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Abstract—Electromagnetic fields and media can be compactly rep-
resented by applying the four-dimensional differential-form formalism.
In particular, classes of linear (bi-anisotropic) media can be defined
in terms of the medium dyadic mapping between the electromagnetic
two-forms. As a continuation to the process started by medium dyadics
satisfying linear and quadratic algebraic equations, the class of bi-
quadratic (BQ) media is defined by requiring that the medium dyadics
satisfy the bi-quadratic algebraic equation. It is shown that the corre-
sponding four three-dimensional medium dyadics are required to satisfy
only two dyadic conditions. After studying general properties of BQ
media, a special case is analyzed in detail as an example.

1. INTRODUCTION

Applying differential-form formalism in four-dimensional representa-
tion [1–4], the electromagnetic field and medium equations can be
shown to take a particularly compact form. In the following, the no-
tation concerning multivectors (elements of the spaces E1 − E4) and
multiforms (elements of the spaces F1 − F4) with their different prod-
ucts follows that of [4]. For a brief summary the appendix of [5] can
also be consulted.

Expressed for the electromagnetic two-forms Φ,Ψ, members of
the space F2, whose expansions in terms of three-dimensional field
quantities are

Φ = B + E ∧ ε4, Ψ = D − H ∧ ε4, (1)



282 Lindell

the Maxwell equations can be compactly presented as

d ∧ Φ = γm, d ∧ Ψ = γe. (2)

Here ε4 denotes the temporal component in the one-form basis {εi} ∈
F1, i = 1 . . . 4. The differential operator has the representation

d =
4∑

i=1

εi∂xi (3)

in terms of the spatial coordinates x1, x2, x3 and the normalized
temporal coordinate x4 = τ = ct. The reciprocal vector basis is
denoted by {ei} ∈ E1 and it satisfies

ei|εj = εj |ei = δij . (4)

The electric and magnetic sources are three-forms γe,γm ∈ F3 with
the three-dimensional expansions

γe = 
e − Je ∧ ε4, γm = 
m − Jm ∧ ε4. (5)

They satisfy the conservation equations

d ∧ γe = 0, d ∧ γm = 0. (6)

Any linear electromagnetic medium can be defined in terms of a
medium dyadic M ∈ F2E2 mapping two-forms to two-forms as

Ψ = M|Φ. (7)

Because two-forms form a six-dimensional space, the most general
medium dyadic M involves 36 scalar parameters. Expressed in terms
of three-dimensional field quantities, (7) takes the form [4]

(
D
H

)
=

(
α ε

′

µ−1 β

)
|
(

B
E

)
, (8)

where the four spatial dyadics α, ε
′
, µ, β are members of different

spaces. Expressed in the ‘engineering’ form

(
D
B

)
=

(
ε ξ

ζ µ

)
|
(

E
H

)
, (9)
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the spatial medium dyadics ε, ξ, ζ, µ are members of the same space
F2E1.

Different classes of media can be defined by introducing
restrictions for the four-dimensional medium dyadic M. The simplest
class of media is obviously defined by M satisfying a linear dyadic
equation which can be expressed as

M − M I(2)T = 0. (10)

The dyadic I ∈ E1F1 denotes the unit dyadic mapping any vector to
itself and its transpose IT ∈ F1E1 maps any one-form to itself. The
unit dyadic for bivectors can be expressed as

I(2) =
1
2
I∧∧I = e12ε12 + e23ε23 + e31ε31 + e14ε14 + e24ε24 + e34ε34,

(11)

and its transpose maps any two-form to itself.
The class of media defined by (10) has been called that of axion

media [3] or perfect electromagnetic conductor (PEMC) media and it
has been previously studied in detail [7]. A medium belonging to this
class is defined by one parameter M , the PEMC admittance. Perfect
magnetic conductor (PMC) and perfect electric conductor (PEC) are
two special cases corresponding to the respective parameter values
M = 0 and 1/M = 0.

