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Abstract—We have studied the problem of diffraction of plane waves
by a finite slit in an infinitely long soft-hard plane. Analysis is based
on the Fourier transform, the Wiener-Hopf technique and the method
of steepest descent. The boundary value problem is reduced to a
matrix Wiener-Hopf equation which is solved by using the factorization
of the kernel matrix. The diffracted field, calculated in the far-
field approximation, is shown to be the sum of the fields (separated
and interaction fields) produced by the two edges of the slit. Some
graphs showing the effects of various parameters on the diffracted field
produced by two edges of the slit are also plotted.

1. INTRODUCTION

The problem of plane wave diffraction by a half plane which is soft at
the top and hard at the bottom was first solved by Rawlins [1] who
adopted an ad-hoc method for the solution of this problem. Later on
Büyükaksoy [2] reconsidered the problem solved by [1] and proposed an
appropriate method for the factorization of the kernel matrix appearing
in it. The continued interest in the problem is due to the fact that it
constitutes the simplest half plane problem which can be formulated
as a system of coupled Wiener-Hopf (WH) equations that cannot be
decoupled trivially [2].

In this paper we have studied the problem of diffraction of plane
waves by a slit in an infinite soft-hard plane. From the existing
literature it is evident that numerous past investigations have been
devoted to the study of diffraction of acoustic/electromagnetic waves
† The third author is also with Department of Computer and Engineering Sciences, Bahria
University, Islamabad 44000, Pakistan
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by slits in various geometries and several authors adopted different
analytical and numerical approaches to study the phenomenon of
diffraction of waves by slits. To name a few only, e.g., the problem of
diffraction of electromagnetic waves by slits in thick/thin screens have
been treated by the authors [3–7]. Morse and Rubenstein [8], Asghar
et al. [9] and Hayat et al. [10] studied the problem of diffraction of
acoustic waves by slits by using the method of separation of variables
and the WH technique, respectively. It is pertinent to mention here
that scattering from strips, slits, half-planes, impedance surfaces and
study of high frequency diffraction are the topics of current interest [11–
24].

In the present analysis, the three-part boundary value problem
connected with diffraction of plane acoustic waves by a slit in an
infinite soft-hard plane is reduced to a matrix Wiener-Hopf equation.
It is well-known that the solution of a matrix Wiener-Hopf problem
requires the factorization of the kernel matrix as the product of two
non-singular matrices such that these component matrices and their
inverses have regular entries and are of algebraic growth at infinity
in certain overlapping halves of the complex plane. To find these
explicit factors of kernel matrix is vital and important at the same time.
The non-commutativity of factor matrices and the requirements of
satisfaction of radiation conditions present further problems. There is,
as yet, no general procedure of factorization of such matrices, although
the factorization for a restricted class of matrices has been achieved.
For example the Wiener-Hopf-Hilbert method, introduced by Hurd
[25], Rawlins [26] and Rawlins and Williams [27], is a powerful tool in
the case when the kernel matrix contains branch-point singularities,
while the Daniele-Kharapkov method, proposed independently by
Daniele [28] and Kharapkov [29], is effective for the class of matrices
having only pole-singularties and branch-point singularities. Another
detailed survey for the matrix factorization methods with reference
to applications of these methods to different diffraction problems may
also be found in a paper by Büyükaksoy et al. [30]. Diffraction from a
slit is a well-studied phenomenon in the diffraction theory and relevant
for many applications. For the problem under consideration the kernel
matrix remains the same and has been factorized by [2] with the help
of Daniele-Kharapkov method [28, 29]. Using the factorization of the
kernel matrix we then follow the Noble’s approach [31] to calculate the
diffracted field produced by the slit. Some graphs showing the effect
of various parameters on the separated field are also plotted.
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2. MATHEMATICAL FORMULATION OF THE
PROBLEM

Let (x, y, z) define the Cartesian coordinate system with respect to the
origin O. We consider the diffraction of a plane acoustic wave by a
slit occupying the position {p ≤ x ≤ q, y = 0, z ∈ (−∞,∞)}. The
positions of the soft-hard planes located on both sides of the slit are
given by {−∞ < x ≤ p, y = 0, z ∈ (−∞,∞)} and {q ≤ x < ∞, y = 0,
z ∈ (−∞,∞)}, respectively and these are assumed to have vanishing
thicknesses. A time factor of the type e−iωt is assumed and suppressed
throughout the calculations. The geometry of the problem is depicted
in Fig. 1. For harmonic acoustic vibrations of time dependence e−iωt,

Figure 1. Geometry of the problem.

we require the solution of the wave equation(
∂2

∂x2
+

∂2

∂y2
+ k2

)
ψt (x, y) = 0, (1)

where ψt is the total velocity potential and the boundary and continuity
conditions are given by

ψt

(
x, 0+

)
= 0, on

{
−∞ < x ≤ p
q ≤ x < ∞

}
, (2a)

∂ψt (x, 0−)
∂y

= 0, on
{

−∞ < x ≤ p
q ≤ x < ∞

}
, (2b)

and

ψt

(
x, 0+

)
= ψt

(
x, 0−

)
, on p < x < q, (3a)

∂ψt (x, 0+)
∂y

=
∂ψt (x, 0−)

∂y
, on p < x < q. (3b)
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In Eqs. (2), (3), 0± refers to the situation that y → 0 through positive
or negative y − axis. Let a plane acoustic wave

ψi = e−ik(x cos θ0+y sin θ0), (4)

be incident upon the slit occupying the position p ≤ x ≤ q, y = 0. In
Eq. (4), θ0 is the angle of incidence and for the analytic convenience it
is assumed that the wave number k has positive imaginary part. For
the analysis purpose it is convenient to express the total field ψt as

ψt =
{

ψi + ψr + ψ y > 0
ψ y < 0 , (5)

where ψ is the diffracted field and ψr is the reflected field given by

ψr = −e−ik(x cos θ0+y sin θ0).

For the unique solution of the problem, the edge conditions require
that ψt and its normal derivative must be bounded and satisfy [2].

