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Abstract—An efficient iterative method is presented for the fast
analysis of cylindrically conformal microstrip structures. Based on
the transmission line modeling (TLM) method and the fast modal
transform (FMT) theory, this technique accelerates the process
of the calculation by introducing the concept of the transverse
electromagnetic waves instead of the transverse fields considered in
the traditional algorithm. Within cylindrically stratified media, the
transverse electromagnetic waves are represented by the hybrid modal
basis functions. Ultimately, the specific form of the modal admittance
and the spectral reflection matrix are deduced. Furthermore, the
surface electric fields and electric currents of the cylindrically conformal
microstrip antenna fed by means of a microstripline are calculated via
the iterative process. On this basis, the input impedance of the antenna
can also be obtained. And the results gained by utilizing iterative
approach are compared with those from the published references to
demonstrate the accuracy or efficiency of this method.

1. INTRODUCTION

Recent years, cylindrically conformal microstrip antennas [1–7] find
more and more applications to various high-speed aircrafts, such
as missiles, airplanes and satellites. Several models have been
used to analyze this type of microstrip antennas. Among them,
generalized transmission line model [3] and cavity model [4], as the
earliest approximate models, are reasonable in considering some simple
structures, but not accurate enough when the substrate is not very
thin or there exists more intricate configurations. Besides, many
kinds of numerical methods are also employed. When using the
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method of moments (MoM) [8], the computation of the boring Green’s
functions [9–14] for cylindrically stratified media are inevitable, and
the slowly convergent basis functions lead to a large calculation time.
For the finite elements method (FEM) [15], a great number of cells are
needed to simulate the whole spatial structures and amount of memory
are taken up.

Based upon the transmission line modeling (TLM) method and
the transverse electromagnetic wave theory, a novel iterative method
is first introduced by H. Baudrand and has been successfully used
for analyzing the planar microstrip circuits [16–18]. By extended
to cylindrical coordinate system, this efficient method solved the
scattering problem of metallic cylindrical aperture [19, 20] and the
mutual coupling between slot antennas on a conducting cylinder [21].
Similarly, the scattering problems by arbitrarily shaped structures
in free space or thin dielectric layer coated conductors have also
been studied in [22] and [23], respectively. However, the iterative
approach adopted to cylindrically conformal microstrip structures,
which involve more complicated electromagnetic characteristics, is still
worthy studying.

Differing from the planar case, there are neither pure TEnm nor
TMnm polarized waves in cylindrical microstrip structures. And the
hybrid modes results in a full spectral reflection matrix rather than a
diagonal matrix for the decoupled case as the planar circuits.

It should be known that the cylindrical aperture or the slot
antenna on metallic cylinder contains only one kind of waves in a
region, which means that the standing waves and the travelling waves
will not exist together on the inner or outer side of the interface.
Thus the simple basis functions can provide satisfaction. Nevertheless,
the selection of modal basis functions for the cylindrical microstrip
structures seems much more difficult owing to the presence of standing
waves together with travelling waves in the same substrates. Moreover,
the functions must fulfil the electromagnetic field boundary conditions
on each cylindrical interface.

In this article, considering the wave concept iterative process
for planar microstrip circuits, an efficient iterative method suitable
for calculating cylindrical microstrip structures is proposed. The
theory as well as the detailed procedure is described in Section 2.
Correspondingly, the scattering matrix, modal admittances and
spectral reflection coefficients are also derived. To obtain a more
precise equivalent circuit model, multiform modal basis functions
are applied for expressing the transverse electromagnetic waves in
dielectric medium layer. In Section 3, this technique is attested to
be excellent via a comparison with method of moments. And in
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Section 4, the numerical results are given and compared with those of
the published literature [5] for illuminating the accuracy and the high
efficiency of the iterative process. A time dependence ejωt is assumed
and suppressed throughout this paper.

2. THEORY

The iterative method replaces the transverse fields or electric currents
concerned in the traditional numerical algorithm with the transverse
electromagnetic waves and its whole procedure crosses the spatial
domain and the spectral domain.

In the first instance, the interfaces should be defined according
to the structures being investigated. Generally speaking, the planes
between two dielectric layers are chosen as the interface for the
planar microstrip circuits. Analogously, the cylindrical interfaces are
selected while taking account of the cylindrically conformal microstrip
structures.

