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Abstract—To apply the power-law to random mixing composites,
the power parameter α is defined as the mean depolarization factor
along the external field. The formula of α is derived from the effective
medium theory and beta function distribution assumption to study
the geometrical influence of scatterers. According to the simulation,
we prove that α = 1/3 is fit to the composites of randomly distributed
spherical dielectric scatterers, whereas α = 1/2 to the flake-like or
cylindrical shaped scatterers. This law can be applied to both dilute
and dense condition describing the effective permittivity of random
mixing composites and extended to aligned cases, which are meaningful
to practical applications.

1. INTRODUCTION

Various mixing models have been developed to solve the effective
dielectric parameters of composites since the mid-1800 [1]. These
models, such as the Maxwell Garnett rule, Bruggeman’s formula,
and other mixing rules based on effective medium theory, are still
† The first author is also with Research Laboratory of Electronics, Massachusetts Institute
of Technology, Cambridge, MA, USA.
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widely used and are attracting much interest in new applications [2–7].
However, the Maxwell Garnett rule and other rules derived from this
origin are not suitable for dense materials [8]. In practical random
medium theory and applications requiring a wide density choice, a
large set of mixing rules have been introduced by writing the ‘power-
law’ approximation:

εα
eff =

N∑
i=1

fiε
α
i (1)

with εeff , fi, and εi as the effective relative permittivity of the
composites, volume fraction, and relative permittivity of the ith phase.
These formulas, first suggested by Lichtenecker [9], have been used
by many authors for different situations with certain value of α. For
example, in the Birchak formula [10] the parameter α is 1/2, which have
been existing for a long time in the field of optical physics to deal with
refractive index measurement. The linear law [11], which corresponds
to α = 1 in Eq. (1), can be given theoretical explanation if the mixture
is formed of plates or other inclusions without induced depolarization.
Jacobsen and Schjonning [12] found that the parameter α can vary
from 0.4 to 0.8, based on experimental data from moist mineral soils.
The different background and a lack of universal theoretical support
resulted in power-law being generally considered as only an empirical
tool for a long time.

In 1999, Zakri et al. [13], established a theoretical model for
this mixing formula using the effective medium theory together with
the assumption of self-consistency. A beta function distribution of
the geometrical shapes of inclusions is also introduced. However,
the physical meaning of parameter α is still unclear. Recently,
the power-law used to describe a fracture size distribution has been
studied for the percolation effect of porous effective medium, and the
authors also set up the expression of effective parameter in a complex
function [14, 15]. If we can attribute the geometrical effect into the
parameter α rather than the power-law formula, a simple form to
express the effective parameter will be achieved and it will be more
favorable for different applications. Therefore, the purpose of this work
is to explore the application of simple power-law to complex dielectric
mixture by identifying the meaning of α based on Tarik Zakri’s method.
Composites of inclusions as sub-wavelength sized spherical, flake-like,
and cylindrical scatterers with dispersive permittivity will be simulated
for comparison in a wide range of volume fraction.
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2. THEORETICAL METHOD

According to the effective medium theory [16], two approaches can be
used to evaluate the effective permittivity:
(i) a discrete approach whereby the medium is considered as a

network of resistances or capacitances and
(ii) a continuous approach whereby each phase is constituted from

particles included in a host medium.
We use the latter approach. The effective relative permittivity of
composite of N phases yields

N∑
i=1

fi

(
1 − εi

εeff

)
Ci =0 (2)

by introducing the field ratio Ci = Ēi/Ē0 between the local electrical
field in the ith phase and the uniform field. If we consider now the case
of an ellipsoidal scatterer of permittivity εi in a homogeneous medium
of permittivity εm as shown in Fig. 1, and placed it in a uniform
electrical field E0, the corresponding Ci factor can be expressed by [17]

εm

εi

E0

Figure 1. A dielectric ellipsoidal inclusion of permittivity εi in a
matrix of permittivity εm under an external field E0.