ψt (x, 0) =

{
−1 +O(x− p)

1
4 as x → p−,

−1 +O(x− q)
1
4 as x → q+,

(6)

∂ψt(x, 0)
∂y

=

{
O(x− p)−

3
4 as x → p−,

O(x− q)−
3
4 as x → q+,

(7)

where a negative sign indicates a limit taken from left and a positive
sign indicates that a limit taken from right. Thus, the scattered field
satisfies the Helmholtz equation(

∂2

∂x2
+

∂2

∂y2
+ k2

)
ψ(x, y) = 0, (8)

subject to the boundary conditions

ψ
(
x, 0+

)
= 0 on

{
−∞ < x < p
q < x < ∞ , (9a)

and

∂ψ (x, 0−)
∂y

= 0 on
{

−∞ < x < p
q < x < ∞ , (9b)

and the continuity conditions

ψ
(
x, 0+

)
− ψ

(
x, 0−

)
= 0 on p ≤ x ≤ q, (10a)
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and

∂ψ (x, 0+)
∂y

− ∂ψ (x, 0−)
∂y

= 2ik sin θ0e
−ikx cos θ0 on p ≤ x ≤ q.

(10b)

The Fourier transform pair is defined as follows

ψ(α, y) =
1
2π

∞∫
−∞

ψ(x, y)eiαxdx,

= eiαpψ−(α, y) +Q(α, y) + eiαqψ+(α, y), (11)

and its inverse as

ψ(x, y) =

∞∫
−∞

ψ(α, y)e−iαxdα, (12)

where

ψ−(α, y) =
1
2π

p∫
−∞

ψ(x, y)eiα(x−p)dx,

Q(α, y) =
1
2π

q∫
p

ψ(x, y)eiαxdx,

ψ+(α, y) =
1
2π

∞∫
q

ψ(x, y)eiα(x−q)dx. (13)

The function ψ−(α, y) is regular in the lower half plane Imα <

Im k, ψ+(α, y) is regular in the upper half plane Imα > Im k cos θ0 and
Q(α, y) is an analytic function and therefore regular in the common
region Im k cos θ0 < Imα < Im k.

On taking the Fourier transform of the Eq. (8) we arrive at

d2ψ(α, y)
dy2

+K2ψ(α, y) = 0, (14)

where K(α) =
√
k2 − α2.

Defining K(α), the square root function, to be that branch which
reduces to +k when α = 0 and when the complex α-plane is cut either
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from α = k to α = k∞ or from α = −k to α = −k∞. The solution of
Eq. (14), representing the outgoing waves at infinity, can formally be
written as

ψ(α, y) =

{
A(α)eiK(α)y y > 0,
B(α)e−iK(α)y y < 0,

(15)

where A(α) and B(α) are the unknown coefficients which are to be
determined. The Fourier transform of the boundary conditions (9)
and (10) yields

ψ−1

(
α, 0+

)
= 0, (16a)

ψ+1

(
α, 0+

)
= 0, (16b)

ψ−2

(
α, 0−

)
= 0, (16c)

ψ+2

(
α, 0−

)
= 0, (16d)

Q1

(
α, 0+

)
−Q1

(
α, 0−

)
= 0, (17a)

Q2

(
α, 0+

)
−Q2

(
α, 0−

)
= k sin θ0G(α), (17b)

where

ψ−1

(
α, 0−

)
=

1
2π

p∫
−∞

ψ
(
x, 0−

)
eiα(x−p)dx, (18a)

ψ+1

(
α, 0−

)
=

1
2π

∞∫
q

ψ
(
x, 0−

)
eiα(x−q)dx, (18b)

ψ−2

(
α, 0+

)
=

1
2πi

p∫
−∞

∂ψ (x, 0+)
∂y

eiα(x−p)dx, (18c)

ψ+2

(
α, 0+

)
=

1
2πi

∞∫
q

∂ψ (x, 0+)
∂y

eiα(x−q)dx, (18d)

Q1

(
α, 0+

)
=

1
2π

q∫
p

ψ
(
x, 0+

)
eiαxdx, (18e)

Q2

(
α, 0−

)
=

1
2πi

q∫
p

∂ψ (x, 0−)
∂y

eiαxdx, (18f)
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and

G(α) =
ei(α−k cos θ0)q − ei(α−k cos θ0)p

π (α− k cos θ0)
. (19)

Using Eqs. (16a)–(16d) and (17a)–(17b) in Eq. (15), we obtain

A(α) = Q1

(
α, 0+)

, (20a)

B(α) = −Q2

(
α, 0−)

K(α)
, (20b)

A(α) −B(α) = −eiαpψ−1

(
α, 0−)

− eiαqψ+1

(
α, 0−)

, (20c)
−K(α) [A(α) +B(α)]=−eiαpψ−2

(
α, 0+)

−eiαqψ+2

(
α, 0+)

+ik sin θ0G(α). (20d)

The elimination of the coefficients A(α) and B(α) among the
Eqs. (20a)–(20d) will lead to the following matrix Wiener-Hopf
equation valid in the strip of analyticity Im k cos θ0 < Imα < Im k,

eiαq

[
ψ+1(α)

ψ+2(α)

]
+

[
1 1

K(α)

−K(α) 1

] [
Q1(α)
Q2(α)

]
+eiαp

[
ψ−1(α)

ψ−2(α)

]
=G(α)

[
0

ik sin θ0

]
. (21)

In compact form, Eq. (21) can further be arranged as

eiαqΨ+(α) + H(α)Q(α) + eiαpΨ−(α) = G(α)A, (22)

where bold letters are used to denote the matrices. Eq. (22) is an
equation analogous to the Eq. (5.60) available in [31]. In Eq. (22),
H(α) is the kernel matrix and in order to solve it, we have to factorize
the matrix H(α) as the product of two non-singular factor matrices
such that one factor matrix being regular in the lower half plane and
the other factor matrix being regular in the upper half plane with
the additional requirements that both the factor matrices as well as
their inverses contains elements of algebraic growth at infinity and
both of these factor matrices should commute with each other. The
factorization of H(α), satisfying these conditions, has been done in [2]
by using the Daniele-Kharapkov method [28, 29] and the result is as
follows:

H+(α) = 2
1
4

[
coshχ(α) sinhχ(α)/γ(α)

γ(α) sinhχ(α) coshχ(α)

]
, (23a)

with

H−(α) = H+(−α), (23b)

where

χ(α) = − i

4
arccos

α

k
, χ(−α) = − i

4

[
π − arccos

α

k

]
(23c)
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and

γ(α) =
√
α2 − k2. (23d)

