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RADIATION FROM AN ECCENTRIC COATED
CYLINDER WITH SLOTS OF ARBITRARY SIZES AND
POSITIONS

M. A. Mushref

P. O. Box 9772, Jeddah 21423, Saudi Arabia

Abstract—The transverse electric (TE) field patterns and characteris-
tics are considered for a cylinder with N infinite axial slots of arbitrary
opening size and position. The cylinder is a thin circular conductor
and covered by an eccentric material. Radiations are determined by
applying the boundary conditions to the cylindrical wave functions of
the fields. The addition theorem of Bessel functions is employed to
find an infinite-series solution in Fourier-Bessel series form. Results
are achieved by reducing the produced infinite series to a finite num-
ber of terms and judged against other published data. Numerical and
graphical results for different values are also presented and discussed
for small eccentricities.

1. INTRODUCTION

The study of field characteristics from slotted cylindrical antennas
is an essential problem in electromagnetic field theory and has
been the subject of several former researches [1–4]. There is an
ongoing requirement to improve and develop radiating systems for
applications in aircrafts and missiles that will not weaken or change the
aerodynamic properties of the vehicle. In addition, slotted cylinders
in particular structures achieved various commercial applications in
frequency modulation (FM) and television (TV) transmission and
reception. The horizontal polarization of the slot-in-cylinder used
for FM and TV broadcasting possesses significant advantages over
the ordinary dipole antenna [5]. Besides, lightweight, simplicity of
assembly and high radiated power made this type of antennas suitable
for other applications such as radars, satellite communications and
global positioning systems (GPS) [6].

In 1950, Silver and Saunders derived expressions for the external
field produced by a slot of arbitrary shape. The far field was obtained
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by applying the method of steepest decent to the Fourier integrals
in the solution [1]. The results obtained were also applied by Bailin
in 1955 to the cases of narrow-width half-wavelength slots in infinite
cylinders with large radii [2]. In 1956, Hurd derived the radiation
patterns of an axial slot in a dielectric coated circular cylinder and
made some comparisons with experimental results [3]. Additionally,
Wait and Mientka, in 1957, presented the fields produced by an
arbitrary slot on a circular cylinder with a cocentric dielectric coating.
The far zone expressions were developed using a saddle-point method
applied to the derived integrals [4].

However, earlier investigations did not consider possible effects to
radiations of N arbitrary placed axial slots with different opening sizes
and when the conducting cylinder and the coating material are both
eccentric. This proposed construction can highly improve radiation
directivity and other field characteristics that can be easily adapted
with sizes and positions of the axial slots.

2. ANTENNA STRUCTURE

Problems with cylindrical boundaries and surfaces are usually better
solved in cylindrical coordinates. The problem stated in this paper is
solved in the two dimensional circular cylindrical coordinate system
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Figure 1. Geometry of the problem.
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with orientation (r, φ). As shown in Figure 1, the global coordinate
system (r, φ) is defined at the center of the dielectric coating material
and the local coordinate system (rc, φc) is defined at the center of the
slotted metallic cylinder. The center of the local coordinate system is
positioned at x = d with respect to the global coordinate system.

Here, the transverse electric (TE) field is to be found for N
infinite axial slots in a circular metallic cylinder coated with a dielectric
material as illustrated in Figure 1. The cylinder is assumed to be a
thin perfect electric conductor with radius a and with infinite extent
along the z-axis. On the cylinder surface N slots are axially opened
with angular apertures of 2θ1, 2θ2, 2θ3, . . ., 2θN located at θs1, θs2,
θs3, . . ., θsN respectively with respect to the x-axis. The cylinder is
totally coated by an eccentric layer with radius b and assumed to be
homogenous, linear and isotropic and characterized by permittivity ε
and permeability µ. The region out of the coating material for all r > b
and 0 ≤ φ ≤ 2π is assumed to be free space with ε0 and µ0. As shown
in Figure 1, the dielectric material and free space are considered as
region I and region II respectively.