Secondly, the interfaces are divided into quadrangular pixels
and their operations on the incident waves are depicted through the
spatial-domain scattering matrix. Then the remaining half space is
characterized as the equivalent mode transmission line and represented
by the modal reflection matrix, which governs the spectral scattered
waves coming from the interfaces. The iterative process is constructed
via a multiple reflection procedure, which contains three main parts:
initial conditions, the spatial-domain scattering and the spectral-
domain reflecting. The connection between the spatial domain and
spectral domain is carried out via the fast modal transform (FMT) [16].
A legible description of the iteration is illustrated in Fig. 1.

2.1. The Definition of the Transverse Waves

In accordance with the transmission line theory, the transverse incident
and reflected waves can be denoted by the linear combinations of the
transverse electric fields and currents:


⇀

Ai =
1

2
√
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(
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Ei + Z0i
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(
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where
⇀

J i =
⇀

H i × ⇀
ni and the subscripts indicate the different regions

separated by the interfaces with ⇀
ni being the outgoing unit vector

normal to the interface. Z0i is the characteristic impedance of the
medium i (i = 1, 2).



218 Wang, Xie, and Feng

 

in ij

Start

Spatial source A 0

0

_ Spatial waves

FMT
A  (φ,z) and A  (φ,z)2

_

Spatial waves
A     and A
_

1nm 2nm

_

A
_

i nmB
_

i nm

B
_

i nm A
_

i nm

φ

z

φ

z = Γ
^
nm

Reflected spectral waves
B     and 
_

1nm 2nmB
_

Spatial waves
B  (φ,z) and B  (φ,z)
_ _

1 2

Generation of new spatial
waves

A  (φ,z) = S  B  (φ, z)+A 0ii

^_ _ _.

No
Convergence?

Yes
Calculate the parameters

Z  , S  ...

End

FMT 1

_

Figure 1. The iterative process.

2n

1n

Spectral
Domain

FMT
FMT

FMT

Spectral
Domain

FMT

Spatial
Domain

Region 2

Region 1

-1

-1

B2 A2

B1 A1

_

_ _

_

_

_

Figure 2. Scatter and reflection on the interface.

2.2. The Scattering Operator in Spatial Domain

Referring to Fig. 2, the interfaces scatter the waves
⇀

Bi in the spatial
domain as follows:

⇀

Ai = Ŝ
⇀

Bi (2)
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The scattering operator Ŝ is formed as a two-dimension matrix,
whose elements correspond to the quadrangular cells on the interface.
Ŝ can be obtained by matching the boundary conditions in each
segment and all the segments would be classified into several different
sorts: the dielectric domain, the metal domain (the metallic patch) and
the source domain (the feeding part). Herein, we denote the functions
Hd, Hm and Hs to indicate the three different domains, respectively.
It is noticeable that the above functions equal to one in the relevant
domain and zero elsewhere.

Because the electromagnetic boundary conditions hold true for
any coordinate system, the scattering matrix for the cylindrical
microstrip structures is therefore the same with that for the planar
microstrip circuits as follows [17]:

Ŝ=


−Hm+

1 − N2

1+N2
Hd+

−1+n1 − n2

1+n1+n2
Hs

2N
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2m1
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(3)

where N =
√

Z01
Z02

, n1 = Z0
Z01

, n2 = Z0
Z02

and m1 = Z0√
Z01Z02

. Z0 =
Z01·Z02
Z01+Z02

is the equivalent impedance across the interface.

In each step of the iterative process, the outward waves
⇀

Ai will be
generated by the scattered waves Ŝ

⇀

Bi and the outgoing source waves
⇀

A0i:
⇀

Ai = Ŝ
⇀

Bi +
⇀

A0i (4)

The source waves
⇀

A0i could be given in the following form:

⇀

A0i =




E0
φ√
Z0i

E0
z√
Z0i


 (5)

In (5), the material forms of the initial exciting electric fields E0
φ or E0

z

lie on the configuration of the model.