Also as |α| → ∞, we note that

H±(α) ∼ (4k)−
1
4

[
(±α)

1
4 (±α)−

3
4

(±α)
5
4 (±α)

1
4

]
. (23e)

After accomplishing the factorization of the matrix H(α), we can re-
arrange Eq. (22) as

eiαqΨ+(α) + H+(α)H−(α)Q(α) + eiαpΨ−(α) = G(α)A. (24)

Pre-multiplying Eq. (24) by e−iαq[H+(α)]−1, substituting the value of
G(α) from Eq. (19) and simplifying we arrive at

[H+(α)]−1 Ψ+(α) + e−iαqH−(α)Q(α) + eiα(p−q) [H+(α)]−1 Ψ−(α)

=
e−ik cos θ0q

π (α− k cos θ0)
[H+(α)]−1A− eiα(p−q)−ik cos θ0p

π (α− k cos θ0)
[H+(α)]−1A. (25)

According to the procedure defined in [31] different terms occurring
Eq. (25) can be decomposed as follows,

eiα(p−q) [H+(α)]−1 Ψ−(α) = U+(α) + U−(α), (26)

eiα(p−q)−ik cos θ0p

π (α− k cos θ0)
[H+(α)]−1 A = V+(α) + V−(α). (27)

The pole contribution of the first term on right hand side of Eq. (25)
can be expressed as

e−ik cos θ0q

π (α− k cos θ0)

[
{H+(α)}−1 − {H+ (k cos θ0)}−1 + {H+ (k cos θ0)}−1]A. (28)

Using Eqs. (26)–(28) in Eq. (25) and separating it into positive and
negative terms, we obtain

[H+(α)]−1 Ψ+(α) + U+(α)

− e−ik cos θ0q

π (α− k cos θ0)

[
{H+(α)}−1 − {H+ (k cos θ0)}−1]A+V+(α)

= −e−iαqH−(α)Q(α)−U−(α)−V−(α)+
e−ik cos θ0q

π (α− k cos θ0)
{H+ (k cos θ0)}−1A,(29)
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where

U±(α) = ± 1
2πi

∞+ic∫
−∞+ic

eiξ(p−q) [H+(ξ)]−1 Ψ−(ξ)
ξ − α

dξ, (30)

and

V±(α) = ± 1
2πi

∞+ic∫
−∞+ic

eiξ(p−q)−ik cos θ0p [H+(ξ)]−1 A
π(ξ − α)(ξ − k cos θ0)

dξ. (31)

Now pre-multiplying Eq. (24) e−iαp[H−(α)]−1, substituting the value
of G(α) from Eq. (19) and simplifying we arrive at

eiα(q−p) [H−(α)]−1 Ψ+(α) + e−iαpH+(α)Q(α) + [H−(α)]−1 Ψ−(α)

=
eiα(q−p)−ik cos θ0q

π (α− k cos θ0)
[H−(α)]−1A− e−ik cos θ0p

π (α− k cos θ0)
[H−(α)]−1A. (32)

Decomposing different terms in Eq. (32) by following [31], we obtain

eiα(q−p) [H−(α)]−1 Ψ+(α) = R+(α) + R−(α), (33)

eiα(q−p)−ik cos θ0q

π (α− k cos θ0)
[H−(α)]−1 A = S+(α) + S−(α), (34)

so that

R±(α) = ± 1
2πi

∞+id∫
−∞+id

eiξ(q−p) [H−(ξ)]−1 Ψ+(ξ)
ξ − α

dξ, (35)

and

S±(α) = ± 1
2πi

∞+id∫
−∞+id

eiξ(q−p)−ik cos θ0q [H−(ξ)]−1 A
π(ξ − α) (ξ − k cos θ0)

dξ, (36)

where −Imα < c < Im k cos θ0 and −Imα < d < Im k cos θ0, also
Imα > c in Eqs. (30), (31) and Imα < d in Eqs. (35), (36) as given
in [31].

Using Eqs. (33), (34) in Eq. (32) and separating it into positive
and negative portions we arrive at

R−(α)+[H−(α)]−1 Ψ−(α)−S−(α) +
e−ik cos θ0p

π (α− k cos θ0)
[H−(α)]−1A

= −e−iαpH+(α)Q(α)−R+(α) + S+(α). (37)
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The left hand side of Eq. (29) and right hand side of Eq. (37) are regular
in Imα > Im k cos θ0 and right hand side of Eq. (29) and left hand side
of Eq. (37) are regular in Imα < Im k. Hence using the extended form
of the Liouville’s theorem each side of Eqs. (29) and (37) is equal to
zero, i.e.,

[H+(α)]−1 Ψ+(α) + U+(α) − e−ik cos θ0q

π (α− k cos θ0)[
{H+(α)}−1 − {H+ (k cos θ0)}−1

]
A + V+(α) = 0, (38)

and

R−(α) + [H−(α)]−1 Ψ−(α) − S−(α) +
e−ik cos θ0p

π (α− k cos θ0)
[H−(α)]−1 A = 0. (39)

Using Eqs. (30), (31) in Eq. (38) and Eqs. (35), (36) in Eq. (39) and
simplifying these equations we obtain

[H+(α)]−1 Ψ∗
+(α) +

e−ik cos θ0q [H+ (k cos θ0)]
−1 A

π (α− k cos θ0)

+
1

2πi

∞+ic∫
−∞+ic

eiξ(p−q) [H+(ξ)]−1 Ψ−(ξ)
(ξ − α)

dξ = 0 (40)

and

[H−(α)]−1 Ψ−(α) − 1
2πi

∞+id∫
−∞+id

eiξ(q−p) [H−(ξ)]−1 Ψ∗
+(α)

(ξ − α)
dξ = 0, (41)

where

Ψ∗
+(α) = Ψ+(α) − e−ik cos θ0qA

π (α− k cos θ0)
, (42)

Ψ−(α) = Ψ−(α) +
e−ik cos θ0pA

π (α− k cos θ0)
. (43)

From the assumption that 0 < θ0 < π
2 , we can choose a such that

−k2 cos θ0 < a < k2 cos θ0 and d = −c = a, [31]. In Eq. (40) replacing ξ
by −ξ and in Eq. (41) α by −α and also noting that H−(−α) = H+(α)
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we arrive at

[H+(α)]−1 Ψ∗
+(α) +

e−ik cos θ0q [H+ (k cos θ0)]
−1 A

π (α− k cos θ0)

