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Abstract—Features of spatial power spectrum (SPS) of scattered
radiation in a randomly inhomogeneous medium with strongly prolated
anisotropic inhomogeneities of dielectric permittivity are investigated.
In single scattering approximation, it has been shown that a
pronounced gap along a direction of prolate inhomogeneities appears
in SPS. Features of SPS of multiple scattered waves at oblique
illumination of a boundary of randomly-inhomogeneous medium with
prolate irregularities have been analytically studied using smooth
perturbation method taking into account diffraction effects. Numerical
calculations have shown that with an increase of a distance passing by
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the wave in random media, SPS has a double-peaked shape and a
gap substantially increases. Its maximum is slightly changed and the
width is broadening. The results have been obtained analytically for
the first time and could find extensive practical application in optics
and be useful in development of principles of remote sensing of random
media.

1. INTRODUCTION

Features of EM wave propagation in randomly inhomogeneous media
have been intensively studied during the last few decades [1, 2]. In
the most papers devoting to this problem, statistically isotropic large-
scale irregularities are considered. However, in many practical cases,
electromagnetic radiation is scattered on irregularities, whose cross-
section depends on direction of an incident wave.

Let us analyse some features of narrow-angle scattering radiation
by prolate irregularities. One such example is the scattering of X-ray
emission by molecules of thermotropic liquid crystals. Characteristic
length of these molecules is about 20

◦
A and the ratio of longitudinal

to transverse sizes equals to 4 ÷ 8 [3]. Larger structures are formed
in lyotropic systems, where the ratio may exceed 15 [3]. Narrow-
angle scattering of ultraviolet radiation is peculiar to chloroplasts.
Chloroplasts of algae and plants are ellipsoidal in shape with a diameter
1 ÷ 5 µm and length of 1 ÷ 10 µm [3]. Very often prolate irregularities
are oriented along a certain direction. Orientation of this kind is
observed in lyotropic liquid crystals with hexagonal structure [3]. In
thermotropic liquid crystals it can be easily produced by an external
electric field. Moreover, it is well known that polymer macromolecules
are oriented in a flow of liquid with a velocity gradient [4, 5].

Obtained results of this paper could also find extensive practical
application in propagation of short-wavelength radiowaves in the
Earth’s ionosphere, where random plasma inhomogeneities are aligned
with the geomagnetic field [6]. Similar scattering effect is observed at
propagation of a sound in the ocean, where randomly internal waves
exist [7].

2D non-absorptive medium with random irregularities extended
along a direction of propagation of an initial wave has been studied
in [8]. In this paper, Fokker-Planck equation for the probability density
of coordinates and angles of ray-propagation, was derived. The authors
have numerically solved the equation and shown that the angular
distribution function has a double-peaked shape with a dip along the
prolate irregularities.
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The features of the angular power spectrum for anisotropic
absorptive turbulent magnetized plasma were investigated on the basis
of the dispersion equation [9]. Evolution of the angular distribution
of ray intensity at light propagation in random medium with prolate
irregularities has been investigated in [10, 11]. From the results it
follows that a local minimum in the angular distribution of ray intensity
has been revealed in a direction of the greatest correlation radius of
irregularities. Numerical simulation has been carried out by Monte-
Carlo method. Many interesting problems in wave propagation have
been considered in electrically gyrotropic medium [12–14] and in
layered periodic media [15] using dispersion relations.

Within the scope of this paper we investigate the evolution of the
angular power spectrum of single-scattered radiation in statistically
anisotropic medium. It was shown that strongly pronounced dip
exists in angular spectrum along a direction of prolate inhomogeneities
caused due to permittivity fluctuations. The same peculiarities have
been analytically revealed in SPS of multiple scattered radiation at
oblique illumination of medium by mono-directed incident radiation
using smooth perturbation method. It has been shown that SPS has a
double-peaked shape, location of its maximum slightly varies and the
width is substantially broadening in proportion to a distance passing
by EM waves in randomly-inhomogeneous medium.