3. MATHEMATICAL FORMULATION

The Helmholtz scalar wave equation is first solved in the circular
cylindrical coordinate system in r and φ. Going after the separation
of variables technique, the solution is a Bessel or Hankel function
in r multiplied by a complex exponential in φ. The structure
shown in Figure 1 implies the magnetic field to be represented by
a Fourier-Bessel exponential series. In region I this is represented by
a summation of a harmonic function multiplied by Bessel functions
as [3]:

HI
z =

∞∑
n=−∞

einφ{αnJn(kr) + βnYn(kr)}An (1)

In region II the magnetic field radiates from the structure and
therefore the Hankel function is assumed and multiplied by a harmonic
function as [3]:

HII
z =

∞∑
n=−∞

einφH(2)
n (k0r)An (2)

where αn, βn and An are unknown coefficients and i =
√
−1. k and

k0 are the dielectric coating and free space wave numbers respectively
given by k = 2π/λ and λ is the wavelength. Jn(x) and Yn(x) are Bessel
functions of the first and the second type respectively with order n and
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argument x. H(2)
n (x) is the outgoing Hankel function of the second type

with order n and argument x.

4. ANALYTICAL SOLUTION

We can apply the boundary conditions to find αn, βn and An

coefficients. According to the geometry of the structure shown in
Figure 1 the boundary conditions with respect to the global coordinate
are continuity of both tangential electric Eφ and magnetic Hz fields for
all φ at r = b, that is:

HI
z = HII

z for r = b and 0 ≤ φ ≤ 2π (3)

EI
φ = EII

φ for r = b and 0 ≤ φ ≤ 2π (4)

where Eφ is derived from Maxwell’s equations as Eφ =
(i/ωε)(∂Hz/∂r) [3].

Equations (3) and (4) are solved by employing the orthogonality of
the complex exponential functions. Each side is multiplied by e−iqφ and
integrated over φ from 0 to 2π where q is an integer. We respectively
get:

αnJn(kb) + βnYn(kb) = H(2)
n (k0b) (5)

αnJ
′
n(kb) + βnY

′
n(kb) = erH

(2)
n

′
(k0b) (6)

where er =
√
εr/µr and the prime notation designates differentiation

with respect to the argument.
Solving Equations (5) and (6) by elimination for αn and βn we

respectively obtain:

αn =
πkb

2

[
H(2)

n (k0b)Y ′
n(kb) − erH

(2)
n

′
(k0b)Yn(kb)

]
(7)

βn =
−πkb

2

[
H(2)

n (k0b)J ′
n(kb) − erH

(2)
n

′
(k0b)Jn(kb)

]
(8)

The third boundary condition is expressed in the local coordinate
system. At rc = a the tangential electric field vanishes in region I for
all values of φc except at the slots where it has a constant value of
EoL [7, 8]. That is:

EI
φ = EoL for rc = a and |φc − θsL| < θL L = 1, . . . , N (9)

The addition theorem of Bessel functions should be used in this
case. From [9, 10] we have:

Tm(kr)eimφ =
∞∑

p=−∞
(−1)p Tm+p(krc)Jp(kd)ei(m+p)φc rc > d

Tm+p(kd)Jp(krc)e−ipφc rc < d
(10)
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where Tm(x) can be Jm(x) or Ym(x) and m and p are integers.
By applying Equation (10) to Equation (9) we can simplify the

outcome to be:
∞∑

n=−∞
An(−1)m−n

{
αn
J ′

m(ka)
J ′

m−n(kd) +βn
Y ′

m(ka)
Y ′

m−n(kd)

}
Jm−n(kd) a>d

Jm(ka) a<d

=
ωε

ikmπ

N∑
L=1

EoL sin(mθL)e−imθsL (11)

For very small values of θL, Equation (11) can be simplified to:
∞∑

n=−∞
An(−1)m−n

{
αn

J ′
m(ka)
J ′

m−n(kd) +βn
Y ′

m(ka)
Y ′

m−n(kd)

}
Jm−n(kd) a>d

Jm(ka) a<d

=
ωε

ikπ

N∑
L=1

EoLθLe
−imθsL (12)

The special case of N = 2, Eo1 = Eo2 = E0, 2θ1 = 2θ2 = θ0,
θs1 = 0 and θs2 = π implies the right side of Equation (12) to be
E0ωεθ0
2ikπ [1 + cos(mπ)] as in [7, 8].