The class of media second in simplicity is defined by medium
dyadics satisfying a second-order equation of the general form

M2 + AM + BI(2)T = 0. (12)

Because of the second-order equation the class was labeled as that of
SD media in [8]. Since the medium dyadics remain invariant in some
duality transformations, the class can also be called that of self-dual
media [9].

2. BQ MEDIA

Let us now study the class of electromagnetic media defined by medium
dyadics satisfying a bi-quadratic equation of the form

M4 + AM2 + BI(2)T = 0. (13)
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The class will be labeled as that of BQ media for short. (13) can be
written in the equivalent factorized form as

(M − MaI
(2)T )|(M + MaI

(2)T )|(M − MbI
(2)T )|(M + MbI

(2)T ) = 0, (14)

with parameters related as

A = −(M2
a + M2

b ), B = M2
aM2

b . (15)

2.1. Eigenvalue Problem

The bracketed dyadics in (14) obviously commute. From its form we
can conclude that there are at most four different eigenvalues, for the
dyadic eigenvalue equation

M|Φi = MiΦi. (16)

Let us denote i = a+, a−, b+, b− with

Ma± = ±Ma, Mb± = ±Mb. (17)

The eigenvalues can be solved from the bi-quadratic equation

(M2
i )2 + AM2

i + B = 0. (18)

Since we know that the general medium dyadic has six eigenvalues,
some of the four eigenvalues must be multiple ones, i.e., the eigen-two-
forms Φi corresponding to those eigenvalues must form subspaces in
the six-dimensional space F2 of two-forms.

When the eigenvalues Mi have been solved, the corresponding
eigen-two-forms can be found in terms of the following four dyadics:

Pa± = ±(M2 − M2
b I(2)T )|(M ± MaI

(2)T )
2Ma(M2

a − M2
b )

, (19)

Pb± = ±(M2 − M2
a I(2)T )|(M ± MbI

(2)T )
2Mb(M2

b − M2
a )

, (20)

which all commute with the medium dyadic M. Because of (14) the
dyadics satisfy

Pa±|(M ∓ MaI
(2)T ) = 0 ⇒ M|Pa± = ±MaPa±, (21)
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Pb±|(M ∓ MbI
(2)T ) = 0 ⇒ M|Pb± = ±MbPb±, (22)

whence the eigen-two-forms can be represented as

Φi = Pi|Φ (23)

in terms of any two-form Φ producing Φi 
= 0.
The four dyadics Pi satisfy

Pa+ + Pa− =
M2 − M2

b I(2)T

M2
a − M2

b

, (24)

Pb+ + Pb− =
M2 − M2

a I(2)T

M2
b − M2

a

, (25)

and

Pa+ + Pa− + Pb+ + Pb− = I(2)T . (26)

The property (26) allows one to expand any given two-form Φ in terms
of the eigen-two-forms Φi as

Φ = (Pa+ + Pa− + Pb+ + Pb−)|Φ = Φa+ + Φa− + Φb+ + Φb−. (27)

From (14) we obtain the orthogonality conditions

Pi|Pj = 0, i 
= j, (28)

while from (26) and orthogonality the property

P2
i = Pi, (29)

can be seen to follow. This means that the dyadics Pi are projection
dyadics. The space of two-forms can be split in four subspaces each
containing the eigen-two-forms of the dyadic M corresponding to the
respective eigenvalue.

From the property (26) we can write

M = M|I(2)T = MaPa+ − MaPa− + MbPb+ − MbPb−, (30)

and it can be generalized to

Mm = Mm
a Pa+ + (−Ma)mPa− + Mm

b Pb+ + (−Mb)mPb−, (31)
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where m may be any integer. Through this formula we can further
define non-integer powers of the dyadic M, and even negative powers
provided none of the eigenvalues is zero.