2.3. The Reflection Operator in Spectral Domain

When considering the cylindrical microstrip structures, the two half
spaces partitioned by the interface are equivalent to different modal
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transmission lines and the admittance matrix Ŷi nm [24] connected to
the Green’s functions is also defined in the spectral domain as follows:[

Jϕ
i nm

Jz
i nm

]
= Ŷi nm

[
Eϕ

i nm

Ez
i nm

]
=

[
Y 11

i nm Y 12
i nm

Y 21
i nm Y 22

i nm

] [
Eϕ

i nm

Ez
i nm

]
(6)

With the discontinuous tangential components of the magnetic
field, one can obtain the elements of the admittance matrix Ŷi nm

on either side of the interface and the expressions of the spectral
admittance coefficients are detailed in appendix. Then the spectral
reflection matrix is represented by the admittance matrix as follows:

Γ̂i nm =
(
Ī − Z0iŶi nm

) (
Ī + Z0iŶi nm

)−1
(7)

where Ī is the identity matrix and the subscripts n,m denote the modes
indices in the ϕ̂ direction and ẑ direction, respectively. Expanding
Equation (7) and simplifying it, we can obtain the spectral reflection
coefficients as follows:

Γ̂nm =
1
Dnm

[
Γ11

nm Γ12
nm

Γ21
nm Γ22

nm

]
(8)

where

Dnm = 2 + Z0

(
Y 11

nm + Y 11
nm

)
Γ11

nm = −Γ22
nm = Z0

(
Y 22

nm − Y 11
nm

)
Γ12

nm = Γ21
nm = −2Z0Y

12
nm

It is worthy of note that the TEnm and TMnm modes are not
coupled in the case of the planar microstrip but coupled for the
cylindrical microstrip. So the more complex reflection matrices ought
to be reasonable for the cylindrical multilayer structures. Especially
for the cylindrical dielectric substrate, the standing waves exist as well
as the outgoing travelling waves. This phenomenon makes the simple
modal basis functions [21] disabled and the new kinds of hybrid modal
basis functions taking full account of the two different waves will be
elaborated in the next section.

2.4. The Modal Basis Functions

The operations in the spatial domain and spectral domain are given in
2.2 and 2.3, respectively.{

⇀

Ai = Ŝ
⇀

Bi +
⇀

A0 spatial domain
⇀

Bi mn = Γ̂i mn

⇀

Ai mn spectral domain
(9)
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To implement the iterative process, the two parts in Equation (9) can
be linked by the fast modal transform (FMT) and its inverse (IFMT):

Ai (ϕ, z)
FMT−→ Ai mn =

∫∫
s

Ai (ϕ, z) ·f∗i mn (ϕ, z) ds (10)

Bi mn
IFMT−→ Bi (ϕ, z) =

∑
n

∑
m

Bi mnfi mn (ϕ, z) (11)

where the modal basis functions fi nm are the solutions of the cylindrical
Helmoltz’s equation in region i, which have the periodicity along the
axial direction or the azimuthal direction and can be written as the
combinations of the standing waves containing the first-kind Bessel
functions and the outgoing waves represented by the second-kind
Hankle functions. Because there are no boundary conditions imposed
in the free space out of the interface, which has a radius b, the basis
functions are formulated in the form of travelling waves:

f2nm =
1√

2πbd
e−jnϕe−jkmzH

(2)
n (k2ρρ)

H
(2)
n (k2ρb)

(12)

With (10) and (11), the transformation in the exterior space can be
completed. In contrary, the basis functions should consider either
the travelling or the standing waves inside the interface. Besides,
the basis functions also satisfy the transverse electric fields boundary
conditions on the surface of the inner conductor. Nevertheless, it is
so difficult for the single basis functions as in (12) to describe the
characteristics comprehensively or exactly that the electric fields and
the magnetic fields are figured by different functions as in (13) and
(14), respectively, which are derived from the vectorial wave equation
and fulfill the boundary conditions in the substrate region. Then the
combined hybrid basis functions will be made up in accordance with
the Equation (1).

fe
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1√
2π bd

e−jnϕe−jkmz

[
Jn (k1ρρ)

H
(2)
n (k1ρρ)

− Jn (k1ρa)
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]
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fh
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1√
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[
Jn (k1ρρ)

H
(2)
n (k1ρρ)

− J ′n (k1ρa)