For small values of d the summation rapidly converges and thus
Equation (2) can be further simplified if expressed in matrix form and
therefore we can find the coefficients An as:

[An]n×1 = [Zn,m]−1
n×m [fm]m×1 (13)

where Zn, m is the second factor in the left side of Equation (12) and
fm is the right side of the same equation. The matrix [Zn,m]m×n in
Equation (13) is a non-singular square matrix.

5. RADIATION CHARACTERISTICS

The asymptotic expression of the Hankel function can be used for
Equation (2) and thus the radiated field can be evaluated at a far
point as [11, 12]:

HII
z = e−i(k0r−π/4)P (φ)

√
2

πk0r
(14)

where P (φ) is the far radiated field pattern given by:

P (φ) =
∞∑

n=−∞
inAne

inφ (15)
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The antenna gain and the aperture conductance per unit length
λ0 are major quantities in the study of the antenna characteristics.
By Equations (13) and (15) both can be respectively found as in
reference [9] to be:

G(φ) =
π |P (φ)|2

2
∞∑

n=−∞
|An|2

(16)

Ga/λ0 =
η0

∞∑
n=−∞

|An|2

2πa2

(
N∑

L=1
EoL2θL

)2 (17)

where η0 is the free space intrinsic impedance given by 120π
approximately [13, 14].

6. CORRECTNESS OF DERIVATIONS

The series in Equation (12) is from −∞ to +∞ over n and can create
infinite matrices in Equation (13). For small values of d this series
quickly converges and can be solved by numerical reduction to form
finite matrices. On the contrary, for larger values of d the physical
size of the proposed structure in Figure 1 is larger and we require
further terms in the summation [15]. In view of that, our numerical
estimations are only obtained for small eccentricities in order to smooth
the progress of the series expansion.

Prior to determining the numerical results for the effects of
eccentricity and the slots’ arbitrary positions, it is necessary to validate
the accuracy of the expressions derived. A number of graphical results
are presented and also compared to other curves in references [3, 4, 9]
for a slot size of θ0 = π/100. The results found are only calculated for
values of n from −25 to 25 of the series formed in the solution due to
the rapid convergence of the summation. A smaller number of terms
in the summations produced non-satisfactorily results. All produced
patterns are normalized to one of the curves as a reference data to
simplify our intended investigations and recognize the variations that
may happen when N slots of arbitrary position exist with eccentricity.

The radiated patterns in Equation (15) assuming very small
eccentricity compared with the results in reference [3] are shown in
Figure 2(a) for N = 1, θs1 = 0, 2θ1 = θ0, d = 0.001λ0, ε/ε0 = 2.56,
µ/µ0 = 1, a = 0.358λ0 and b = 0.4217λ0. Also, in Figure 2(b) the
field pattern is compared with related values in reference [4] case II



Progress In Electromagnetics Research B, Vol. 11, 2009 61

for N = 1, θs1 = 0, 2θ1 = θ0, d = 0.001λ0, ε/ε0 = 1, µ/µ0 = 4,
a = 0.318λ0 and b = 0.350λ0. From reference [4], aA = k0 and
bB = k0 respectively. In addition, from Equation (16) the antenna
gain compared to reference [9] is shown in Figure 3(a) versus the
coating thickness at slot location φ = 0 for N = 1, θs1 = 0, 2θ1 = θ0,
d = 0.001λ0, ε/ε0 = 4, µ/µ0 = 1 and a = 2λ0. Also, in Figure 3(b)
the aperture conductance per unit length λ0 in Equation (17) is
shown versus the coating thickness for N = 1, θs1 = 0, 2θ1 = θ0,
d = 0.001λ0, ε/ε0 = 4, µ/µ0 = 1 and a = 2λ0 estimated against
the same results in reference [9]. As expected from Figures 2 and 3,
the curves demonstrate complete agreements and our results confirm
every indication of accuracy. Also, convergence tests illustrate that a
sufficient number of terms in the infinite series is applied.