As a check we can substitute the expansions of M4, M3, M2, M

and I(2)T in the left-hand side of (14) and find that the coefficient
expressions of each dyadic Pi vanish identically.

2.2. Principal BQ Medium

In [3] electromagnetic medium dyadic is decomposed in three
components:

M = M1 + M2 + M3, (32)

where M3 = M3I
(2)T is called the axion part, M2 is called the

Skewon part and, M1, the principal part. Both M2 and M1 are
trace-free dyadics. They are distinguished by forming the metric
dyadics eN�M1, eN�M2 ∈ E2E2, of which the former is assumed to
be symmetric and the latter antisymmetric.

The principal part of the medium dyadic carries the information
of ’regular’ media, while the skewon part corresponds to the physical
properties associated with chirality and Faraday rotation [3]. The
PEMC medium is defined by vanishing of its principal and skewon
parts, M1 = 0,M2 = 0.

Considering the principal BQ medium, we first note that from the
symmetry condition

(eN�M)T = MT �eN = eN�M (33)

it follows that also the dyadic eN�Mn is symmetric. In fact, because
the dyadic

εN�I(2) = ε12ε34 + ε23ε31 + ε31ε24 + ε14ε23 + ε24ε31 + ε34ε12 (34)

is symmetric, we can expand

eN�M2 = (eN�M)|(εN�(eN�M)) = (eN�M)|(εN�I(2))|(eN�M), (35)

which is obviously of symmetric form. We can proceed similarly for
higher powers of M.
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As a conclusion, for principal BQ media the dyadics eN�Pi are
symmetric. This implies that, defining the ‘natural’ dot product of
two two-forms as [3]

Φ1 · Φ2 = Φ1|(eN�Φ2) = eN |(Φ1 ∧ Φ2) = Φ2 · Φ1, (36)

for principal BQ media the dot product of two eigen-two-forms
associated with different eigenvalues is zero. This is seen from the
expansion

Φi · Φj = Φi|(eN�Pj)|Φ = (eN�Φi)|Pj |Φ = (eN�Pi|Φ)|Pj |Φ
= Φ|(eN�Pi)T |Pj |Φ = Φ|(eN�(Pi|Pj))|Φ = 0, i 
= j, (37)

and (28). This can be interpreted as orthogonality of eigenfields in the
principal BQ medium.

3. THREE-DIMENSIONAL REPRESENTATION

To be able to study properties of BQ media more closely let us
express the medium conditions in terms of more conventional three-
dimensional (spatial) medium dyadics.

3.1. BQ Conditions

Applying the expansion of the medium dyadic [4]

M = α + ε
′ ∧ e4 + ε4 ∧ µ−1 + ε4 ∧ β ∧ e4, (38)

where α, ε
′
, µ−1, β are 3D spatial medium dyadics, and denoting

A = α2 − ε
′|µ−1, (39)

B = α|ε′ − ε
′|β, (40)

C = µ−1|α − β|µ−1, (41)

D = µ−1|ε′ − β2, (42)

we can write

M2 = A + B ∧ e4 + ε4 ∧ C + ε4 ∧ D ∧ e4. (43)

Inserting this in (14) or the equivalent equation

(M2 − M2
a I(2)T )|(M2 − M2

b I(2)T ) = 0, (44)
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and separating spatial and temporal components, the BQ-medium
conditions take the form of four 3D equations

(A − M2
a I(2)Ts )|(A − M2

b I(2)Ts ) = B|C, (45)

(A − M2
a I(2)Ts )|B = B|(D + M2

b ITs ), (46)

C|(A − M2
b I(2)Ts ) = (D + M2

a ITs )|C, (47)

(D + M2
a ITs )|(D + M2

b ITs ) = C|B. (48)

These equations are also valid if we swap the subscripts a and b. The
equations are not independent in the general case. For example, if the
inverse dyadic B−1 exists, one can show that (45) and (46) imply (47)
and (48), whence the latter ones can be omitted.

