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Abstract—An analysis of the modal propagation characteristics of
a Bragg fiber having asymmetric loop boundary is made, using a
simple matrix method. The boundary condition is replaced by matrix
equation and the modal eigen value equation is obtained under weak
guidance condition. The computed results are shown in the form of
dispersion curves and cutoff frequencies and are compared with the
dispersion curves of a standard Bragg fiber having circular core cross
section. It is seen that the proposed Bragg fiber with a small number of
claddings (two of four) shows comparable or even better performance
than the standard Bragg fiber with respect to a few mode-guidance
properties.
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1. INTRODUCTION

The rapid developments in the fields such as fiber optics communica-
tion engineering and integrated optical electronics have expanded the
interest and increased expectations about guided-wave optics, in which
optical waveguides play a very important role. Optical lightguides for
optical fiber and optical integrated circuits utilize a wave phenomenon
that trap the light locally and guides it in any direction. In order to
develop some new optical communication systems or optical devices,
we need some optical waveguides having some new structure and ge-
ometry whose eigen characteristics must be truly known.

Recently Bragg waveguides and fibers have been investigated with
great attention and interest especially due to their novel applications in
communication engineering, integrated optical electronics and sensor
technology [1–13]. A comparative analysis of Bragg fibers have been
given by Guo et al. [14]. Pal et al. designed Bragg fibers for transparent
metro networks and for dispersion compensation [15]. Recently Singh
et al. [16] have studied the Bragg fiber using a very simple technique
and it was shown that by using only a small number of cladding
layers, a Bragg fiber is almost as good as a conventional standard
fiber under weak guidance condition with an additional advantage
that there will be very little loss of energy. More recently Bragg
waveguides having unconventional structure and geometry [17, 18] have
been studied by Prajapati et al. using this simple technique. Very
recently the analytical and numerical aspects of Bragg fiber designing
was estimated by Prokovich et al. [19]. Here in our proposed paper
we will study a new asymmetrical Bragg Waveguide having six layers
shown in Fig. 1(b). Using a simple matrix method and replacing the
boundary condition by matrix equation, the eigen value equation for
the said waveguide has been obtained. Next, this eigen value equation
is used to get dispersion curves and cutoff frequencies of proposed
unconventional Bragg waveguide. The computed results are shown in
the form of dispersion curves and cutoff frequencies and are compared
with the dispersion curves of a standard Bragg fiber having circular
core cross section [16]. It is observed that the proposed unconventional
Bragg fiber shows good performance regarding limiting modes of small
number. Our main motivation is to show the influence of eventual
fabrication defects modifying a ring core fiber, already well studied if
is perfect. Such topics are interesting for a better knowledge of the
imperfect ring core fibers [20–24]. In this way the objective of the
proposed analysis is two fold: (1) to solve the complicated problems
relatively on the basis of simple analytical lines of the nature of
propagation of EM waves in new types of noncircular lightguides and
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photonic band gap structures and (2) to get as many new results as
possible with the help of such analysis made in papers [20–24], so new
technological application possibilities may arise, leading to the people
of our globe and in particular, our nation to the nano-technological
age.

The present article is organized in the following manner: Section 2
deals with the derivation of eigen value equation and cutoff frequencies.
The results and discussions are described in Section 3. Finally
conclusion is presented in Section 4.

2. THE CHARACTERISTICS EIGEN VALUE EQUATION
FOR ASYMMETRIC LOOP BRAGG WAVEGUIDE

The general equation for boundary of the proposed unconventional
waveguide can be written as [20]

r = ξe(1/2) sin θ (1)

where ξ is a size parameter. We choose new coordinates (ξ, η, z) instead
of (r, θ, z), and assuming that the propagation is along the z direction.
Here we will use matrix method to compute the modal characteristics
of a asymmetric loop Bragg waveguide. The basic idea is to replace
the boundary condition by a matrix equation. The cross-sectional
view of six-layered Bragg waveguide is shown in Fig. 1(b). It has low
refractive index (na) in central region and higher refractive indices
n1 and n2 (n1 > n2) in the cladding regions around it. Thereby we

(a) (b)