Ci =
3∑

j=1

cos2 ϕij

1 + Nij

(
εi

εeff
− 1

) (3)

where ϕij are the space angles between the three main axes x (j = 1),
y (j = 2), and z (j = 3) of the ellipsoid of the ith phase and the
direction of external field E0, and Nij are the depolarization factors.
For an ellipsoid, Nij are expressed by Landau and Lifschitz [18] as,

Nij =
a1a2a3

2

∫ ∞

0

du

(u + aj)(u + a1)1/2(u + a2)1/2(u + a3)1/2
(4)
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where aj denote the semi-axes of the ellipsoid in the three directions.
The space angles are constrained such that

3∑
j=1

cos2 ϕij = 1. (5)

According to Tarik Zakri’s method [13], the scatterers’ shapes are
not considered to be uniform but follow a beta function distribution.
Therefore, equivalent depolarization factor of phase i in the direction
of the external electrical field, NiE , is introduced as a variable of the
probability density function [19] of the beta function distribution in
the following form:

Pα(NiE) =
Γ(2)

Γ(1 − α)Γ(1 + α)
N−α

iE (1 − NiE)α (6)

where Γ is the gamma function, and 0 ≤ NiE ≤1. The component
with space angle in Eq. (3), which describes the influence of scatterer’s
space distribution, can be rewritten with concern over the beta function
distribution. Consequently, the Ci factors can be transformed from
Eq. (3) to

Ci =
∫ 1

0

Pα(NiE)

1 + NiE

(
εi

εeff
− 1

)dNiE . (7)

Substituting Eq. (7) into Eq. (2), we get Eq. (1) after some
mathematical derivation [13]. Therefore, it is proved that power-law
formulae are physically sound.

Our aim is to explore the physical meaning of factor α and its
formula based on the above analysis. According to the characterization
of Pα(NiE) function [19], α is related to the mean value of variable NiE

which can be solved by effective medium method. In effective medium,
the averaging relations interconnect the field terms and dipole moments
within scatterers. The components of local field of phase i along the
main axes are given as,

Eij = E0 cos ϕij +
Nij

εeff
Pij (8)

where Pij are the polarization density along the axes featuring the local
dipole moments. Since Pij are dependent on the applied field, we can
write,

Pij = npiE0 cos ϕij (9)
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with pi the polarizability of phase i. Then by transforming the
components back to E0 direction and using Eq. (5), the expression
of local field along the direction of E0 is rewritten as

EiE =
3∑

j=1

Eij cos ϕij = E0 +
npiE0

εeff

3∑
j=1

Nij cos2 ϕij . (10)

To find NiE , we write Eq. (10) in a similar form like Eq. (8).
The polarization density along the direction of E0 is PiE = npiE0.
Therefore, the summation part of Eq. (10) should be attributed to
NiE . Accordingly,

NiE =
∑

j=1,2,3

Nij cos2 ϕij (11)

and Eq. (10) becomes

EiE = E0 +
NiE

εeff
PiE . (12)

The same form as Eq. (8) but in the direction of external field.
Since α is the shape factor in Eq. (6), of relevance to mean variable

as discussed before, here we define it as the mean value of NiE . In the
case of random distribution and suppose that all the phases has the
same geometrical features, says Nij , we have

α = 〈NiE〉 =
3∑

j=1

2
π

∫ π
2

0
Nij cos2 ϕijdϕij . (13)

With this approach, the influences of scatterer’s geometry and
distribution are introduced to the power parameter in power-law
formula with respect to the depolarization factors and the spacing
angles. If the phases of the composite have different geometrical
features, Eq. (13) changes to a summation of mean NiE multiplied by
the volume ratio of phase i to all the phases except the host medium,
because the host medium is considered as a shapeless component
during the derivation. In next two sections, several common cases
will be discussed to verify this definition and illustrate its application.