In engineering electromagnetics a second set of 3D medium dyadics
defined by [11] (

D
B

)
=

(
ε ξ

ζ µ

)
|
(

E
H

)
(49)

is used instead of the previous one. The two sets obey the relations [4]

ε
′ = ε − ξ|µ−1|ζ, α = ξ|µ−1, β = −µ−1|ζ. (50)

Thus, we can also write

A = ξ|µ−1|(ξ + ζ)|µ−1 − ε|µ−1, (51)

B = ξ|µ−1|ε − ξ|µ−1|(ξ + ζ)|µ−1|ζ + ε|µ−1|ζ, (52)

C = µ−1|(ξ + ζ)|µ−1, (53)

D = µ−1|ε − µ−1|(ξ + ζ)|µ−1|ζ. (54)

When substituted in (45)–(48), BQ medium conditions are
obtained for the medium dyadics ε, ξ, ζ, µ. This is quite an involved
task and the details are shown in Appendix A. As a result, it is
shown that, as pointed out above, there is a double redundancy in
the conditions (45)–(48). Actually, two of the dyadic conditions are
sufficient to define a BQ medium, provided the dyadic µ−1|ε has an
inverse which is assumed in the sequel. The conditions can be reduced
to the form (A23) and (A24), rewritten here for convenience as

µ
−1|ε|µ−1|(ξ + ζ)|µ−1|ε = M2

aM2
b µ

−1|(ξ + ζ), (55)

µ
−1|ε|(µ−1|(ξ + ζ))2 = (µ−1|ε + M2

a ITs )|(µ−1
ε + M2

b ITs ). (56)
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It is worth noting that, in these conditions, the four medium dyadics
appear through just two dyadics, µ−1|ε and µ−1|(ξ + ζ). This means
that, for example, the dyadic ξ−ζ is not restricted by the BQ-medium
conditions.

3.2. Eigenproblem

The eigenvalue Equation (16) can be expanded in 3D components as

α|Bi + ε
′|Ei = MiBi, (57)

µ−1|Bi + β|Ei = −MiEi, (58)

whence, substituting

Bi = −(µ|β + Miµ)|Ei (59)

to the former, the equation

(ε′ − α|µ|β − Mi(α|µ − µ|β) + M2
i µ)|Ei = 0 (60)

is obtained. In terms of the second set of 3D medium dyadics the same
equations read

Bi = (ζ − Miµ)|Ei (61)

(ε − Mi(ζ + ξ) + M2
i µ)|Ei = 0. (62)

After solving for the eigenvalues Mi from the bi-quadratic Equa-
tion (18) the corresponding eigenvectors Ei can be found from (62),
after which the Bi are obtained from (61).

3.3. Principal BQ Medium

When the medium dyadic consists only of the principal part, the
3D medium dyadics satisfy certain additional conditions. They are
obtained when the expansion (38) is inserted in the condition (33):

e123�ε′ = (e123�ε′)T , (63)

e123�µ−1 = (e123�µ−1)T , (64)

e123�α = −(e123�β)T . (65)

After some algebraic steps these can be shown to equal the following
condition for the second set of 3D medium dyadics:(

e123�ε e123�ξ
e123�ζ e123�µ

)
=

(
e123�ε e123�ξ
e123�ζ e123�µ

)T

. (66)



290 Lindell

4. SPECIAL CASE

Since it appears difficult to proceed with the general BQ-medium
conditions (55), (56), let us concentrate on a special case defined by

ξ + ζ = 0. (67)

For such a medium the medium dyadic (38) can be expressed as

M = ε ∧ e4 + (ξ + ε2 ∧ ITs )|µ−1|(I(2)Ts + ξ ∧ e4). (68)

The condition (55) is now automatically satisfied while (56) is reduced
to

(µ−1|ε + M2
a ITs )|(µ−1|ε + M2

b ITs ) = 0. (69)