Figure 1. (a) The cross-sectional view of the standard Bragg fiber,
(b) The cross-sectional view of the proposed Bragg fiber.
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have suitably designed alternating claddings of high and low refractive
indices. Fig. 1(a) is drawn for comparison purposes only [16]. The
index profile is then given [16] by

n(ξ) =




na; 0 < ξ < b
n1; b < ξ < a
n2; a < ξ < a+ b
n1; a+ b < ξ < a+ 2b
n2; a+ 2b < ξ < a+ 3b
n1; a+ 3b < ξ < a+ 4b
na; ξ > a+ 4b




(2)

Using the new coordinates and Maxwell’s equations, we can obtain the
expressions for the field E and H in terms of the new coordinates.
We also assume that as the electromagnetic wave propagates along the
z-axis, the electric and magnetic field vectors take the form

ψ(ξ, η, z) = ψ(ξ)ejνθei(βz−ωt) (3)

where ψ(ξ) can be Ez, Hz, Er, Hr, Eθ, Hθ and ω is the angular
frequency and β is the propagation constant. This means the fields
are harmonic in the time t and the coordinate z. From the waveguide
theory we know that the transverse field components can be expressed
in terms of Ez and Hz.

Eξ =
iβ

ω2µε− β2

[
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β
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]
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Here Ez(ξ, η) and Hz(ξ, η) satisfy the wave equation
[
∇2

i +
(
ω2µε− β2

)] [
Ez

Hz

]
= 0 (8)

where ∇2
i = ∇2− ∂2

∂z2 is the transverse Laplacian operator. The details
of this procedure are given in our previous papers [16–18]. The general
solution for the cladding regions is given as

Ez = [AiJ1 (uiξ) +BiY1 (uiξ)] ejνθe
j(ωt−βz)
e

Hz = [CiJ1 (uiξ) +DiY1 (uiξ)] ejνθe
j(ωt−βz)
e

}
(9)
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where ui =
√
k2n2

i − β2, i = 1, 2 corresponding to refractive indices
n1 and n2. The solution for the central region and outermost cladding
region can be written as

Ez = [EI1(wξ) + FK1(wξ)] ejνθe
j(ωt−βz)
e

Hz = [GI1(wξ) +HK1(wξ)] ejνθe
j(ωt−βz)
e

}
(10)

where w =
√
β2 − k2n2

a, na being the common refractive index of these
regions. Here A, B, C, D, E, F, G and H are unknown constants and
J1 and Y1 are the Bessel functions of first and second kind while I1
and K1 are the modified Bessel functions of order one respectively.
Also d is a number (0.2)

1
2 which emerges in the analysis because of the

peculiarity of the geometrical shape [20].
The boundary conditions at r = ri are that Ez, Hz, Eθ and Hθ are

continuous at the interfaces [25, 26]. Thus we get a set of equations
having twenty-two unknown constants. The nontrivial solution will
exist only when the determinant formed by the coefficients of the
unknown constants is equal to zero. Calling this 12 × 12 determinant
∆, we have characteristic equation

∆ = 0 (11)

The element in the rows and columns of this determinant can be
identified readily.

We also define (see Fig. 1(b)) that

∆n = n1 − n2

∆n′ = n1 − na

V = k0(a− b)(n2
1 − n2

a)
1
2 = k0(a− b)

[
2n(∆n+ ∆n′)

] 1
2 (12)

where k0 is vacuum wavenumber. We define the usual normalized
propagation parameter

b′ =
β2 − k2

0n
2
a

k2
0

(
n2

1 − n2
a

) ≈ β − k0na

k0 (∆n+ ∆n′)
(weakly guidance case) (13)

The dimensionless V -parameter is introduced to incorporate the
parameters na, n1, n2, a, b and k0 which may possibly have an effect on
the propagation. One may choose other alternative ways to define the
quantities V and b′, but as an illustrative case, the present definitions
are adequate.
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3. NUMERICAL RESULT AND DISCUSSION

The eigen value Equation (11) has all of the information that we can
obtain from our modal analysis and it gives the central results of this
investigation. We now proceed to some numerical computation in order
to have the modal dispersion curves for the proposed unconventional
Bragg waveguide. It is convenient to plot the normalized propagation
constant b′ ≈ β−k0na

k0(∆n+∆n′) against the V -parameter defined by V =

k0(a − b)[2n(∆n + ∆n′)]
1
2 . Now we choose na = 1.0002, n1 = 1.45,

n2 = 1.50, b = 0.01 µm, 0.1 µm, 1.0 µm, an operating wavelength
λ0 = 1.55 µm and various values of dimensional parameter a in a
regular increasing order. For each value of a we obtain the V -parameter
and also compute the values of β from the characteristic Equation (11)
by graphical method. It means that the left hand side of eigen value
equation is plotted against β for the assumed value of a and the zero
crossings of the graph with the β axis are noted. These values are the
solutions of the characteristic equation for the different modes. From
the β values of the guided modes we can obtain b′ and then plot the b′
versus V graphs.

