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Abstract—A time domain integral equation approach for analysis
of transient responses by 3D composite metallic-dielectric bodies is
proposed, which is formulated using the surface equivalent polarization
and magnetization as unknown functions. The time domain electric
field integral equation is adopted for the metallic part, while the
time domain Piggio-Miller-Chang-Harrington-Wu integral equations
are adopted for the dielectric part. The spatial and temporal basis
functions are the Rao-Wilton-Glisson functions and quadratic B-
spline functions, respectively. Numerical examples are provided to
demonstrate the stability and accuracy of the proposed method. No
late-time instability is encountered, and the results are found in good
agreements with analytical or moment method solutions.

1. INTRODUCTION

Time domain simulation methods have received increasing attention in
recent years due to the needs for transient analyses in many emerging
short-impulse and broadband applications, such as ultra-wideband
antennas and communication systems, short-impulse responses of
targets, high-speed digital circuits and transient phenomenon in
nonlinear components. Finite difference time domain (FDTD) method
has been the dominant tool for time domain simulations; however,
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time domain integral equation (TDIE) approach is preferable in some
aspects especially for analysis of transient scattering by large-size
bodies, because it solves fewer unknowns using surface discretization
and unnecessitates the artificial absorbing boundary condition (ABC).
One reason that prevents TDIE approach from general acceptance is
the lack of a definitive stability condition, in contrast to the Courant
stability condition in FDTD methods. To suppress the late-time
instability in TDIE methods, many measures have been attempted,
including the averaging or filtering techniques [1–4], using different
formulations [5], the improved temporal basis functions [6–10], and
accurate evaluations of matrix elements [11, 12]. By intuition, we
believe that the late-time instability is nonphysical unlike the grid
dispersion in FDTD, so that it should not be present as long as (i)
the rigorousness of the governing equations, (ii) the completeness of
the temporal basis functions, and (iii) the accuracy of the matrix
elements are assured. Keeping this in mind, we derived a set of TDIE
formulations with equivalent polarizations and magnetizations as
unknown functions by (i) enforcing the rigorous boundary conditions,
(ii) using the complete quadratic B-spline temporal basis functions, and
(iii) calculating the matrix elements to sufficient precision. Indeed, in
our previous works on wire structures, 3D conducting and dielectric
bodies [13–15], no late-time instability has been encountered and
all numerical results are accurate compared with those obtained by
frequency domain method of moments (MoM). The purpose of this
work is to extend the methodology to transient scattering by 3D
metallic-dielectric composite bodies.

Analyses of scattering by 3D metallic-dielectric composite bodies
have wide applications, such as the typical platform-antenna-radome
structures. At a single frequency point or for a narrow frequency
range, the MoM is undoubtfully the first choice. For broadband
or transient scattering analysis, the time domain MoM, i.e., the
TDIE methods should be the preferred approach. A TDIE procedure
using the time domain electric field integral equations (TD-EFIE)
has been reported in [16, 17]. However, in this paper, we will use
the time domain Poggio-Miller-Chang-Harrington-Wu (TD-PMCHW)
equations that were found harder to stabilize than the TD-EFIE or the
time domain magnetic field integral equation (TD-MFIE) for dielectric
bodies [18]. The use of the combined-field type TD-PMCHW equations
is important in terms of eliminating the possible spurious solutions
near the resonant frequencies, because either TD-EFIE or TD-MFIE
for conducting bodies has been found to give wrong results near these
frequency points when the data in time domain are transformed to
frequency domain [19, 20].
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The organization of the paper is as follows. Section 2 is dedicated
to formulations by employing the induced equivalent polarization
and magnetization as unknown functions. In the past, induced
equivalent electric and magnetic currents are commonly used as
unknown functions, by which extra temporal integrals have to be
performed to find the electric and magnetic charges to calculate the
scalar potentials [6, 16, 19]. To avoid doing the integrals, the governing
equations, i.e., the boundary conditions, are differentiated with respect
to time [7, 9, 10, 14]. This would, however, weaken the equations as
they implicitly permit time slow-varying solutions which might incur
the low-frequency breakdown known as the exponential divergence.
The present formulations are devoid of these two disadvantages.
Section 3 shows numerical validations using a coated sphere, a semi-
metallic and semi-dielectric sphere, and a composite missile model as
examples, followed by some concluding remarks at the end in Section 4.