There is no restriction for the dyadic ξ = −ζ.
From the conclusion given in Appendix B it follows that one of

the bracketed dyadics in (69) must be of the simple form βa for some
one-form β and vector a. Thus, for a BQ medium of this special kind,
the dyadics ε and µ must satisfy a relation of the form

µ−1|ε = −M2ITs + βa, (70)

for some scalar M2. Another form for the condition is

ε + M2µ = (µ|β)a. (71)

Of the two possibilities let us denote

M2
a = M2. (72)

Changing the order of the bracketed dyadics in (69) we have

(µ−1|ε + M2
b ITs )|β = 0, (73)

which shows us that β is an eigen-one-form of the dyadic µ−1|ε
corresponding to the eigenvalue −M2

b . Comparing with (70) we obtain
the relation

M2
b = M2 − a|β. (74)

Thus, the four eigenvalues of the dyadic M in this special case are

Ma+ = M, Ma− = −M,

Mb+ =
√

M2 − a|β, Mb− = −
√

M2 − a|β. (75)
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The 3D components of the eigenvalue equation M|Φi = MiΦi are

(ε + ξ|µ−1|ξ)|Ei + ξ|µ−1|Bi = MiBi, (76)

Bi + ξ|Ei = −Miµ|Ei. (77)

Substituting Bi from the latter into the former yields the eigenequation

µ−1|ε|Ei = −M2
i Ei, (78)

or, because of (70),

βa|Ei = (M2 − M2
i )Ei. (79)

This has two sets of solutions. For Ma± = ±M the eigen-one-forms
satisfy

a|Ea± = 0, (80)

while for M2
b± 
= M2 we have

Eb± = λ±β, (81)

where λ± are any scalars. Since Eb± are both multiples of β, they
define a 1D subspace, while the possible eigen-one-forms Ea±, span a
2D subspace.

The corresponding eigen-two-forms become

Φa± = Ba± + Ea± ∧ ε4 = −(ξ ± Mµ − ε4 ∧ ITs )|Ea, (82)

Φb± = Bb± + Eb± ∧ ε4 = −(ξ±
√

M2−a|β µ − ε4 ∧ ITs )|Eb, (83)

where Ea satisfies a|Ea = 0 and Eb = λβ.
A suitable decomposition of any given one-form E into eigen-one-

forms Ea,Eb as

E = Ea + Eb, (84)

can be made through the bac-cab formula [4] which for the present
quantities takes the form

a�(β ∧ E) = β(a|E) − (a|β)E. (85)

In fact, we can identify the two eigen-one-forms as

Ea = −a�(β ∧ E)
a|β , Eb =

a|E
a|β β. (86)
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As a check we can form the square of (68) as

M2 = −ε|µ−1|(I(2)Ts + ξ ∧ e4) + (ξ + ε2 ∧ ITs )|µ−1|ε ∧ e4, (87)

where we yet have to substitute ε from (71). Inserting this expression
and (72), (74) in the left-hand side of (44), after some simple algebraic
steps it can be shown to vanish, which means that (68) really satisfies
the bi-quadratic equation.

If the medium is required to have only the principal component,
there is an additional restriction to the medium parameters. First, the
dyadics e123�ε and e123�µ must be symmetric. From (71) it follows
that a and β must have the relation

a = λe123�µ|β (88)

for some scalar λ. From (66) it follows that the dyadic e123�ξ must be
antisymmetric.

The class of SD media was defined by the medium dyadic satisfying
a second-order algebraic Equation [8]. It was shown that for the most
general of such media the conditions

ε + M2µ = 0, ξ + ζ = λµ (89)

must be satisfied by the three-dimensional medium dyadics. Compar-
ing these with the condition (71) corresponding to the special case 2 of
the BQ medium it is seen that the latter is more general because of the
additional term βa. However, the latter is also less general because of
the assumption ξ + ζ = 0. A comparison with the general BQ medium
cannot be made because explicit conditions for the three-dimensional
medium dyadics are still missing.