7. EXAMPLES AND DISCUSSIONS

Numerical results in reference [8] are only limited for two slots of a fixed
size located at φ = 0 and π, however, in this study field characteristics
are found for N axial slots of arbitrary sizes and positions with an
eccentric coating. In this case, sizes and positions of axial slots are
two additional variables that can affect the radiation characteristics
of the proposed structure such as directivity that may be employed
in certain applications. For many possible applications, these two
additional variables can greatly help in some design and construction
situations in addition to other parameters.
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Figure 2. (a) Radiation patterns for ε/ε0 = 2.56, µ/µ0 = 1, a =
0.358λ0 and b = 0.4217λ0. —— reference [3], – – – – calculated for
N = 1, θs1 = 0, 2θ1 = θ0, and d = 0.001λ0. (b) Radiation patterns for
ε/ε0 = 1, µ/µ0 = 4, a = 0.318λ0 and b = 0.350λ0. —— reference [4],
– – – – calculated for N = 1, θs1 = 0, 2θ1 = θ0, and d = 0.001λ0.

2 2.05 2.1 2.15 2.2
2

0

2

4

6

8

.

Coating Thickness in 0

G
ai

n 
in

 d
B

λ
(a)



Progress In Electromagnetics Research B, Vol. 11, 2009 63

2 2.05 2.1 2.15 2.2
0

10

20

30

40

50

60

.

Coating Thickness in 0λ
(b)

A
pe

rt
ur

e 
C

on
du

ct
an

ce
 in

 m
S

Figure 3. (a) Antenna gain versus coating thickness for ε/ε0 = 4,
µ/µ0 = 1 and a = 2λ0. —— reference [9], – – – – calculated at φ = 0 for
N = 1, θs1 = 0, 2θ1 = θ0, and d = 0.001λ0. (b) Aperture conductance
versus coating thickness for ε/ε0 = 4, µ/µ0 = 1 and a = 2λ0 ——
reference [9], – – – – calculated for N = 1, θs1 = 0, 2θ1 = θ0, and
d = 0.001λ0.

The radiated far field patterns are better be viewed and examined
in polar coordinates. Parameters such as a, b, ε/ε0 and µ/µ0 are
selected as in references [3, 4, 9] for all obtained numerical results
for comparison purposes. Also, numerical results of the radiation
characteristics are calculated for N = 1, 2 and 3 only.

Figure 4(a) illustrates the radiation patterns for N = 1, 2θ1 = θ0,
a = 0.358λ0, b = 0.4217λ0, ε/ε0 = 2.56, µ/µ0 = 1 and d = 0λ0,
0.02λ0 and 0.06λ0 respectively. The main lobe at φ = 0 decreases as
d increases which indicate a lower radiation of energy at this direction
with respect to eccentricity. Figure 4(b) also shows the radiation
patterns for N = 1, 2θ1 = θ0, a = 0.358λ0, b = 0.4217λ0, ε/ε0 = 1,
µ/µ0 = 4 and d = 0λ0, 0.02λ0 and 0.06λ0 respectively. Also, the
patterns generally decrease as d increases, however, the main radiation
lobe at φ = 0 broadens as d increases.

Figure 5(a) shows the radiation patterns for N = 2, θs1 = 0,
θs2 = π, 2θ1 = 2θ2 = θ0, a = 0.358λ0, b = 0.4217λ0ε/ε0 = 2.56,
µ/µ0 = 1 and d = 0λ0, 0.02λ0 and 0.06λ0 respectively. Although d
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Figure 4. Radiation patterns for N = 1, θs1 = 0, 2θ1 = θ0,
a = 0.358λ0 and b = 0.4217λ0. —— d = 0λ0, · · · · · · d = 0.02λ0,
– – – – d = 0.06λ0.
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Figure 5. Radiation patterns for N = 2, θs1 = 0, θs2 = π,
2θ1 = 2θ2 = θ0, a = 0.358λ0 and b = 0.4217λ0. —— d = 0λ0,
· · · · · · d = 0.02λ0, – – – – d = 0.06λ0.
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increases we can notice an increase of the field at φ = π and a decrease
at φ = 0. Figure 5(b) also shows the radiation patterns for N = 2,
θs1 = 0, θs2 = π, 2θ1 = 2θ2 = θ0, a = 0.358λ0, b = 0.4217λ0, ε/ε0 = 1,
µ/µ0 = 4, and d = 0λ0, 0.02λ0 and 0.06λ0 respectively. In this case the
patterns are changed particularly at φ = 0 where the field is decreased
for d = 0.06λ0.