3. CASE STUDIES

By virtue of the simple form and predictable power parameter,
power-law is favorable for practical uses. In the two-phase model
to be studied, dielectric scatterers with three generic configurations,
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spherical, flake-like, and cylindrical shape, are random distributed in
the host dielectric medium respectively and studied using the power-
law formula, finite-different time-domain (FDTD) method, and other
effective medium approximations. As shown in Fig. 2, spherical, flake-
like, and cylindrical scatterers are located in the host medium with
both random orientation and position. The relative permittivity and
permeability of host medium are εm = 2, µm = 2, and scatterer’s
parameters are with Debye’s dispersion,

εi = ε∞ +
εs − ε∞
1 − iωτ

, and µi = µ∞ +
µs − µ∞
1 − iωτ

(14)

where parameters εs = 20, µs = 20, ε∞ = 1, µ∞ = 1, and
τ = 6 × 10−11 s. The sizes of scatterers (the largest dimensions) are
2 mm, much smaller than the wavelength in the simulating frequency
range 1–15 GHz.

(b)

(c)

(a)

Figure 2. Diagrams of the two-phase composite filled with (a)
spherical scatterers, (b) flake-like scatterers, and (c) cylindrical
scatterers.

3.1. Power-law Method

For spherical scatterers, the depolarization factors remain 1/3 along
any arbitrary directions. Therefore, suppose the applied field is along
one of the feature axis x, the space angles for the other two axes should



Progress In Electromagnetics Research, PIER 85, 2008 75

be π/2, then Eq. (13) reduces to contain only x component,

αsphere = 〈NiE〉 =
2
π

∫ π
2

0

1
3

cos2 0dϕx =
1
3
.

For flake-like scatterers, if the width is tens of times the thickness,
in-plane depolarization factors can be considered to be zero (Nx = Ny)
and the out-of-plane depolarization factor is 1 (Nz = 1). As a
consequence, only one component is considered,

αflake = 〈NiE〉 =
2
π

∫ π
2

0
1 cos2 ϕxdϕx =

1
2
.

In the case of cylindrical scatterers, when the height is tens of
times the diameter, the depolarization factor in the axial direction is
almost zero (Nz = 0) and the radial ones are 1/2 (Nx = Ny). As a
result, Eq. (13) has two equal components,

αcylinder = 〈NiE〉 = 2 × 2
π

∫ π
2

0

1
2

cos2 ϕxdϕx =
1
2
.

Then, the effective permittivity of composites with scatterers of
different shape is calculated using Eq. (1). Before this work, power-
law with α’s value at 1/3 and 1/2 can be found in literatures [9, 20, 21]
but applied in different backgrounds, therefore it is difficult to figure
out the physical meaning of α. In this paper, power-law is applied to
scatterers with same composition under the same background but with
different geometrical features.

3.2. FDTD Method

Commercial software CST Microwave Studio r© is used to model the
reflecting and transmitting parameters of the composites discussed
above. With a high fractional volume, scatterers may intersect with
each other. All models are implemented with the same set of accuracy
(−60 dB) and mesh scale. To achieve the correct simulation results in
random distribution cases, each case has been modeled more than 15
times, which means rebuilding the structure and averaging the output
data, and each model repeatedly simulated times to confirm the stable
result. Therefore, we are promising to get credible results. Based on
the scattering parameters, the effective permittivity is retrieved using
the retrieving method introduced in [22].
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3.3. Other Effective Medium Methods

The Maxwell Garnett rule (MG) and Bruggeman’s formula (BF) are
applied to the cases to predict the effective permittivity of composites,
comparing with the power-law method. The Maxwell Garnett rule for
random distributing mixture (two phases) is given as [16],

εeff MG = εm + εm

fi

3

3∑
j=1

εi − εm

εm + Nij(εi − εm)

1 − fi

3

3∑
j=1

εi − εm

εm + Nij(εi − εm)

. (15)

Bruggman’s formula for the same situation is,

(a) (b)

(c)

Figure 3. Effective permittivity of the composite of (a) spherical, (b)
flake-like, and (c) cylindrical scatterers with variant volume fraction
as a function of frequency. The subscript FDTD means the data from
FDTD simulation, and PL means the result of power-law method.
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εeff BF = εm + εa

fi

3

3∑
j=1

εi − εm

εa + Nij(εi − εm)

1 − fi

3

3∑
j=1

εi − εm

εa + Nij(εi − εm)

(16)

where εa = εeff − Nij(εeff − εm) [16].