− 1
2πi

∞+ia∫
−∞+ia

eiξ(q−p) [H−(ξ)]−1 Ψ−(−ξ)
(ξ + α)

dξ = 0 (44)

and

[H+(α)]−1 Ψ−(−α) − 1
2πi

∞+ia∫
−∞+ia

eiξ(q−p) [H−(ξ)]−1 Ψ∗
+(α)

(ξ + α)
dξ = 0. (45)

Adding and subtracting Eqs. (44) and (45), we obtain

[H+(α)]−1 S∗
+(α) +

e−ik cos θ0q [H+ (k cos θ0)]
−1 A

π (α− k cos θ0)

− 1
2πi

∞+ia∫
−∞+ia

eiξ(q−p) [H−(ξ)]−1 S∗
+(ξ)

(ξ + α)
dξ = 0 (46)

and

[H+(α)]−1 D∗
+(α) +

e−ik cos θ0q [H+ (k cos θ0)]
−1 A

π (α− k cos θ0)

+
1

2πi

∞+ia∫
−∞+ia

eiξ(q−p) [H−(ξ)]−1 D∗
+(ξ)

(ξ + α)
dξ = 0, (47)

where

S∗
+(α) = Ψ∗

+(α) + Ψ−(−α), (48)
D∗

+(α) = Ψ∗
+(α) − Ψ−(−α). (49)

The Eqs. (46), (47) are of the same type and we obtain an approximate
solution by a method due to Jones [32]. Setting

S∗
+(α) = D∗

+(α) = F∗
+(α), (50)
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the Eqs. (46), (47) will take the form

[H+(α)]−1 F∗
+(α) +

λ

2πi

∞+ia∫
−∞+ia

eiξ(q−p) [H−(ξ)]−1 F∗
+(ξ)

(ξ + α)
dξ

= −e−ik cos θ0q [H+ (k cos θ0)]
−1 A

π (α− k cos θ0)
, (51)

where

F∗
+(α) = F+(α) − e−ik cos θ0qA

π (α− k cos θ0)
+

λe−ik cos θ0pA
π (α+ k cos θ0)

, (52)

F+(α) = Ψ+(α) − λΨ−(−α), (53)

and λ = ±1.
A more elaborative form of Eq. (51) is as follows:[

cosh κ(α)F 1∗
+ (α) − sinh κ(α)F 2∗

+ (α)/γ(α)
−γ(α) sinh κ(α)F 1∗

+ (α) + cosh κ(α)F 2∗
+ (α)

]

+
λ

2πi

∞+ia∫
−∞+ia

eiξ(q−p)

(ξ + α)

[
cosh κ(−ξ)F 1∗

+ (ξ) − sinh κ(−ξ)F 2∗
+ (ξ)/γ(−ξ)

−γ(−ξ) sinh κ(−ξ)F 1∗
+ (ξ) + cosh κ(−ξ)F 2∗

+ (ξ)

]
dξ

+
e−ik cos θ0q

π (α− k cos θ0)[
A1 cosh κ (k cos θ0)−A2 sinh κ (k cos θ0) /γ (k cos θ0)
−A1γ (k cos θ0) sinh κ (k cos θ0) +A2 cosh κ (k cos θ0)

]
=0. (54)

Eq. (52) in matrix form can be written as:[
F 1∗

+ (α)
F 2∗

+ (α)

]
=

[
F 1

+(α)

F 1
+(α)

]
− e−ik cos θ0q

π (α− k cos θ0)

[
A1

A2

]
+

λe−ik cos θ0p

π (α+k cos θ0)

[
A1

A2

]
. (55)

Considering the first row of Eq. (54) and using the values of F 1∗
+ (α)

and F 2∗
+ (α) in it, we obtain

cosh κ(α)
[
F 1

+(α) − e−ik cos θ0q

π (α− k cos θ0)
A1 +

λe−ik cos θ0p

π (α+ k cos θ0)
A1

]
−sinh κ(α)

γ(α)

[
F 2

+(α) − e−ik cos θ0q

π (α− k cos θ0)
A2 +

λe−ik cos θ0p

π (α+ k cos θ0)
A2

]
+

λ

2πi
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∞+ia∫
−∞+ia

eiξ(q−p)

(ξ+α)

[
cosh κ(−ξ)

{
F 1

+(ξ)− e−ik cos θ0q

π (ξ−k cos θ0)
A1+

λe−ik cos θ0p

π (ξ+k cos θ0)
A1

}

−sinh κ(−ξ)/γ(ξ)
{
F 2

+(ξ)− e−ik cos θ0q

π(ξ − k cos θ0)
A2+

λe−ik cos θ0p

π(ξ + k cos θ0)
A2

}]
dξ

+
e−ik cos θ0q

π(α− k cos θ0)
[A1 cosh κ(k cos θ0)−A2 sinh κ(k cos θ0)/γ(k cos θ0)]

= 0. (56)

Writing γ(ξ) = γ+(ξ)γ−(ξ) =
√
ξ + k

√
ξ − k and considering the

integrals arising in Eq. (56), we have

I = I1 −
e−ik cos θ0qA1

π
I2 +

λe−ik cos θ0pA1

π
I3 − I4

+
e−ik cos θ0qA2

π
I5 +

e−ik cos θ0pA2

π
I6, (57)

where

I1 =

∞+ia∫
−∞+ia

eiξ(q−p) cosh κ(−ξ)F 1
+(ξ)

(ξ + α)
dξ, (58)

I2 =

∞+ia∫
−∞+ia

eiξ(q−p) cosh κ(−ξ)
(ξ + α) (ξ − k cos θ0)

dξ, (59)

I3 =

∞+ia∫
−∞+ia

eiξ(q−p) cosh κ(−ξ)
(ξ + α) (ξ + k cos θ0)

dξ, (60)

I4 =

∞+ia∫
−∞+ia

eiξ(q−p)F 2
+(ξ) sinh κ(−ξ)/

√
ξ + k

(ξ + α)
√
ξ − k

dξ, (61)

I5 =

∞+ia∫
−∞+ia

eiξ(q−p) sinh κ(−ξ)/
√
ξ + k

(ξ − k cos θ0) (ξ + α)
√
ξ − k

dξ, (62)