5. CONCLUSION

The process of defining classes of linear electromagnetic media in
terms of algebraic conditions satisfied by the four-dimensional medium
dyadic M was continued by considering medium dyadics satisfying the
bi-quadratic equation. General relations for the eigensolutions and
conditions for the three-dimensional medium dyadics were derived.
It was shown that the four dyadic conditions could be replaced by
just two for two dyadic medium quantities. As a concrete example,
a medium satisfying ξ + ζ = 0 was considered. In this case the
BQ-medium conditions require that the permittivity and permeability
dyadics satisfy a linear condition of the form (70). When comparing
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with a recent review paper on classification of bi-anisotropic media [10],
one can see that, unlike the class of SD media satisfying the second-
order equation, the class considered here lies outside of its classification
map.

Due to a request by a referee, items [12–17] have been added to
the list of references, showing the progress in applying differential-form
formalism to the analysis of different classes of electromagnetic media
in four-dimensional formalism.

APPENDIX A.

Let us study the BQ-medium conditions (45)–(48) more closely. To
streamline the analysis dyadics are denoted by

E = µ−1|ε, X = µ−1|ξ, Z = µ−1|ζ, I = µ−1|I(2)T
s |µ = ITs . (A1)

Omitting the | multiplication sign we can express (51)–(54) as

µ−1|A|µ = X(X + Z) − E, (A2)

µ−1|B = XE + EZ − X(X + Z)Z, (A3)

C|µ = X + Z, (A4)

D = E − (X + Z)Z. (A5)

Substituting (A2)–(A5) in the BQ-medium conditions (45)–(48) yields

(X(X + Z) − E − M2
aI)(X(X + Z) − E − M2

b I)
= (XE + EZ − X(X + Z)Z)(X + Z), (A6)

(X(X + Z) − E − M2
aI)(XE + EZ − X(X + Z)Z)

= (XE + EZ − X(X + Z)Z)(E + M2
b I − (X + Z)Z), (A7)

(X + Z)(X(X + Z) − E − M2
b I)

= (E + M2
aI − (X + Z)Z)(X + Z), (A8)

(E + M2
aI − (X + Z)Z)(E + M2

b I − (X + Z)Z)
= (X + Z)(XE + EZ − X(X + Z)Z). (A9)
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These four conditions can be respectively rewritten as

X(X + Z)3 − (E + M2
aI)X(X + Z) − X(X + Z)(E + M2

b I)
+ (E + M2

aI)(E + M2
b I)) − (XE + EZ)(X + Z) = 0, (A10)

−X(X + Z)3Z + X(X + Z)(XE + EZ) − (E + M2
aI)(XE + EZ)

+ (E + M2
aI)X(X + Z)Z − (XE + EZ)(E + M2

b I)
+ X(X + Z)Z(E + M2

b I) + (XE + EZ)(X + Z)Z = 0, (A11)
(X + Z)3 − (E + M2

aI)(X + Z) − (X + Z)(E + M2
b I) = 0. (A12)

(X + Z)3Z − (E + M2
aI)(X + Z)Z − (X + Z)Z(E + M2

b I)
+ (E + M2

aI)(E + M2
b I) − (X + Z)(XE + EZ) = 0. (A13)

Multiplying (A12) by X from the left and subtracting from (A10)
leaves us with the condition

E(X + Z)2 = (E + M2
aI)(E + M2

b I). (A14)

Multiplying (A12) by Z from the right and subtracting from (A13)
leaves us with the condition

(X + Z)2E = (E + M2
aI)(E + M2

b I). (A15)

Assuming that the inverse E−1 exists, (A14) and (A15) actually
represent the same equation and they imply the relation

E(X + Z)2 = (X + Z)2E. (A16)

Multiplying (A12) by X from the left and by Z from the right and
subtracting from (A11) leaves us with

E(X + Z)2Z + X(X + Z)2E
= (E + M2

aI)(XE + EZ) + (XE + EZ)(E + M2
b I). (A17)

Combining this with (A14) and (A15) yields

E(X + Z)E = M2
aM2

b (X + Z). (A18)

From this analysis it is clear that, assuming the existence of E−1,
the BQ-medium conditions (A6)–(A9) are equivalent with three
conditions: (A12), (A18) and either (A14) or (A15). It is seen that
X-Z is not restricted by these conditions and can be freely chosen.