Thus the b′ versus V curves known as dispersion curves have
been shown in Fig. 2 to Fig. 10. These curves have been studied for
change in number of cladding layers and also for change in thickness of
the cladding strips. Some interesting features are noticed from these
plots. The cutoff frequencies (V -values) and their dependence on the
thickness b of the cladding strip for different cladding layers (two,
four and six) are given in Table 1 and Table 2 respectively for the

Figure 2. Dispersion curves of normalized frequency V versus
normalized propagation constant b′ for the two layered cladding regions
with its thickness b = 1.0 µm.
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conventional circular core Bragg fiber and proposed unconventional
asymmetric Bragg fiber. For comparison purpose Table 1 is taken
directly from our earlier paper [16]. Considering Table 1 and Table 2,
it is evident that as the thickness b is increased from b = 0.01 µm
to b = 1.00, the cutoff value decreases for LP11 and LP12 modes in
both waveguides. This decrease is, however, considerably larger in the

Table 1. Cutoff frequencies (V -values)for some modes in standard
Bragg fiber [16] for three different thicknesses of the cladding strips.

Mode
No.

Cut off frequencies of 
various modes in Bragg 
fiber with thickness of 
cladding strip   =0.01 m.
0<V<16

Cut off frequencies of 
various modes in Bragg 
fiber with thickness of 
cladding strip b=0.10 m.
 0<V<16 

Cut off frequencies of 
various modes in Bragg 
fiber with thickness of 
cladding strip b=1.00 m.
0<V<16

LP1m Six
layered 

Four
layered 

Two 
layered

Six
layered 

Four
layered 

Two 
layered

Six
layered 

Four
layered 

Two 
layered

LP11 4.55 4.71 4.98 3.02 3.93 4.77 - - 4.57 

LP12 7.80 7.98 8.06 6.05 6.97 7.86 - 3.09 8.10 

LP13 10.89 11.06 11.21 9.24 10.10 10.94 0.54 6.51 11.18 

LP14 13.92 14.11 14.00 12.31 13.22 13.98 3.18 8.87 14.18 

LP15 - - - 15.33 - - 6.50 11.96 - 

LP16 - - - - - - 9.22 13.99 - 

LP17 - - - - - - 13.01 - - 

µµ µb

Table 2. Cutoff frequencies (V -values)for some modes in asymmetric
Bragg fiber for three different thicknesses of the cladding strips.

Mode
No.

Cut off frequencies of 
various modes in  
Asymmetric Bragg fiber 
with thickness of  
cladding strip b=0.01 m.
0<V<16

Cut off frequencies of 
various modes in  
Asymmetric Bragg fiber 
with thickness of 
cladding strip b=0.10 m.
 0<V<16 

Cut off frequencies of 
various modes in  
Asymmetric Bragg fiber 
with thickness of 
cladding strip b=1.00 m.
0<V<16

LP1m Six
layered 

Four
layered 

Two 
layered

Six
layered 

Four
layered 

Two 
layered

Six
layered 

Four
layered 

Two 
layered

LP11 7.33 7.41 7.58 5.51 6.34 7.21 - - 5.15 
LP12 14.3 14.52 14.50 12.56 13.3 14.18 - 0.0 11.95 
LP13 - - - - - - 0.72 3.64 - 
LP14 - - - - - - 8.1 8.88 - 
LP15 - - - - - - 8.91 8.91 - 
        12.1  

µ µµ
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case of proposed unconventional Bragg fiber compared to the standard
Bragg fiber. We also observe that LP13 and LP14 modes are present
is the case of standard Bragg fiber but these modes are absent in the
proposed waveguide. Thus it is clear that the proposed waveguide acts
as a mode filter. We also notice that for the fixed thickness b, as the
number of cladding layers increases the cutoff frequency decrease s in
both cases.