4. RESULTS AND DISCUSSION

As shown in Fig. 3, the effective permittivity calculated by FDTD
and power-law method for the spherical, flake-like, and cylindrical
scatterers’ cases are close to each other in both a wide volume fraction
range and frequency range. To make a better understanding of

(a) (b)

(c)

Figure 4. Relative variance of the effective permittivity from Fig. 1
for the composites of (a) spherical, (b) flake-like, and (c) cylindrical
scatterers as a function of frequency.
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deviation, relative variance of the real and imaginary part of effective
permittivity are calculated by the following formulas and are shown in
Fig. 4,

∆ε′ =
ε′FDTD − ε′PL

ε′FDTD

, and ∆ε′′ =
ε′′FDTD − ε′′PL

ε′′FDTD

(17)

with subscripts FDTD and PL denoting the FDTD and the power-
law method respectively. With a relative variance smaller than 0.2,
the above conclusion of general agreement between the two methods
holds in a wide volume fraction range from 5% to 70%, dilute to dense
cases, and is quite favorable since many effective medium methods
experience large deviation in either the dilute or the dense situation.

(a) (b)

(c) (d)

Figure 5. The effective permittivity for the composites of spherical
scatterers (a), (b) and cylindrical (c), (d) scatterers at the dilute (5%)
and dense (70%) volume fraction. The open symbols denote the real
part of the effective permittivity calculated by FDTD method, power-
law method with α=1/2, 1/3, and 1/4, Maxwell Garnett rule (MG)
and Bruggman formula (BF), whereas the solid symbols denote the
imaginary part of the effective permittivity.
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As can be seen in Fig. 4, a relatively extensive deviation is observed in
the 5% case for the imaginary part of the effective permittivity. This
happens at a frequency where an unexpected resonance is found in the
FDTD result as shown in Fig. 3 or Figs. 5(a) and (c). Considering the
potential influence of location and orientation in FDTD method, we
have simulated the random distribution of scatterers in twenty times
and averaged out the results for each case. Therefore, the deviation is
not related to inhomogeneous distribution but a kind of dimensional
resonance corresponding to the effective size and wave length of the
mixture.

Comparisons between FDTD and several effective medium
methods for both dilute and dense case are shown in Fig. 5. The power-
law series are closest to the FDTD results both in the dilute and dense
case. MG and BF method have the same result in dilute case but far
from the others in spherical case. However, for the dense cylindrical
case, MG and BF have closer predictions. It seems that both MG
and BF methods are unstable with respect to scatterer’s density and
geometry, which has also been suggested in other literatures too [23].
Power-law is more suitable in these cases.

The definition of the α parameter as the mean depolarization
factor of the inclusions along the external field direction can be
used to explain the existing power-laws. In Fig. 6, the effect of α’s
value on the probability function, Eq. (6), is demonstrated. When
α = 0, the probability function becomes a uniform one, which shows
a mean geometrical feature, and Eq. (1) reduces to Lichtenecker’s law
regardless of inclusion’s geometry. When α = 1, the function has
infinite value at the point where NiE = 0, which means that the
external field is along the direction where NiE = 0, e.g., in the case

Figure 6. Probability function of beta function distribution of
inclusion for various values of α factor.
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of porous composite, all the pores should be parallel to the external
field, and Eq. (1) reduces to linear law for inclusions without induced
depolarization. Overall, limitations of power-law, as well as other
effective medium methods, are due to the neglecting of the scatterer’s
size, interaction, and so on. Therefore, in some specific cases, other
complex methods may be more favorable [24, 25], but the simple form
and applicability to random mixing material with certain geometrical
features in wide volume fraction range are the advantages for power-
law.

5. CONCLUSION

In this paper, a method to determine the value of parameter α is
suggested by defining it as the mean depolarization factor along the
external field. The geometrical influence of scatterers is introduced
by this definition. It is demonstrated by FDTD simulation that the
power-law formula with α = 1/3 is suitable to describe the random
distributing spherical scatterers, and α = 1/2 to the flake-like and
cylindrical cases, in both the dilute and dense condition. With this
approach, we enable the simple power-law to predict the effective
parameters for composites with random distributing inclusions with
specific geometrical feature.
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