Now one can further show that only two of the above conditions,
for example (A18) and (A14), are actually sufficient. In fact, adding
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M2
b E(X + Z) + E(E + M2

aI)(X + Z) on both sides of (A18), the left-
hand side becomes

E(X + Z)E + M2
b E(X + Z) + E(E + M2

aI)(X + Z)
= E(X + Z)(E + M2

b I) + E(E + M2
aI)(X + Z), (A19)

while the right-hand side becomes

M2
aM2

b (X + Z) + M2
b E(X + Z) + E(E + M2

aI)(X + Z)
= (E + M2

b I)(E + M2
aI)(X + Z). (A20)

Applying here (A14), we have

(E+M2
b I)(E+M2

aI)(X+Z) = E(X+Z)2(X+Z) = E(X+Z)3.
(A21)

Equating (A19) and (A21) yields

E(X + Z)(E + M2
b I) + E(E + M2

aI)(X + Z) = E(X + Z)3, (A22)

whence assuming that E−1 exists, (A12) is seen to follow.
The sufficient BQ-medium conditions (A18) and (A14) can be

deciphered in terms of the original 3D medium dyadics as

µ
−1|ε|µ−1|(ξ + ζ)|µ−1|ε = M2

aM2
b µ

−1|(ξ + ζ), (A23)

µ
−1|ε|(µ−1|(ξ + ζ))2 = (µ−1|ε + M2

a ITs )|(µ−1|ε + M2
b ITs ). (A24)

These conditions can be given a more symmetric form:

µ
−1|(ξ + ζ)|µ−1 = M2

aM2
b ε

−1|(ξ + ζ)|ε−1 (A25)

(ξ + ζ)|µ−1|(ξ + ζ) = (ε + M2
aµ)|ε−1|(ε + M2

b µ). (A26)

APPENDIX B.

Let us study the dyadic equation

A|B = 0, (B1)

where A,B ∈ E1F1 are two 3D dyadics mapping vectors to vectors
and they are assumed to be nonzero. Because detA 
= 0 would imply
existence of A−1 and, hence, B = 0 and, similarly, detB = 0 would
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imply A = 0, we must have detA = detB = 0. This being the case,
both dyadics can be expressed in two-term expansions as

A = a1α1 + a2α2, B = b1β1 + b2β2. (B2)

Let us now assume that

A(2) = (a1 ∧ a2)(α1 ∧ α2) 
= 0, (B3)

whence α1 and α2 are linearly independent. Choosing a third one-form
α3 and a 3D trivector k ∈ E3 so that they satisfy k|(α1∧α2∧α3) = 1,
the one-forms α1,α2,α3 make a basis whose reciprocal vector basis
is [4]

k�(α2 ∧ α3), k�(α3 ∧ α1), k�(α1 ∧ α2). (B4)

Because a1 and a2 are linearly independent, (B1) implies

α1|B = 0, α2|B = 0. (B5)

Expanding b1 and b2 in the basis (B4), shows us that the dyadic B
must actually be of the form

B = (k�(α1 ∧ α2))β, (B6)

for some one-form β. This means that B(2) = 0. Starting originally
from the assumption B(2) 
= 0, the result would have been A(2) = 0.

To summarize, when the dyadics A and B satisfy (B1) and neither
of them vanishes, we must have either B(2) = 0 or A(2) = 0, i.e., either
the dyadic B is of the simple form B = bβ or A is of the form A = aα.
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