In Figure 6(a), the radiation patterns are plotted for N = 3,
θs1 = 0, θs2 = π/2, θs3 = π, 2θ1 = 2θ2 = 2θ3 = θ0, a = 0.358λ0,
b = 0.4217λ0, ε/ε0 = 2.56, µ/µ0 = 1 and d = 0λ0, 0.02λ0 and 0.06λ0

respectively. As d increases we can notice an increase of the field at
different angles. Also, Figure 6(b) also shows the radiation patterns
for N = 3, θs1 = 0, θs2 = π/2, θs3 = π, 2θ1 = 2θ2 = 2θ3 = θ0,
a = 0.358λ0, b = 0.4217λ0, ε/ε0 = 1, µ/µ0 = 4 and d = 0λ0,
0.02λ0 and 0.06λ0 respectively. Here, the fields are highly varied with
additional lobes and a clear increase for d = 0.06λ0 at φ ≈ 50 degrees.

Figure 7 illustrates the radiated fields as the slot location is
changed with eccentricity for N = 1, 2θ1 = θ0, a = 0.358λ0,
b = 0.4217λ0, d = 0.06λ0 and θs1 = π/4, π/2 and 3π/4 respectively.
In Figure 7(a), fields are found for ε/ε0 = 2.56 and µ/µ0 = 1 where
the radiations are highest for θs1 = 3π/4 but with a different main
lobe angle of about 135 degrees. Greater variations and distortions are
shown in Figure 7(b) for ε/ε0 = 1 and µ/µ0 = 4.
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Figure 6. Radiation patterns for N = 3, θs1 = 0, θs2 = π/2, θs3 = π,
2θ1 = 2θ2 = 2θ3 = θ0, a = 0.358λ0 and b = 0.4217λ0, —— d = 0λ0,
· · · · · · d = 0.02λ0, – – – – d = 0.06λ0.
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Figure 7. Radiation patterns for N = 1, 2θ1 = θ0, a = 0.358λ0,
b = 0.4217λ0 and d = 0.06λ0. —— θs1 = π/4, · · · · · · θs1 = π/2, – – – –
θs1 = 3π/4.
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Figure 8. Radiation patterns for N = 2, θs1 = 0, 2θ1 = 2θ2 = θ0,
a = 0.358λ0, b = 0.4217λ0 and d = 0.06λ0, —— θs2 = π/4, · · · · · ·
θs2 = π/2, – – – – θs2 = 3π/4.
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Figure 9. Radiation patterns for N = 3, θs1 = 0, θs2 = π/2,
2θ1 = 2θ2 = 2θ3 = θ0, a = 0.358λ0, b = 0.4217λ0 and d = 0.06λ0,
—— θs3 = π, · · · · · · θs3 = 5π/4, – – – – θs3 = 3π/2.

In addition, Figure 8 shows the radiated fields as the second slot
location is changed with eccentricity for N = 2, θs1 = 0, 2θ1 = 2θ2 =
θ0, a = 0.358λ0, b = 0.4217λ0, d = 0.06λ0 and θs2 = π/4, π/2 and
3π/4 respectively. In Figure 8(a), fields are plotted for ε/ε0 = 2.56
and µ/µ0 = 1 where the radiations are generally highest for θs1 = 3π/4
but with more lobes and deformations. Larger changes are shown in
Figure 8(b) for ε/ε0 = 1 and µ/µ0 = 4.

Furthermore, Figure 9 illustrates the patterns as the third slot
location is changed with eccentricity for N = 3, θs1 = 0, θs2 =
π/2, 2θ1 = 2θ2 = 2θ3 = θ0, a = 0.358λ0, b = 0.4217λ0, d = 0.06λ0

and θs3 = π, 5π/4 and 3π/2 respectively. In Figure 9(a), radiations
are calculated for ε/ε0 = 2.56 and µ/µ0 = 1 where the radiations are
varied with many lobes at different angles. Other changes are also
shown in Figure 9(b) for ε/ε0 = 1 and µ/µ0 = 4.