I6 =

∞+ia∫
−∞+ia

eiξ(q−p) sinh κ(−ξ)/
√
ξ + k

(ξ + k cos θ0) (ξ + α)
√
ξ − k

dξ. (63)
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Integrals (58)–(63) are solved by a method described in [31] and are
substituted in Eq. (56) to get

cosh κ (α)
[
F 1

+ (α) − e−ik cos θ0q

π (α− k cos θ0)
A1 +

λe−ik cos θ0p

π (α+ k cos θ0)
A1

]
−sinh κ (α)

γ (α)

[
F 2

+ (α) − e−ik cos θ0q

π (α− k cos θ0)
A2 +

λe−ik cos θ0p

π (α+ k cos θ0)
A2

]
=

−λT (α)F 1
+ (k) + λ

e−ik cos θ0q

π

×A1

{
eikl cos θ0

(α+ k cos θ0)
cosh κ (−k cos θ0) +R2(α)

}
−A1

e−ik cos θ0p

π
R1(α) + λT1(α)F 2

+ (k) − λ
e−ik cos θ0q

π
A2

×
{
eikl cos θ0 sinh κ (−k cos θ0) /γ+ (k cos θ0)

(α+ k cos θ0) γ− (k cos θ0)
+R4(α)

}
−A2

e−ik cos θ0p

π
R3(α) − e−ik cos θ0q

π (α− k cos θ0)
× [A1 cosh κ (k cos θ0) −A2 sinh κ (k cos θ0) /γ (k cos θ0)] , (64)

where l = q − p and

T (α) =
1

2πi
E− 1

2
W− 1

2
{−i (k + α) l},

T1 (α) =
1

2πi
E−1W−1{−i (k + α) l},

R1,2 (α) =

cosh κ (−k)E− 1
2

[
W− 1

2
{−i (k ± k cos θ0) l} −W− 1

2
{−i (k + α) l}

]
2πi (α∓ k cos θ0)

,

R3,4 (α) =

E−1 [W−1{−i (k ± k cos θ0) l} −W−1{−i (k + α) l}] sinh κ (−k) /
√

2k
2πi (α∓ k cos θ0)

.

(65)

Equation (64) can further be simplified according to the procedure
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described in [31] and the result is

cosh κ(α)F 1
+(α) − sinh κ(α)

γ(α)
F 2

+(α)

= −λT (α)F 1
+ (k) + λT1(α)F 2

+ (k) +A1
e−ik cos θ0q

π
P1(α)

−λA1
e−ik cos θ0p

π
P2(α)−A2

e−ik cos θ0q

π
P3(α) + λA2

e−ik cos θ0p

π
P4(α)

+λA1
e−ik cos θ0q

π
R2(α)−A1

e−ik cos θ0p

π
R1(α) − λA2

e−ik cos θ0q

π
R4(α)

+A2
e−ik cos θ0p

π
R3(α), (66)

where

P1(α) =
1

(α− k cos θ0)
[cosh κ(α) − cosh κ (k cos θ0)] ,

P2(α) =
1

(α+ k cos θ0)
[cosh κ(α) − cosh κ (−k cos θ0)] ,

P3(α) =
1

(α− k cos θ0)

[
sinh κ(α)
γ(α)

− sinh κ (k cos θ0)
γ (k cos θ0)

]
,

P4(α) =
1

γ− (−k cos θ0)(α+k cos θ0)

[
sinh κ(α)
γ(α)

− sinh κ(−k cos θ0)
γ+ (k cos θ0)

]
.

(67)

Further simplification of Eq. (66) will yield

cosh κ(α)F 1
+(α) − sinh κ(α)

γ(α)
F 2

+(α)

= −λT (α)F 1
+ (k) cosh κ (−k) + λT1(α)F 2

+ (k)
sinh κ (−k)√

2k

+
A1

π
{e−ik cos θ0qP1(α) − e−ik cos θ0pR1(α)}

−λA1

π
{e−ik cos θ0pP2(α) − e−ik cos θ0qR2(α)}

−A2

π
{e−ik cos θ0qP3(α) − e−ik cos θ0pR3(α)}

+
λA2

π
{e−ik cos θ0pP4(α) − e−ik cos θ0qR4(α)}. (68)
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Letting

G1(α) = e−ik cos θ0qP1 (α) − e−ik cos θ0pR1(α),

G2(α) = e−ik cos θ0pP2 (α) − e−ik cos θ0qR2(α),

G3(α) = e−ik cos θ0qP3 (α) − e−ik cos θ0pR3(α),

G4(α) = e−ik cos θ0pP4 (α) − e−ik cos θ0qR4(α), (69)

in Eq. (68), the solution of the first WH equation, obtained by
considering the first row of matrices in Eq. (54), is given as follows:

cosh κ(α)F 1
+(α) − sinh κ(α)F 2

+(α)
γ(α)

= −λT (α) cosh κ(−k)F 1
+ (k)

+λ
T1(α) sinh κ(−k)F 2

+ (k)√
2k

+
A1

π
[G1(α) − λG2(α)]

−A2

π
[G3(α) − λG4(α)] . (70)

The second WH equation corresponds to the second row of the matrix
Eq. (54) and its solution can be obtained in a similar manner as for
the first row of Eq. (54). Omitting all the similar steps and quantities
arose in the solution, we finally arrive at:

−γ(α) sinh κ(α)F 1
+(α)+cosh κ(α)F 2

+(α)=λT2(α)
√

2k sinh κ(−k)F 1
+(k)

−λT (α) cosh κ(−k)F 2
+ (k)+

A2

π
[G1(α)−λG2(α)]−A1

π
[G5(α)−λG6(α)],

(71)

where

T2(α) =
1

2πi
E0W0{−i (k + α) l}

G5(α) = e−ik cos θ0qP5 (α) − e−ik cos θ0pR5(α),

G6(α) = e−ik cos θ0pP6 (α) − e−ik cos θ0qR6(α),

P5(α) =
γ(α) sinh κ(α) − γ (k cos θ0) sinh κ (k cos θ0)

α− k cos θ0
,

P6(α) =
γ(α) sinh κ(α) − γ (−k cos θ0) sinh κ (−k cos θ0)

α+ k cos θ0
,

R5,6(α) =
D0 [W0{−i (k ± k cos θ0) l} −W0{−i (k + α) l}]

