soil moisture
content of soil is determined by randomly choosing soil sample from
the depth of 5 cm and taking the ratio of the weight of water present in
the soil to the weight of the dry soil. LAI is defined as the ratio of total
upper leaf surface of a crop divided by the surface area of the land on
which the crop grows. LAI is dimensionless although it is some times
presented in units of m2m−2. The biomass of the plant is the total dry
matter accumulation in the complete plant over a period of time. The
total biomass was computed from sample stalks and leaves, which were
dried in oven at 90◦C for 24 hours. These samples were weight before
and after drying and weight per square meter has been computed.

The obtained data was extrapolated using MATLABs polyfit
function to provide us with sufficient data for approximation with
the help of neural network as shown in Table 1. A set consisting of
30 data samples was obtained after extrapolating the data obtained
from the scatterometer in the form of backscattering coefficient as
inputs and soil moisture content, biomass content and leaf area
index as targets parameters. The scattering coefficient was calculated
both for sigma VV (vertical-vertical) and sigma HH (horizontal-
horizontal) polarizations. Eighty percent of the data was used for
training and twenty percent was used for testing purposes to assess
the generalization capability of the proposed networks.

For the calculation of system error, the global statistical
performance evaluation criterion “mean squared error” (MSE) was
used for calculating the training phase and test phase error i.e.,

E(MSE) = 1
Q

Q∑
k=1

e (k)2, where e(k) is the error and Q is the number of

test set data. The performance of the trained network was evaluated
by calculating the mean squared error calculated over the test data
set for all three target parameters for both sigma VV and sigma HH
polarizations. The networks with minimum training error were used
in the testing of six test samples for each of the inputs. For both
the variants of the RBFNN, the optimization of spread constant was
done by varying its value from default “1.0” experimentally both in
increasing and decreasing order and calculating the generalization error
for each spread constant.

The generalization capability of a neural network can only be
assessed by presenting it with the unseen ‘test’ data after the training
phase is over. Sometimes the network is trained to zero error but
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Table 1. All input and target parameters data.

Plant 
age 
(days) 

Backscattering 
coefficient sigma 
vv (dB) 

Backscattering
coefficient sigma 
hh (dB)

Soil moisture 
content (%) 

Biomass
(Kg/m2) 

Leaf
area 
index

30 -4.6950  -3.9670    27.63 0.6650 0.9200 
32 -4.6340  -3.9140    27.58 0.7042 0.9628 
34 -4.5690  -3.8580    27.48 0.7478 1.0372 
36 -4.5020  -3.7990    27.34 0.7958 1.1432 
38 -4.4310  -3.7370    27.15 0.8482 1.2808 
40 -4.3560  -3.6720    26.19 0.9050 1.4500 
42 -4.2780  -3.6040    26.62 0.9662 1.6508 
44 -4.1970  -3.5340    26.28 1.0318 1.8832 
46 -4.1137  -3.4600    25.90 1.1018 2.1472 
48 -4.0263  -3.3840    25.47 1.1762 2.4428 
50 -3.9356  -3.3040    24.99 1.2550 2.7700 
52 -3.8410  -3.2220    24.46 1.3382 3.1288 
54 -3.7443  -3.1370    23.88 1.4258 3.5192 
56 -3.6438  -3.0490    23.26 1.5178 3.9412 
58 -3.5400  -2.9580    22.59 1.6142 4.3948 
60 -3.4329  -2.8640    21.87 1.6900 4.8800 
62 -3.3226  -2.7670    21.85 1.7112 5.1009 
64 -3.2090  -2.6670    22.24 1.7328 5.2719 
66 -3.0921  -2.5640    22.56 1.7488 5.4335 
68 -2.9710  -2.4590    22.81 1.7652 5.5857 
70 -2.8480  -2.3500    23.00 1.7800 5.7285 
72 -2.7210  -2.2390    23.11 1.7932 5.8619 
74 -2.5910  -2.1240    23.17 1.8048 5.9859 
76 -2.4580  -2.0070    23.16 1.8148 6.1005 
78 -2.3220  -1.8870    23.08 1.8232 6.2057 
80 -2.1820  -1.7630    22.93 1.8300 6.3015 
82 -2.0390  -1.6370    22.72 1.8352 6.3879 
84 -1.8920  -1.5080    22.44 1.8388 6.4649 
86 -1.7430  -1.3760    22.09 1.8408 6.5325 
88 -1.5900  -1.2420    21.68 1.8412 6.5907 

upon presenting it with new data from the same set, its error is driven
to large values. This phenomenon is known as ‘memorization’ and
therefore the selection of optimum network is associated with finding
a network whose error is small when presented with test data.
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3. RESULTS AND DISCUSSION

The angular variation of scattering coefficient for crop ladyfinger at
different growth stages are shown in Figs. 2(b) and 2(c) for VV- and
HH-polarizations, respectively. The angular variation of scattering
coefficient decreases (σ0) with the increase of incidence angle at each
stage of crop ladyfinger for both the polarizations. However, angular
variation of σ0 was observed to decrease with the age of the crop. The
angular variation of scattering coefficient between the incidence angles
20 to 70◦ is defined as dynamic range. The dynamic range of σ0 at
different growth stage is quite different enough to discriminate the soil-
moisture and ladyfinger effect. When the crop variables are small at
the early stage, it is found that dynamic range of σ0 is greater than in
the older age of crop. Soil moisture effect was observed to be dominant
at early growth stage, when the magnitudes of the crop variables were
less.