The antenna gain in dB versus coating thickness at φ = 0 is plotted
in Figure 10 for N = 1, θs1 = 0, 2θ1 = θ0, a = 2λ0, and d = 0λ0,
0.02λ0 and = 0.06λ0 respectively. In Figure 10(a), the gain peaks are
changed with respect to the coating thickness as eccentricity changes
for ε/ε0 = 4 and µ/µ0 = 1. Also, in Figure 10(b) the gain is varied
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with respect to the coating thickness for ε/ε0 = 1 and µ/µ0 = 4 as
eccentricity increases.
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Figure 10. Antenna gain versus coating thickness at φ = 0 for N = 1,
θs1 = 0, 2θ1 = θ0 and a = 2λ0. —— d = 0λ0, · · · · · · d = 0.02λ0, – – – –
d = 0.06λ0.
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Figure 11. Antenna gain versus coating thickness at φ = 0 for N = 2,
θs1 = 0, θs2 = π, 2θ1 = 2θ2 = θ0 and a = 2λ0. —— d = 0λ0, · · · · · ·
d = 0.02λ0, – – – – d = 0.06λ0.

Great changes in the gain at φ = 0 are shown in Figure 11 for
N = 2, θs1 = 0, θs2 = π, 2θ1 = 2θ2 = θ0, a = 2λ0, and d = 0λ0,
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Figure 12. Antenna gain versus coating thickness at φ = 0 for N = 3,
θs1 = 0, θs2 = π/2, θs3 = π, 2θ1 = 2θ2 = 2θ3 = θ0 and a = 2λ0, ——
d = 0λ0, · · · · · · d = 0.02λ0, – – – – d = 0.06λ0.

0.02λ0 and = 0.06λ0 respectively. In Figure 11(a), the uppermost
peak for ε/ε0 = 4 and µ/µ0 = 1 is shown for d = 0.06λ0 at b ≈ 2.11λ0
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approximately. However, in Figure 11(b) the primary peak for ε/ε0 = 1
and µ/µ0 = 4 is also shown for d = 0.06λ0 but at b ≈ 2.04λ0

approximately.
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Figure 13. Aperture Conductance versus coating thickness for N = 1,
θs1 = 0, 2θ1 = θ0, a = 2λ0. —— d = 0λ0, · · · · · · d = 0.02λ0, – – – –
d = 0.06λ0.
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In addition, Figure 12 shows the gain versus the coating thickness
at φ = 0 for N = 3, θs1 = 0, θs2 = π/2, θs3 = π, 2θ1 = 2θ2 = 2θ3 = θ0
and d = 0λ0, 0.02λ0 and = 0.06λ0 respectively. For ε/ε0 = 4 and
µ/µ0 = 1, the gain is plotted in Figure 12(a) where the highest peak is
found for d = 0.06λ0 at b ≈ 2.06λ0 approximately. In Figure 12(b) for
ε/ε0 = 1 and µ/µ0 = 4, the main peak is located around b ≈ 2.05λ0

for d = 0.06λ0.
The aperture conductance in mille siemens (mS) versus coating

thickness is shown in Figure 13 for N = 1, θs1 = 0, 2θ1 = θ0, a = 2λ0

and d = 0λ0, 0.02λ0 and = 0.06λ0 respectively. In Figure 13(a), this
quantity decreases as d increases for the values shown for ε/ε0 = 4
and µ/µ0 = 1. Figure 13(b) illustrates the changes for ε/ε0 = 1 and
µ/µ0 = 4. Resonant points with respect to the coating thickness may
greatly affect the radiation patterns and enhance the radiated power.
In this figure, these points are almost the same for d = 0λ0 and 0.02λ0

but there are slight shifts for d = 0.06λ0.
Moreover, Figure 14 shows the aperture conductance versus

coating thickness for N = 2, θs1 = 0, θs2 = π, 2θ1 = 2θ2 = θ0
and d = 0λ0, 0.02λ0 and = 0.06λ0 respectively. Many variations are
shown in Figure 14(a) for ε/ε0 = 4 and µ/µ0 = 1. In Figure 14(b), this
quantity is generally minimized for ε/ε0 = 1 and µ/µ0 = 4. Resonances
are about equivalent for d = 0λ0 and 0.02λ0 but with minor changes
for d = 0.06λ0.
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Figure 14. Aperture Conductance versus coating thickness for N = 2,
θs1 = 0, θs2 = π, 2θ1 = 2θ2 = θ0 and a = 2λ0, —— d = 0λ0, · · · · · ·
d = 0.02λ0, – – – – d = 0.06λ0.