2πi (α∓ k cos θ0)
,

D0 = E0

√
2k sinh κ(−k). (72)
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In Eqs. (65) and (72), we have

Wn− 1
2
(z) =

∞∫
0

une−u

u+ z
du

= Γ (n+ 1) e
1
2
zz

1
2
n− 1

2W− 1
2
(n+1), 1

2
n (z) , (73)

where z = −i (k + α) l and n = −1
2 , 0,

1
2 . Wm,n is known as a Whittaker

function [32]. The values of the functions F 1
+ (k) and F 2

+ (k) can be
calculated by putting α = k in Eqs. (70) and (71) and solving these
equations simultaneously. Now as

F+(α) =
[
F 1

+(α)
F 2

+(α)

]
=

[
ψ+1(α)
ψ+2(α)

]
− λ

[
ψ−1(α)
ψ−2(α)

]
, (74)

Eq. (74) is considered for the cases λ = 1 and λ = −1 and when the
values of F 1

+(α) and F 2
+(α) are substituted in Eqs. (70) and (71) the

results are as follows:
For λ = 1

cosh κ(α)
[
ψ+1(α) − ψ−1(α)

]
− sinh κ(α)

γ(α)
[
ψ+2(α) − ψ−2(α)

]
= −T (α) cosh κ(−k) F 1

+ (k)
∣∣
λ=1

+
T1 (α) sinh κ(−k)√

2k
F 2

+ (k)
∣∣
λ=1

+
A1

π
[G1(α) −G2 (α)] − A2

π
[G3(α) −G4(α)] , (75)

and

−γ(α) sinh κ(α)
[
ψ+1(α) − ψ−1(α)

]
+ cosh κ(α)

[
ψ+2(α) − ψ−2(α)

]
= −T (α) cosh κ(−k) F 2

+ (k)
∣∣
λ=1

+
√

2kT2(α) sinh κ(−k) F 1
+ (k)

∣∣
λ=1

+
A2

π
[G1(α) −G2 (α)] − A1

π
[G5(α) −G6(α)] , (76)

and for λ = −1

cosh κ(α)
[
ψ+1(α) + ψ−1(α)

]
− sinh κ(α)

γ(α)
[
ψ+2(α) + ψ−2(α)

]
= +T (α) cosh κ(−k) F 1

+ (k)
∣∣
λ=−1

− T1 (α) sinh κ(−k)√
2k

F 2
+ (k)

∣∣
λ=−1

+
A1

π
[G1(α) +G2 (α)] − A2

π
[G3(α) +G4(α)] , (77)
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and

−γ(α) sinh κ(α)
[
ψ+1(α)+ψ−1(α)

]
+cosh κ(α)

[
ψ+2(α)+ψ−2(α)

]
= T (α) cosh κ(−k) F 2

+ (k)
∣∣
λ=−1

−T2 (α)
√

2k sinh κ(−k) F 1
+ (k)

∣∣
λ=−1

+
A2

π
[G1(α) +G2 (α)] − A1

π
[G5(α) +G6(α)] . (78)

Adding Eqs. (75) and (77), we obtain

cosh κ(α)ψ+1 (α) − sinh κ(α)
γ (α)

ψ+2(α)

=
A1

π
G1(α) − A2

π
G3(α) − T (α) cosh κ(−k)

2
C1 +

T1(α) sinh κ(−k)
2
√

2k
C2,

(79)

and Eqs. (76) and (18) will yield

−γ(α) sinh κ(α)ψ+1(α)+cosh κ (α)ψ+2(α)

=
A2

π
G1(α)−A1

π
G5(α) − T (α) cosh κ(−k)

2
C2

+
T2(α)

√
2k sinh κ(−k)

2
C1. (80)

where

C1 = F 1
+ (k)

∣∣
λ=1

− F 1
+ (k)

∣∣
λ=−1

,

C2 = F 2
+ (k)

∣∣
λ=1

− F 2
+ (k)

∣∣
λ=−1

. (81)

Eliminating ψ+2(α) from Eqs. (79) and (80), we obtain

ψ+1(α)=
(
A1

π
cosh κ(α)+

A2

π

sinh κ(α)
γ(α)

)
G1(α)−A2

π
G3(α) cosh κ(α)

−A1

π
G5(α)

sinh κ(α)
γ(α)

−T (α) cosh κ(−k)
2

(
C1 cosh κ(α)+C2

sinh κ(α)
γ(α)

)
+
T1(α) sinh κ(−k) cosh κ(α)C2

2
√

2k

+
T2(α)

√
2k sinh κ(−k) sinh κ(α)/γ(α)C1

2
. (82)
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and eliminating ψ+1(α) between Eqs. (79) and (80), will yield

ψ+2(α) =
(
A1

π
γ(α) sinh κ(α) +

A2

π
cosh κ(α)

)
G1 (α)

−A2

π
G3(α)γ (α) sinh κ(α) − A1

π
G5(α) cosh κ (α)

−T (α) cosh κ(−k)
2

(C1γ(α) sinh κ (α) + C2 cosh κ(α))

+
T1(α) sinh κ(−k)γ(α) sinh κ(α)C2

2
√

2k

+
T2(α)

√
2k sinh κ(−k) cosh κ(α)C1

2
. (83)

Now in order to calculate the function ψ−1(α) and ψ−2(α) we replace
G1(α) by G2(α) (and G2(α) by G1(α)), G3(α) by G4(α) (and G4(α) by
G3(α)) and G5(α) by G6(α) (and G6(α) by G5(α)) and also changing
α to −α in the Eqs. (82)and (83), respectively, we arrive at:

ψ−1(α) =
(
A1

π
cosh κ(−α) +

A2

π

sinh κ(−α)
γ(−α)

)
G2(−α)

−A2

π
G4(−α) cosh κ(−α) − A1

π
G6(−α)

sinh κ(−α)
γ(−α)

−T (−α) cosh κ(−k)
2

(
C̃1 cosh κ(−α) + C̃2

sinh κ(−α)
γ(−α)

)
+
T1(−α) sinh κ(−k) cosh κ(−α)C̃2

2
√

2k

+
T2(−α)

√
2k sinh κ(−k) sinh κ(−α)/γ(−α)C̃1

2
, (84)

and

ψ−2(α) =
(
A1

π
γ(−α) sinh κ(−α) +

A2

π
cosh κ(−α)