2. FORMULATION

Refer to Figure 1. The metallic surface is denoted by S1, the dielectric
surface denoted by S2, and the metallic-dielectric contacted surface
denoted by S3. A transient wave is incident upon the composite
body, which induce a distribution of equivalent polarization P1s on S1,
distributions of polarization P2s and magnetization M2s on S2, and a
distribution of polarization P3s on S3. The equivalent electric and
magnetic currents and charges on each surface can be found through
Ps and Ms, i.e., Js = ∂Ps/∂t, σs = −∇s · Ps, Jms = ∂(µ0Ms)/∂t
and σms = −∇s · (µ0Ms). The continuity equations are satisfied
automatically. The equivalent polarization and magnetization in the
present work amounts to the ‘new source vectors’ introduced in [21].

In the open region V0, the scattered fields can be expressed by

Figure 1. Geometry of transient scattering by a 3D composite body.
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P1s, P2s and M2s as

Es = −η0 [L1 (P1s) + L2 (P2s)] + K2

(
M̃2s

)
, r ∈ V0 (1a)

Hs = −[K1(P1s) + K2(P2s)] −
1
η0

L2(M̃2s), r ∈ V0 (1b)

where η0 =
√
µ0/ε0 is the intrinsic impedance of the free-space,

M̃2s = µ0M2s, and the two operators are defined by

Lq(X) =
c

4π

∫
Sq

[
∂2X (r′, t−R/c)

R∂(ct)2
−∇

[∇′ · X (r′, t′)]t′=t−R/c

R

]
dS′,

q = 1, 2 (2a)

Kq(X) =− c

4π
∇×

∫
Sq

∂X (r′, t−R/c)
R∂(ct)

dS′, q = 1, 2 (2b)

in which c = 1/
√
µ0ε0 is the light velocity in vacuum. In the dielectric

region Vd, the transmitted field can be expressed by −P2s, −M2s and
P3s as

Ed = −ηd

[
Ld

2 (−P2s) + Ld
3 (P3s)

]
+ Kd

2

(
−M̃2s

)
, r ∈ Vd (3a)

Hd = −
[
Kd

2 (−P2s) + Kd
3 (P3s)

]
− 1
ηd

Ld
2

(
−M̃2s

)
, r ∈ Vd (3b)

where ηd = ηrη0 with ηr =
√
µr/εr, while Ld

q and Kd
q are the same

as (2a)–(2b) by replacing c with cd = c/
√
µrεr.

By enforcing the electric tangential components to vanish on S1

and S3, i.e., n̂1 × (Ei + Es) = 0 and n̂3 × Ed = 0, we have

n̂1 × η0 [L1(P1s) + L2 (P2s)]−n̂1 × K2

(
M̃2s

)
= n̂1 × Ei, r ∈ S1 (4a)

n̂3 × ηd

[
Ld

2 (P2s) − Ld
3 (P3s)

]
− n̂3 × Kd

2

(
M̃2s

)
= 0, r ∈ S3 (4b)

Applying the electric and magnetic tangential continuity conditions on
S2, i.e., n̂2 × (Ei + Es) = n̂2 ×Ed and n̂2 × (Hi + Hs) = n̂2 ×Hd, we
obtain the TD-PMCHW equations:

n̂2 ×
[
η0L1 (P1s) +

(
η0L2 + ηdLd

2

)
(P2s) − ηdLd

3 (P3s)

−
(
K̃2 + K̃d

2

) (
M̃2s

)]
= n̂2 × Ei, r ∈ S2 (5a)

n̂2 ×
[
K̃1 (P1s) +

(
K̃2 + K̃d

2

)
(P2s) − K̃d

3 (P3s)

+
(

1
η0

L2 +
1
ηd

Ld
2

) (
M̃2s

)]
= n̂2 × Hi, r ∈ S2 (5b)
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Eqns. (4a)–(5b) are the governing equations to be solved for the
unknown equivalent sources.