H
(2)′
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]
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In (12)–(14), Jn(x) and J ′n(x) are the n-order bessel function
and its derivative, respectively. H(2)

n (x) and H(2)′
n (x) are the n-order

Hankel function of the second kind and its derivative, which denote
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the travelling waves. The radii of the inner metallic cylinder and the
interface on which the patch is laying are a and b. The model structure
has a distance d along the z-direction. As the propagation constant
along the ρ-direction, kiρ will be written as:

kiρ =




√∣∣εrik2
0 − k2

m

∣∣ √
εrik0 ≥ km

−j ·
√∣∣εrik2

0 − k2
m

∣∣ √
εrik0 < km

(15)

where km = 2πm/d is the propagation constant along the z-direction
and the k0 is wave number in the free space. Considering the
calculating efficiency, the mode indices m, n are presented identical
with the number of the segments in the ϕ and z directions. Then the
high-order modes (larger than the number of the segments) could be
neglected and this assumption is proved in practice.

3. ANALYSIS OF THE EFFICIENCY

As the link between the two different domain, FMT and FMT−1 avoid
the inversion of the large matrix, save the computer’s memory and
accelerate the operation prominently. Unlike the common numerical
methods, this iterative algorithm has the complexity proportional to
the size of the interface without regard to the detailed configurations
on it.

For demonstrating the advantages of the method in this paper,
the complexity of iterative method is compared with that of the
MoM. We can assume that: P is the amount of the segments on the
interface; N represents the number of the iterations and K denotes
the scale of the metallic part. In general, the overall complexities are
NT = N (4P + 12P lnP ) for the iterative method and (KP )3 /3 for the
MoM. Taking no account of the troublesome Green’s functions needed
in the Method of moments, the iterative process behaves more excellent
when the parameters fulfil the condition: NT = N (4P + 12P lnP ) <
(KP )3 /3. And the more distinct results are illustrated as follows:

From the figures above, it is realized that the more the segments
or the metallic parts are, the more efficient and superior the iterative
method is. For the condition of 64×64 cell, the iterative process always
converges below 500 steps and the iterative method excels the MoM
all the while. The troublesome and time-consuming computing of the
slow-convergent cylindrically stratified green’ functions decelerate the
calculation when using the MoM.
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Figure 3. The complexities of the WCIP and the MoM (K = 0.5).

Figure 4. The complexities of the WCIP and the MoM (N = 500).

4. NUMERICAL RESULTS

To demonstrate the approach in this paper, we consider the
cylindrically conformal microstrip antennas [5] fed by microstriplines.
The structures are supposed to be invariant along the axial direction
of the cylinder. As shown in Fig. 5, the radii of the inner conducting
cylinder and the air-dielectric interface are r1 = 2.5 cm and r2 =
2.659 cm respectively. Note that the substrate has a dielectric
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(a) (b)

Figure 5. The structure of the cylindrically conformal microstrip
antenna: (a) the metallic patch, (b) the cylindrical structure.

permittivity ε1 = 2.57ε0, where ε0 is the dielectric permittivity in
the vacuum and both of the regions have the magnetic permeability
µ0. The dimension of the rectangular patch is W0 = d0 = 4.02 cm with
that of the feeding line Wf = 0.477 cm and Lf = λ1/2, where λ1 is the
guided wavelength along the line.

According to the parameters of the structure, the cylindrical
interface will be divided into 64 × 64 quadrangles and the size of the
corresponding spatial scattering matrix is 64 × 64 either. Herein,we
define the initial excitation in equation (5) as the exponential functions,
which can be derived via the electric currents appeared in reference [5].
For enhancing the velocity of the FMT, the number of the quadrangles
is usually chosen as 2n. At the qth iteration, we can derive the
expressions of the surface electric currents and fields as follows:


⇀

E
q

i =
√
Z0i

(
⇀

A
q

i +
⇀

B
q

i

)
⇀

J
q

i =
1√
Z0i

(
⇀

A
q

i −
⇀

B
q

i

) (16)

Through 500 iterations, the surface electric fields and the surface
electric current density along the ϕ̂-direction and ẑ-direction are
available in Fig. 6 and Fig. 7 at the frequency point 2.25 GHz.
Because the width of the transmission line Wf is far smaller than the
wavelength, so it is logical that the ϕ̂-direction electric currents seem
scarce along the feeding line as shown in Fig. 7(a).

After finishing the iterative process, the input impedance and the
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input admittance can be attained via the surface electric currents
and the surface electric fields on the cells of the source domain.
Fig. 8 presents the normalized input admittance as the function of
the number of the iterations at 2.25 GHz. It can be seen that the

(a) (b) 

Figure 6. (a) The ϕ̂-direction surface electric fields. (b) The ẑ-
direction surface electric fields.