)
G2(−α)

−A2

π
G4(−α)γ(−α) sinh κ(−α) − A1

π
G6(−α) cosh κ(−α)

−T (−α) cosh κ(−k)
2

(
C̃1γ(−α) sinh κ(−α)+C̃2 cosh κ(−α)

)
+
T1(−α) sinh κ(−k)γ(−α) sinh κ(−α)C̃2

2
√

2k

+
T2(−α)

√
2k sinh κ(−k) cosh κ(−α)C̃1

2
. (85)
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where C̃1 and C̃2 are given by

C̃1 = F̃ 1
+ (k)

∣∣∣
λ=1

− F̃ 1
+ (k)

∣∣∣
λ=−1

,

C̃2 = F̃ 2
+ (k)

∣∣∣
λ=1

− F̃ 2
+ (k)

∣∣∣
λ=−1

, (86)

and F̃ 1
+(k) and F̃ 2

+ (k) denote the functions in which G1 by G2 and
G2 by G1, G3 by G4 and G4 by G3 and G5 by G6 and G6 by
G5 have also been interchanged and then evaluated for λ = 1 and
λ = −1 respectively. Since the functions ψ±1(α) and ψ±2(α) have
been calculated, therefore we now manipulate Eqs. (20c) and (20d)
and the unknown coefficient A(α) is determined to be

A(α) =
1

2K(α)
[
eiαpψ−2(α) − ik sin θ0G(α) + eiαqψ+2(α)

]
−eiαpψ−1(α)

2
− eiαqψ+1(α)

2
. (87)

Substituting the values of ψ±1(α) and ψ±2(α) in Eq. (87) and
simplifying we obtain

A(α) =
[

1
2πK(α)

{
ik sin θ0 cosh κ(−α) cosh κ (−k cos θ0)

α− k cos θ0
ei(α−k cos θ0)p

−ik sin θ0R2(−α) cosh κ(−α)eiαp−k cos θ0q

− ik sin θ0 sinh κ(−α)γ(−α) sinh κ (−k cos θ0)
(α− k cos θ0) γ (−k cos θ0)

ei(α−k cos θ0)p

+ik sin θ0R4(−α)γ(−α) sinh κ(−α)eiαp−k cos θ0q

+
(
T (−α) cosh κ(−k)

2

(
−γ(−α) sinh κ(−α)C̃1 + cosh κ(−α)C̃2

)
+
T1(−α)γ(−α) sinh κ(−α) sinh κ(−k)C̃2

2
√

2k

+
T2(−α) sinh κ(−k) cosh κ(−α)

√
2kC̃1

2

)
eiαp

}

+
1

2πK(α)

{−ik sin θ0 cosh κ(α) cosh κ (k cos θ0)
α− k cos θ0

ei(α−k cos θ0)q

−ik sin θ0R1(α) cosh κ(α)eiαq−ik cos θ0p

+
ik sin θ0 sinh κ(α)γ(α) sinh κ (k cos θ0)

(α− k cos θ0) γ (k cos θ0)
ei(α−k cos θ0)q
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+ik sin θ0R3(α)γ(α) sinh κ(α)eiαq−k cos θ0pq

+
(
T (α) cosh κ(−k)

2
(−γ(α) sinh κ(α)C1 − cosh κ(α)C2)

+
T1(α)γ(α) sinh κ(α) sinh κ(−k)C2

2
√

2k

+
T2(α) sinh κ(−k) cosh κ(α)

√
2kC1

2

)
eiαq

}

+
1
2π

{−ik sin θ0 sinh κ(−α) cosh κ (−k cos θ0)
γ(−α) (α− k cos θ0)

ei(α−k cos θ0)p

+
ik sin θ0 cosh κ(−α) sinh κ (−k cos θ0)

(α− k cos θ0) γ (−k cos θ0)
ei(α−k cos θ0)p

+
ik sin θ0R2(−α)sinh κ(−α)eiαp−k cos θ0q

γ(−α)

−ik sin θ0R4(−α)cosh κ(−α)eiαp−k cos θ0q

+
(−T (−α) cosh κ(−k)

2

(
cosh κ(−α)C̃1 +

sinh κ(−α)
γ(−α)

C̃2

)
+
T1(−α) sinh κ(−k) cosh κ(−α)C̃2

2
√

2k

+
T2(−α) sinh κ(−k) sinh κ(−α)

√
2kC̃1

2

)
eiαp

}

+
1
2π

{
ik sin θ0 sinh κ(α) cosh κ (k cos θ0)

γ(α) (α− k cos θ0)
ei(α−k cos θ0)q

− ik sin θ0 cosh κ(α) sinh κ (k cos θ0)
(α− k cos θ0) γ (−k cos θ0)

ei(α−k cos θ0)q

−ik sin θ0R3(α) cosh κ(α)eiαq−k cos θ0p

+
ik sin θ0R1(α) sinh κ(α)eiαq−k cos θ0p

γ(α)

−
(−T (−α) cosh κ(−k)

2

(
cosh κ(α)C1 +

sinh κ(α)
γ(α)

C2

)
+
T1(α) sinh κ(−k) cosh κ(α)C2

2
√

2k

+
T2(α) sinh κ(−k) sinh κ(α)

√
2kC1

2γ(α)

)
eiαq

}]
. (88)
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Since A(α) has been determined, the scattered field ψ(x, y) can
now be determined by substituting A(α) into Eq. (15) and taking the
inverse Fourier transform, we shall arrive at

ψ(x, y) =

∞∫
−∞

A(α)eiK(α)y−iαxdα, (89)

where A(α) is defined in Eq. (88). The scattered field ψ (x, y) can be
split up into two components as follows:

ψ (x, y) = ψsep (x, y) + ψint(x, y), (90)

where

ψsep(x, y) =
∞∫

−∞

 1
2πK(α)


 ik sin θ0 cosh κ(−α) cosh κ (−k cos θ0)

− ik sin θ0 sinh κ(−α)γ(−α) sinh κ (−k cos θ0)
γ (−k cos θ0)


+

1
2π

(−ik sin θ0 sinh κ(−α) cosh κ (−k cos θ0)
γ(−α)

+
ik sin θ0 cosh κ(−α) sinh κ (−k cos θ0)

γ (−k cos θ0)