The dynamic range of σ0 decreases with the age of crop shows the
dominance of crop effect on soil moisture effect at 9.89 GHz. Thus,
angular trends are more flat as the plant grows since the effects of
soil is masked by developing vegetation. The dynamic range of σ0

at different growth stage is quite different enough to discriminate the
soil-moisture and crop lady finger effect. The difference in crop covered
soil moisture effect and crop effect at early and latter stage of crop is
useful to analyze the data acquired by the space borne sensors. A
comparison of angular variation of scattering coefficient was done with
other research [18–21].

For the retrieval of soil moisture content, good performance was
obtained from both the variants of radial basis network. In the case
of conventional radial basis network, the optimum spread constant
was found to be 2.0 for which the generalization error was minimum.
The retrieval performance matches almost perfectly with the observed
variation of soil moisture content as represented in Figs. 3(a) to 3(d).
As we can infer by comparing Figs. 3(a) and 3(b) with Figs. 3(c)
and 3(d), the retrieval performance of GRNN is better than that
of the conventional RBFN. This is due to the fact that GRNN is
designed especially for solving approximation problems by feeding the
second layer weight vector to the function nprod. For soil moisture
content estimation, generalization error was found to be significantly
higher than that obtained for the retrieval of biomass content and
leaf area index. This result was expected owing to the presence of
more linearity in the data of biomass content and leaf area index as is
evident from Figs. 3(e) to 3(l). It was also observed that the network
performance was better when it was trained with the VV-polarization
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for all the three target parameters, in the sense that the error obtained
at the optimized spread constant i.e., 2.0 was less when network was
trained with VV-polarization data. In the case of generalized regression
network, the optimized spread constant was 0.1 and almost zero error
was obtained for all target parameter retrievals. The test performance
of the network for the optimized spread constant of 0.1 was found to
be similar for both VV- and HH-polarizations. The spread constant
was varied from 0.1 to 1.0 in the increments of 0.1. Figs. 4(a) and 4(b)
represent the variation in the generalization error with the change in
spread constant for both GRNN and conventional RBFN. It can be
concluded from these figures that the generalization error is lower for
all three retrievals when the network was trained with GRNN. The
variation in generalization error with change in spread constant is an
important parameter to assess the efficacy of any network. The neural

(a) (b)

(c) (d)
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(k) (l)

Figure 3. (a) Observed and training output of soil moisture at
different growth stages (days) of crop for HH-pol. (b) Observed and
training output of soil moisture at different growth stages (days) of
crop for VV-pol. (c) Training output of GRNN for soil moisture
retrieval for sigma vv-polarization. (d) Training output of GRNN
soil moisture retrieval for sigma hh-polarization. (e) Biomass retrieval
by conventional RBFN for VV-polarization. (f) Biomass retrieval
by conventional RBFN for HH-polarization. (g) Biomass retrieval
by GRNN for VV-polarization. (h) Biomass retrieval by GRNN
for HH-polarization. (i) LAI retrieval by conventional RBFN for
VV-polarization. (j) LAI retrieval by conventional RBFN for HH-
polarization. (k) LAI retrieval by GRNN for VV-polarization. (l) LAI
retrieval by GRNN for VV-polarization.

Table 2. Observed values versus retrieved values with GRNN at
incident angle 45◦ for VV-polarization.

Plant   
age  
(days)

Backscattering
Coefficient
Sigma vv (dB) 

Backscattering
Coefficient 
Sigma hh (dB)

Soil  
Moisture 
(%)  
Target 

Soil  
Moisture
(%)
Retrieved

Biomass
Target 
(Kg/m2)

Biomass 
retrieved 
(Kg/m2) 

LAI
target 

LAI 
retrieved  

38  - 4.4307 -3.7370 27.15 27.12 0.848 0.845 1.280 1.292
48  - 4.0263 -3.3840  25.47 25.47 1.176 1.160 2.442 2.440
58  - 3.5400 -2.9580 22.59 22.62 1.614 1.595 4.394 4.375
68  - 2.9720 -2.4590 22.81 22.76 1.765 1.763 5.585 5.573
78  - 2.3220 -1.8870  23.08 23.05 1.823 1.822 6.205 6.196
86  - 1.7430 -1.3760 22.09 22.08 1.840 1.839 6.532 6.524
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(a) (b)

Figure 4. (a) Variation in generalization error with spread constant
for the target parameters using GRNN for HH-polarization. (b)
Variation in generalization error with spread constant for the target
parameters using GRNN for VV-polarization.

network selected for retrievals should always be less sensitive to the
variation in learning parameters. The learning parameter in the case
of a radial basis network is spread constant. Therefore a network which
gives a constant error for a wide range of spread constants is considered
better since designers can choose from a wide range of spread constant
values for their network. Also, such network is more suitable for the
VLSI on chip implementation. GRNN is found to have that property
and therefore it is superior to the conventional RBFN.

4. CONCLUSION

This paper presents a method for the retrieval of crop-soil variables
using scatterometer data incorporating RBFNN and GRNN as a
computational tools. The retrieval values of biomass and leaf area
index of crop ladyfinger were very much close to the observed values
with almost zero system error at optimized spread constant without
solving complex models and collecting numerous biophysical and soil
parameters. In principle the study can be extended to different type of
problems including classification of crop/vegetation. As the conclusion,
we can summarize the following results:

• Desired retrievals with minimal system error were obtained using
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both the conventional radial basis and GRNN algorithms.
• The generalized regression network gives minimal generalization

error at a much lower spread constant than the conventional one.
• The GRNN is less sensitive to the variation in spread constant

thereby giving the designers a wider choice.
• The error performance of the network using sigma vv polarization

as the input is found to be better in both the variants of the radial
basis network.

• The retrievals for biomass and leaf area index were found to be
better than soil moisture content with almost zero system error at
optimized spread constant.
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