Expand Pqs(r′, t′) (q = 1, 2, 3) and M̃2s(r′, t′) by employing the
RWG spatial basis functions [22] and the quadratic B-spline temporal
basis functions [13]:

Pqs

(
r′, t′

)
=

∞∑
j=1

Nq∑
n=1

cqn(j)S
(
t̄′ − j

)
fqn

(
r′

)
, q = 1, 2, 3 (6a)

M̃2s

(
r′, t′

)
= ηd

∞∑
j=1

Nq∑
n=1

d2n(j)S
(
t̄′ − j

)
f2n

(
r′

)
(6b)

where fqn(r′) (n = 1, 2, . . . , Nq) are the RWG basis functions defined
on Sq. The total number of edges of the triangulated S1 isN1, including
the joint edges, where a joint edge connects a pair of triangles with one
triangle on S1 and the other on S2. The total number of edges of the
triangulated S3 is N3, including the joint edges, where a joint edge
connects a pair of triangles with one triangle on S3 and the other on
S2. The total number of edges of the triangulated S2 is N2, excluding
any joint edge that connects a triangle on S1 or S3. The ηd on the right-
hand side of (6b) allows d2n(j) to be on the same order of magnitude as
c2n(j). The temporal basis function S(t̄′) is taken to be the quadratic
B-spline functions:

S
(
t̄′
)

=




1
2 (t̄′ + 1)2 , 0 ≤ t̄′ + 1 < 1
1
2 + t̄′ − t̄′2, 0 ≤ t̄′ < 1
1
2 − (t̄′ − 1) + 1

2 (t̄′ − 1)2 , 0 ≤ t̄′ − 1 < 1.

(7)

where t̄′ = t′/∆t with ∆t the time-step size. Because S′(t̄′) is
continuous and S(t̄′) = S′(t̄′) = 0 at the ends (t̄′ = −1 and t̄′ = 2), the
transitions of the expanded current and charge are ‘naturally’ smooth
at the temporal nodes, which permits point-matching.

Substituting (6a)–(6b) into (4a)–(5b), and then testing them with
n̂p × fpm(r)δ(t̄ − i) (p = 1, 2, 3; m = 1, 2, . . . , Np; i = 1, 2, . . . ), we
obtain their discrete forms:

∞∑
j=1

(
[L11(i− j)] {c1(j)} + [L12(i− j)] {c2(j)}
−ηr [K12(i− j)] {d2(j)}

)
=

{
Ẽ1(i)

}
(8a)

∞∑
j=1

([
Ld

32(i− j)
]
{c2(j)} −

[
Ld

33(i− j)
]
{c3(j)}

−
[
Kd

32(i− j)
]
{d2(j)}

)
={0} (8b)
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∞∑
j=1


 [L21(i− j)] {c1(j)} + [L22(i− j)

+ηrL
d
22(i− j)

]
{c2(j)} − ηr

[
Ld

23(i− j)
]
{c3(j)}

−ηr

[
K22(i− j) +Kd

22(i− j)
]
{d2(j)}


=

{
Ẽ2(i)

}
(9a)

∞∑
j=1


 [K21(i− j)] {c1(j)} + [K22(i− j)

+Kd
22(i− j)

]
{c2(j)} −

[
Kd

23(i− j)
]
{c3(j)}

+
[
ηrL22(i− j) + Ld

22(i− j)
]
{d2(j)}


={H2(i)} (9b)

where [Lpq(j)] and [Kpq(j)] are (Np×Nq) interacting matrices for field
points on Sp and source locations on Sq; {cq(j)} is a Nq × 1 unknown
column vector while {Ẽp(i)} is a Np × 1 excitation column vector; and
so forth. The elements are calculated by

[Lpq(j)]mn=
∫

Tpm

fpm(r)·Lq

(
fqn

(
r′

)
S

(
j−R̄

))
dS, p, q = 1, 2, 3 (10a)

[Kpq(j)]mn=
∫

Tpm

fpm(r)·Kq

(
fqn

(
r′

)
S

(
j−R̄

))
dS, p, q = 1, 2, 3 (10b)

{
Ẽp(i)

}
m

=
1
η0

∫
Tpm

fpm (r) · Ei(r, i∆t)dS, p = 1, 2 (11a)