)}
ei(α−k cos θ0)p

α− k cos θ0

+
1

2πK(α)
{(−ik sin θ0 cosh κ(α) cosh κ (k cos θ0)

+
ik sin θ0 sinh κ (α) γ(α) sinh κ (k cos θ0)

γ (k cos θ0)

)
+

1
2π

(
ik sin θ0 sinh κ(α) cosh κ (k cos θ0)

γ(α)

− ik sin θ0 cosh κ(α) sinh κ (k cos θ0)
γ (k cos θ0)

)}
ei(α−k cos θ0)q

α− k cos θ0

]
eiK(α)y−iαxdα,

(91)

and

ψint (x, y) =

∞∫
−∞

1
2πK(α)

[{(−ik sin θ0 cosh κ(α)R1(α)

+ ik sin θ0 sinh κ(α)γ(α)R3(α)) eiαq−ik cos θ0p

+
(
T (α) cosh κ(−k)

2
(−γ(α) sinh κ(α)C1 − cosh κ(−α)C2)



Progress In Electromagnetics Research B, Vol. 11, 2009 125

+
T1(α)γ(α) sinh κ(α) sinh κ(−k)C2

2
√

2k

+
T2(α)

√
2k sinh κ(−k) cosh κ(α)C1

2

)
eiαq

}

+
1

2πK(α)
{(−ik sin θ0 cosh κ(−α)R2(−α)

+ ik sin θ0 sinh κ(−α)γ(−α)R4(−α)) eiαp−ik cos θ0q

+
(
T (−α) cosh κ(−k)

2

(
−γ(−α) sinh κ(−α)C̃1 − cosh κ(−α)C̃2

)
+
T1(−α)γ(−α) sinh κ(−α) sinh κ(−k)C̃2

2
√

2k

+
T2(−α)

√
2k sinh κ(−k) cosh κ(−α)C̃1

2

)
eiαp

}

+
1
2π

{(
−ik sin θ0 cosh κ(α)R3(α) + ik sin θ0

sinh κ(α)
γ(α)

R1(α)
)

×eiαq−ik cos θ0p−
(−T (α) cosh κ(−k)

2

(
C1 cosh κ(α) + C2

sinh κ(α)
γ(α)

)
+
T1(α) sinh κ(−k) cosh κ(α)C2

2
√

2k

+
T2(α)

√
2k sinh κ(α) sinh κ(−k)C1

2

)
eiαq

}

+
1
2π

{(
ik sin θ0 sinh κ(−α)R2(−α)

γ(−α)
− ik sin θ0 cosh κ(−α)R4(−α)

)
×eiαp−ik cos θ0q

−
(
T (−α) cosh κ(−k)

2

(
−C̃1 cosh κ(−α) − C̃2

sinh κ(−α)
γ(−α)

)
+
T1(−α) sinh κ(−k) cosh κ(−α)C̃2

2
√

2k

+
T2(α)

√
2k sinh κ(−α) sinh κ(−k)C̃1

2

)
eiαp

}]
eiK(α)y−iαxdα, (92)

where ψsep (x, y) gives the diffracted field produced by the edges at
x = p and at x = q respectively and ψint (x, y) gives the interaction of
one edge upon the other edge.
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θ

Figure 2. Variation of the separated field ψsep with observation angle
θ at θ0 = π

4 , k = 1 and l = 1.

2.1. Far-Field Solution

The calculations carried out for the three part boundary value problem
formulated in terms of matrix WH equations are quite laborious and
delicate at the same time, so we report the far field only for the case of
y > 0 only, (i.e., we determine the unknown coefficient A(α) only),
the far field for the case of y < 0 can be calculated in a similar
manner. Therefore, in order to solve the integral appearing in Eq. (89)
we introduced the following substitutions

x = ρ cos θ, y = ρ sin θ and α = −k cos (θ + it1) , (93)

in Eq. (89), omitting the computational details, and using the method
of steepest descent, the field at the large distance from a slit in an
infinite soft-hard plane is given as

ψ(x, y) �
√

2π
kρ

i sin θA(−k cos θ)eikρ+i π
4 . (94)

where A(−k cos θ) can be evaluated from Eq. (88).

3. GRAPHICAL RESULTS

In this section we will present some graphs showing the effects of
various parameters on the diffracted field produced by the two edges
of the slit in an infinite soft-hard plane.

Figs. 2 and 3 show the variation of separated field ψsep with
observation angle θ at θ0 = π/4, k = 1 and ρ = 1, 2, 3 for l = 1
and 5, respectively. It is observed that by increasing the parameter ρ
the overall amplitude of the separated field decreases. The effect of slit
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θ

Figure 3. Variation of the separated field ψsep with observation angle
θ at θ0 = π

4 , k = 1 and l = 5.

Figure 4. Variation of the separated field ψsep with observation angle
θ at θ0 = π

4 , ρ = 1 and k = 1.

Figure 5. Variation of the separated field ψsep with observation angle
θ at θ0 = π

4 , ρ = 5 and k = 1.
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Figure 6. Variation of the separated field ψsep with observation angle
θ at θ0 = π

4 , ρ = 1 and l = 1.

Figure 7. Variation of the separated field ψsep with observation angle
θ at θ0 = π

4 , ρ = 1 and l = 5.

width parameter l is observed through the Figures 4 and 5 in which
θ0 = π/4, k = 1 and l = 1, 3, 5 for ρ = 1 and 5. It is noted that
by keeping the other parameters fixed and increasing the parameter
l causes more oscillations in the separated field and its amplitude
decreases. Finally in order to see the effects of wave number parameter
k figures 6 and 7 are plotted for θ0 = π/4, ρ = 1 and k = 1, 2, 3 for l = 1
and 5. These graphs depict that increasing the parameter k results in
increasing oscillations in the separated field and the amplitude of the
separated field decreases.
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4. CONCLUSION

In this paper the diffraction of a plane acoustic wave by a slit in
an infinite soft hard plane is investigated rigorously with the help of
integral transform, Wiener-Hopf technique and the method of steepest
descent. Further the consideration of slit in an infinite soft-hard plane
will help understand acoustic diffraction and will go a step further to
complete the discussion for the soft-hard half plane. The two edges
of the slit give rise to two diffracted fields (one from each edge) and
the interaction of one edge upon the other edge. The diffracted field
is presented for the far-field situation and some graphs showing the
effects of various parameters on the separated field are also plotted.
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