(a) (b)

Figure 7. (a) The ϕ̂-direction surface electric current density. (b)
The ẑ-direction surface electric current density.
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convergence, which is judged by an error of 0.05, has been achieved
after the 250th step. Because the modulus of the modal coefficients of
the reflection matrix is less than unity, the convergence of the iteration
is thus always ensured.

Figure 9 shows the curves of the normalized input impedance of
the cylindrically conformal microstrip antenna. For each frequency
point, the calculation costs 10.2 seconds by 500 iterations. Although
there exists a little frequency shift, the results obtained via the iterative
approach agree quite well with that have been published in [5] using
the MoM.

(a)

(b)

Figure 8. Convergence curves for the normalized input admittance:
(a) real part, (b) imaginary part.
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(a)

(b)

Figure 9. The normalized input impedance calculated by the WCIP
and MoM: (a) input resistance, (b) input reactance.

The precision of the calculation can be enhanced by employing
more meshing cells on the interface or more high-order modal
components in the spectral domain. The former means more storage
for conserving the larger matrices, while the latter indicates longer
computational time for dealing with the high-order special functions.
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5. CONCLUSIONS

Based on the reported iterative technique for planar microstrip circuits,
we have presented an efficient iterative approach for calculating the
cylindrically conformal microstrip structures. In cylindrical microstrip
structures, the spectral reflection matrix has been deduced as well as
the hybrid mode basis functions which are developed for describing
the waves in dielectric substrate. Owing to the adoption of the
fast modal transform (FMT), the time-consuming matrix operations
and the numerous computations of the cylindrical green’s functions
are avoided. Consequently, this iterative approach economizes the
memory and quickens the process of the analysis. In conclusion, the
proposed method is validated through a published example and the
good agreements between the simulation results and the published
results are observed.

APPENDIX A.

Considering the vectorial wave equation in cylindrical coordinate
system, the transverse components of the magnetic fields could be
denoted by the transverse electric fields. From the general solutions of
the axial fields, we can obtain the spectral admittance matrices inside
and outside the cylindrical interface as follows:
1. Outside the Interface

Ŷnmout =
[
Y 11

nmout
Y 12

nmout

Y 21
nmout

Y 22
nmout

]
(A1)

Where

Y 11
nmout

=
k2ρ

jωµ0

H
(2)
n (k2ρb)

H
(2)′
n (k2ρb)

(A2)

Y 12
nmout

= Y 21
nmout

=
−jnkm

ωµ0bk2ρ

H
(2)
n (k2ρb)

H
(2)′
n (k2ρb)

(A3)

Y 22
nmout

=
jωε0
k2ρ

H
(2)′
n (k2ρb)

H
(2)
n (k2ρb)

+
k2ρ

jωµ0

(
nkm

bk2
2ρ

)2
H

(2)
n (k2ρb)

H
(2)′
n (k2ρb)

(A4)

2. Inside the Interface: The Region of the Substrate

Ŷnmin =
[
Y 11

nmin
Y 12

nmin

Y 21
nmin

Y 22
nmin

]
(A5)
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where

Y 11
nmin

= − k1ρ

jωµ0

r(h)

β1
(A6)

Y 12
nmin

= Y 21
nmin

=
jnkm

ωµ0bk1ρ

r(h)

β1
(A7)

Y 22
nmin

= −jωε1
k1ρ

· β1 · r(e) −
k1ρ

jωµ0

(
nkm

bk2
1ρ

)2
r(h)

β1
(A8)

r(e) =
ξ2 − η1
η2 − η1

r(h) =
η2 − ξ1
ξ2 − ξ1

(A9)

η1 =
H

(2)
n (k1ρa)
Jn (k1ρa)

, η2 =
H

(2)
n (k1ρb)
Jn (k1ρb)

ξ1 =
H

(2)′
n (k1ρa)
J ′n (k1ρa)

, ξ2 =
H

(2)′
n (k1ρb)
J ′n (k1ρb)

(A10)

Jn(x) and J ′n(x) are the n-order bessel function and its derivative,
respectively. H(2)

n (x) and H(2)′
n (x) are the n-order hankel function of

the second kind and its derivative.
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