Now we consider the dispersion curves (Fig. 2 to Fig. 7) for
thickness b = 0.01 µm and 0.1 µm. We see that all curves are in

Figure 3. Dispersion curves of normalized frequency V versus
normalized propagation constant b′ for the two layered cladding regions
with its thickness b = 0.10 µm.

Figure 4. Dispersion curves of normalized frequency V versus
normalized propagation constant b′ for the two layered cladding regions
with its thickness b = 0.01 µm.
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expected standard form except one mode in Fig. 5. We also notice
that the proposed waveguide sustains only two modes (except Fig. 5)
for different cladding layers chosen, whereas in same condition Bragg
waveguide [16] sustains four modes. Further, we observe that the cutoff
values for the lowest order mode are somewhat greater in the case of
proposed Bragg fiber compared to the standard Bragg fiber [16]. For
example in Figs. 4, 7 and 10, for LP11 mode and b = 0.01 µm, the cutoff
values for the lowest order mode for the proposed Bragg waveguide
are at V = 7.33, 7.41 and 7.58 respectively, which are considerably

Figure 5. Dispersion curves of normalized frequency V versus
normalized propagation constant b′ for the four layered cladding
regions with its thickness b = 1.0 µm.

Figure 6. Dispersion curves of normalized frequency V versus
normalized propagation constant b′ for the four layered cladding
regions with its thickness b = 0.10 µm.



126 Prajapati, Singh, and Saini

greater than the cutoff values V = 4.55, 4.71 and 4.98 for the standard
Bragg fiber. It is well known that the greater the cutoff values the
fewer the number of mode sustained. This striking feature of the
proposed waveguide may offer important advantages in mode filtering
techniques. Next, considering the Figs. 8, 9 and 10, for the cladding
thickness b = 1 mm, it is clear that all curves are in expected standard
shape except the curves shown in Fig. 8. Here, in the case of Fig. 9 and
Fig. 10, we see that the proposed waveguide sustain only two modes for
different cladding layers chosen, whereas in same condition standard
Bragg waveguide [16] sustain more than four modes. We note that the

Figure 7. Dispersion curves of normalized frequency V versus
normalized propagation constant b′ for the four layered cladding
regions with its thickness b = 0.01 µm.

Figure 8. Dispersion curves of normalized frequency V versus
normalized propagation constant b′ for the six layered cladding regions
with its thickness b = 1.0 µm.
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Figure 9. Dispersion curves of normalized frequency V versus
normalized propagation constant b′ for the six layered cladding regions
with its thickness b = 0.10 µm.

Figure 10. Dispersion curves of normalized frequency V versus
normalized propagation constant b′ for the six layered cladding regions
with its thickness b = 0.01 µm.

other important feature is that when we make the thickness of cladding
layers of the proposed waveguide smaller, we get higher cutoff values,
even when the number of cladding layers is only two. This fact is also
evident from Table 2 and from all dispersion curves except the curve
shown in Fig. 5 and Fig. 8. Considering the Fig. 5 and Fig. 8 it is
clear that we have anomalous curves for greater thickness (b = 1 mm)
with large number of cladding layers (four and six). This anomalous
behaviour may be due to some kind of radiation loss. The radiation
loss in optical waveguide results from mode coupling caused by random
microbends of the optical fiber [27, 28]. Here microbend is a small scale
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fluctuations in the radius of curvature of the fiber axis as illustrated in
Fig. 1(b). It is clear that we have anomalous curves only in Fig. 8 for
b = 1.0 µm. This thickness of strip is much greater than b = 0.01 µm
and b = 0.1 µm.

4. CONCLUSION

In this article a new type of asymmetric Bragg fiber is proposed and
analyzed for the first time in our knowledge. Using simple matrix
method, the modal eigen value equation is obtained under the weak
guidance approximation. This eigen value equation comprises the
dispersion relation and cutoff frequencies which are the main result
of the paper. Since our aim is essentially to obtain insight into the
modal properties, we adopt a simple analytical method using the scalar
wave approximation. An attempt has been made to see how the
modal dispersion curves and cutoff frequencies of a standard Bragg
fiber changes as its circular loop is changed to an asymmetric loop. It
is observed that proposed Bragg waveguide shows good performance
regarding limiting modes of small number. Therefore, such Bragg
waveguides may be used in many applications where mode filtering
is required.
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