{H2(i)}m =
∫

T2m

f2m(r) · Hi(r, i∆t)dS (11b)

where R̄ = R/(c∆t) and Tpm denotes a pair of triangles connected
by the mth edge on the surface Sp. Due to the compactness of the
temporal basis functions, we have −1 < j − R̄ < 2 or R̄min − 1 < j <
R̄max + 2, where Rmin = 0 and Rmax is the dimension of the whole
composite body; therefore, 0 ≤ j ≤ D0 = int(R̄max + 2), where int(·)
means taking the integer part. That is, we have [Lpq(j)] = [Kpq(j)] =
[0] if j < 0 or j > D0. The calculation of [Ld

pq(j)] and [Kd
pq(j)] are

the same as (10a)–(10b) by replacing Lq and Kq with Ld
q and Kd

q ,
and replacing R̄ with R̄d = R/(cd∆t). Similarly, we have [Ld

pq(j)] =
[Kd

pq(j)] = [0] if j < 0 or j > Dd with Dd = int[Rd
max/(cd∆t) + 2],

where Rd
max is the dimension of the dielectric part.

Combining (8a)–(9b) and making the index exchange j ↔ i − j,
we obtain the final equation in the marching-on-in-time (MOT) form

[A(0)] {x(i)} = {b(i)} −
min(i−1,D)∑

j=1

[A(j)] {x(i− j)} (12)
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where D = max(D0, Dd), the system matrix, unknown vector and
excitation vector are

[A] =



L11 L12 −ηrK12 0
L21 L22 + ηrL

d
22 −ηr(K22 +Kd

22) −ηrL
d
23

K21 K22 +Kd
22 ηrL22 + Ld

22 −Kd
23

0 Ld
32 −Kd

32 −Ld
33


 (13a)

{x} =



c1
c2
d2

c3


 , {b} =



Ẽ1

Ẽ2

H2

0


 (13b)

Once (12) is solved for {c1(j)}Nt
j=1, {c2(j)}Nt

j=1, {d2(j)}Nt
j=1 and

{c3(j)}Nt
j=1, where Nt is the time sequential length of the equivalent

sources that have been resolved, the transient scattering far-field may
be found via (1a) by

Es
far−zone(r, t) =

r̂×r̂× c

4π

2∑
q=1

∫
Sq

∂2

∂(ct)2
[
η0Pqs

(
r′, t−R/c

)
−r̂×M̃qs

(
r′, t−R/c

)]dS′

R
≈

−1
r

1
(c∆t)2

c

4π

2∑
q=1

Nt∑
j=1

Nq∑
n=1

{
θ̂
[
η0cqn(j)θ̂ + ηddqn(j)φ̂

]

+φ̂
[
η0cqn(j)φ̂− ηddqn(j)θ̂

]}
· Fqn (τ̄ − j) (14a)

Fqn (τ̄) =
∫

Tqn

fqn

(
r′

)
S”(τ̄ + r̂ · r̄′)dS′, q = 1, 2 (14b)

where τ̄ = t̄ − r̄ is the far-field time-step, r̄ = r/(c∆t), r̄′ = r′/(c∆t),
and r̂ = x̂ sin θ cosφ + ŷ sin θ sinφ + ẑ cos θ with (θ, φ) being the
scattering direction in spherical coordinate system. Taking the Fourier
transform of (14a), i.e., carrying out the Fourier transform of (14b),
we can find the scattered far-field in frequency domain and calculate
the radar cross-section (RCS) for a range of frequency.

3. NUMERICAL RESULTS

In this section, three examples are provided to demonstrate the
stability and accuracy of the TDIE approach described above. The
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incident wave is assumed to be the modulated Gaussian pulse given by

Ei (r, t) = ûE0 exp

[
−

(
τ − t0√

2σ

)2
]

cos (2πf0τ) (15)

where E0 = 120π, f0 is the centre carrier frequency, t0 = 8σ and
σ = 6/(2πfbw) with fbw being the nominal bandwidth, û = x̂ denotes
the polarized state, τ = t− r · k̂/c with k̂ = −ẑ indicating the incident
direction.