Finally, Figure 15 shows the aperture conductance versus coating
thickness for N = 3, θs1 = 0, θs2 = π/2, θs3 = π, 2θ1 = 2θ2 = 2θ3 = θ0
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Figure 15. Aperture Conductance versus coating thickness for N = 3,
θs1 = 0, θs2 = π/2, θs3 = π, 2θ1 = 2θ2 = 2θ3 = θ0 and a = 2λ0, ——
d = 0λ0, · · · · · · d = 0.02λ0, – – – – d = 0.06λ0.

and d = 0λ0, 0.02λ0 and = 0.06λ0 respectively. More peaks appeared
in Figure 15(a) for ε/ε0 = 4 and µ/µ0 = 1. The aperture conductance
is also minor for ε/ε0 = 1 and µ/µ0 = 4 as shown in Figure 15(b).
Also, resonances are changed for d = 0.06λ0 but approximately equal
for d = 0λ0 and 0.02λ0.

8. CONCLUSION

A solution was derived for the problem of N infinite axial slots of
arbitrary sizes and positions in a circular cylinder covered with an
eccentric coating material. The TE case was considered based on the
boundary value method and the radiated fields were represented in
terms of an infinite series of cylindrical waves. The solution explained
the effects of the proposed additional slots with eccentricity to the far
field patterns in addition to the influences that can arise to the antenna
gain and the aperture conductance.

REFERENCES

1. Silver, S. and W. Saunders, “The external field produced by a
slot in an infinite circular cylinder,” Journal of Applied Physics,



78 Mushref

Vol. 21, No. 5, 153–158, February 1950.
2. Bailin, L. L., “The radiation field produced by a slot in a

large circular cylinder,” IRE Transactions — Antennas and
Propagation, Vol. 3, No. 3, 128–137, July 1955.

3. Hurd, R. A., “Radiation patterns of a dielectric-coated axially
slotted cylinder,” Canadian Journal of Physics, Vol. 34, 638–642,
1956.

4. Wait, J. and W. Mientka, “Slotted-cylinder antenna with a
dielectric coating,” Journal of Research of the National Bureau
of Standards, Vol. 58, No. 6, 287–296, June 1957.

5. Jordan, E. O. and W. E. Miller, “Slotted-cylinder antenna,”
Electronics, 90–93, February 1947.

6. Leung, K. W. and L. Y. Chan, “The probe-fed zonal slot antenna
cut onto a cylindrical conducting cavity,” IEEE Transactions
on Antennas and Propagation, Vol. 53, No. 12, 3949–3952,
December 2005.

7. Mushref, M. A., “Radiation from a dielectric-coated cylinder with
two slots,” Applied Mathematics Letters, Vol. 17, No. 6, 721–726,
June 2004.

8. Mushref, M. A., “Field characteristics from an eccentric dielectric
coated circular cylinder with two axial slots,” Electromagnetics,
Vol. 25, No. 1, 55–67, January 2005.

9. Richmond, J., “Axial slot antenna on a dielectric-coated elliptic
cylinder,” IEEE Transactions on Antennas and Propagation,
Vol. 37, No. 10, 1235–1241, October 1989.

10. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE,
New York, 1995.

11. Harrington, R. F., Time-harmonic Electromagnetic Fields, IEEE,
New York, 2001.

12. Stratton, J. A., Electromagnetic Theory, McGraw-Hill Book
Company, Inc., New York, 1941.

13. Morse, P. M. and H. Feshbach, Methods of Theoretical Physics,
parts I and II, McGraw-Hill Book Company, Inc., New York, 1953.

14. Knop, C. M., “External admittance of an axial slot on a dielectric
coated metal cylinder,” Radio Science, Vol. 3 (new series), No. 8,
803–817, August 1968.

15. Mushref, M. A., “Matrix solution to electromagnetic scattering by
a conducting cylinder with an eccentric metamaterial coating,”
Journal of Mathematical Analysis and Applications, Vol. 332,
No. 1, 356–366, August 2007.