First, to compare with the analytical MIE series solutions, we
consider a conducting sphere of diameter 0.4 m coated by a dielectric
shell with thickness 0.05 m and relative permittivity εr = 2.0, which
is modeled with 4,404 unknowns using the RWG basis functions. In
this example, f0 = 500 MHz, fbw = 1.0 GHz, ∆t = 0.125 ns or
c∆t = 0.0375 LM (LM=light meter: the time that light takes to travel
1 m in vacuum) are used. The evolution of induced electric currents
and induced magnetic currents at the point (0, 0, 0.25 m) are displayed
in Figures 2(a) and Figure 2(b) till 10 LM (the program is actually
terminated at 2,000 time-steps or 75 LM without instability, which
levels off about 10−15). The wideband mono-static RCS from zero
frequency to 1.0 GHz is obtained and compared in good agreements
with the analytical MIE series solutions as shown in Figure 2(c).

The second example is a mixture model composed by a conducting
hemisphere and a dielectric hemisphere with εd = 2ε0. The diameter
of the composite sphere is 0.5 m, and the total number of unknowns is
5,171. We again use f0 = 500 MHz and fbw = 1.0 GHz, but ∆t = 0.1 ns
or c∆t = 0.03 LM. The evolutions of induced electric currents at the
point (0, 0, −0.25 m) and magnetic currents at the point (0, 0, 0.25 m)
are pictured in Figures 3(a) and 3(b) (the program is terminated at
2,000 time-steps or 60 LM without instability). The wideband mono-
static RCS from zero frequency to 1.0 GHz is computed as shown in
Figure 3(c). To check the accuracy, RCS data at a set of discrete
frequency points are obtained by using the MoM in frequency domain,
which are found in good agreements with the TDIE results. For the
TDIE and MoM, the surface meshing and quadrature rule are identical.

For the last example, we consider a suppositional missile model,
which is composed of an elliptical dielectric head with εd = 2ε0 and
a PEC trunk, with the coordinate origin at the center of the bottom
surface. The whole length of this composite body is 5.5 m, and the
total number of unknowns is 3,350. The incident wave is incident
against the head of the target, and f0 = 100 MHz, fbw = 200 MHz, and
∆t = 0.5 ns (c∆t = 0.15 LM) have been used. The evolution of induced
magnetic currents at the point (5.06, 0.07, 0.07 m) is displayed in
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(a)

(b)

(c)

Figure 2. Responses of a coated sphere to a modulated Gaussian
impulse. (a) The induced electric current at the point (0, 0, 0.25 m), (b)
induced magnetic current at the point (0, 0, 0.25 m), and (c) wideband
mono-static RCS from 0 to 1 GHz and comparison with analytical
solution.
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(a)

(b)

(c)

Figure 3. Responses of a composite sphere to a modulated Gaussian
impulse. (a) The induced electric current at the point (0, 0,−0.25 m),
(b) induced magnetic current at the point (0, 0, 0.25 m), and (c)
wideband mono-static RCS from 0 to 1 GHz and comparison with MoM
solution.
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(a)

(b)

(c)

Figure 4. Responses of a model missile to a modulated Gaussian
impulse. (a) The induced electric current at the point P , (b)
wideband mono-static RCS from 0 to 300 MHz and comparison with
MoM solution, and (c) bi-static RCS in the E-plane at 100 MHz and
comparison with MoM solution.
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Figure 4(a) (the program is terminated at 180 LM without instability).
The wideband mono-static RCS from zero frequency to 300 MHz is
displayed in Figure 4(b). The E-plane bi-static RCS at 100 MHz is
obtained and found in reasonable agreements with the MoM solutions
as shown in Figure 4(c).

4. CONCLUDING REMARKS

A time domain integral equation (TDIE) approach for analysis of
transient scattering problems by 3D metallic and dielectric composite
objects is presented, which is formulated by using the equivalent
polarization and magnetization as unknown sources. The time
domain electric field integral equation is used for the metallic part,
while the time domain Piggio-Miller-Chang-Harrington-Wu integral
equations are used for the dielectric part. The governing equations
are derived by directly enforcing the genuine boundary conditions
rather than their differential forms, and no derivative is replaced
by difference. The Rao-Wilton-Glisson functions and quadratic B-
spline functions are employed as the spatial and temporal basis
functions, respectively. Evaluations of matrix elements are carried
out analytically for self-actions and numerically to high precision
for inter-actions. Though rigorous stability condition is still elusive,
numerical examples demonstrate that the proposed TDIE scheme
is stable, because no low-frequency exponential divergence or high-
frequency oscillating divergence is observed. The results are found in
good agreements with analytical or moment method solutions.
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