2. SINGLE SCATTERING APPROXIMATION

2.1. Formulation of the Problem

Let a wave field U(r, t), scalar and monochromatic U(r, t) =
U(r) exp(−iωt), is incident on a anisotropic turbulent medium.
Permittivity ε(r) is a random function of spatial coordinates ε(r) =
ε0+ε1(r), where ε0 is the mean value of ε, ε1 is permittivity fluctuations
and the following conditions are fulfilled: ε0 = 1, |ε1| � 1. Wave
propagation in a randomly-inhomogeneous medium satisfies the well-
known Helmholtz equation:

∆U(r) + k2
0 [1 + ε1(r)]U(r) = 0, (1)

which for small permittivity fluctuations (ε1 � ε0), could be solved
using the perturbation method. In the expansion of a wave field into
the series, we confine only first term U1, i.e., scattered field U ≈ U1 is a
linear functional of ε1(r) (< ε1(r) >= 0), and consequently, correlation
function of a scattered field is linearly expressed through the correlation
function of inhomogeneities.
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Anisotropic Gaussian correlation function is utilized for descrip-
tion a randomly-inhomogeneous medium:

V (r) =< ε2
1 > exp

[
−1

2

(
x2

a2
+
y2

b2
+
z2

c2

)]
,

where a, b, c are spatial scales of inhomogeneities. Spatial spectrum of
a Gaussian correlation function has the form:

W (k) = (2π)3/2 < ε2
1 > a b c exp

[
−1

2
(
a2k2

x + b2k2
y + c2k2

z

)]
,

where kx, ky, kz are projections of wavevector on x, y and z axes,
respectively. Non-Gaussian correlation function has been used in [16]
for describing a backscattering mechanism.

Scattering properties of the medium could be modeled in terms of
following phase function [11]:

χ(s, s′) ∝ exp
{
−α2

⊥
[
(sx − s′x)2 + (sy − s′y)

2
]
− α2

‖(sz − s′z)
2
}
, (2)

where s = (sx, sy, sz), s′ = (s′x, s
′
y, s

′
z) are unite vectors coincident with

the direction of the wave-vector of incident and scattered plane waves,
respectively; α⊥ = πl⊥/λ, α‖ = πl‖/λ are non-dimensional parameters,
λ is the wavelength; l⊥ and l‖ are transversal and longitudinal scales
of permittivity inhomogeneities, respectively. Phase function satisfies
the normalizing condition:∫

4π

dsχ(s, s′) = 4π.

In the following section, we shall consider single scattering of a plane
waves on: a) stretched inhomogeneities along certain direction; b) on
disordered inhomogeneities.

2.2. Scattering of Radiation on Strongly Prolated
Irregularities Oriented along a Certain Direction

Let a plane monochromatic wave with some disorders of direction
of wave-vector is incident on a plane-parallel layer of a randomly-
inhomogeneous medium. We shall assume that the following condition
l⊥, l‖ � λ is satisfied. Irregularities are strongly elongated towards
Z-axis and are symmetrical in XY plane. In this case, intensity of
a scattered field I(s′x) in a plane s′y = 0 is obtained from (2) by
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integration with respect to wavevector of an incident wave:

I(s′x) = A−1

1∫
−1

dsx

1∫
−1

dsy exp
{
− β2

[
(sx − sx0)2 + s2

y

]

−α2
⊥

[
(s′x−sx)2+s2

y

]
−α2

‖

(√
1−s′2x−

√
1−s2

x−s2
y

)2}
. (3)

Parameter β characterizes disorder of an incident radiation; sx0

characterizes inclination angle of an incident wave with respect to
Z-axis; normalizing multiplier A corresponds to the maximum value
of an integral. We introduce nondimensional anisotropic parameter
χ = α‖/α⊥ = l‖/l⊥ for investigation of the evolution of SPS of
scattered radiation. Dependence of normalized intensity of scattered
field versus the direction of scattered wave for different anisotropic
parameters χ = 50, 100 at β = 200, sx0 = 0.07, α⊥ = 5 is illustrated
in Figure 1. The curves are normalized on their maximum value.
The intensity gains a double-peaked shape; it has a maximum in the
direction of an incident wave and local maximums correspond to mirror
reflected waves [11].

Figure 1. Dependence of normalized intensity of scattered radiation
versus the direction of scattered wave at α⊥ = 5, sx0 = 0.07, β = 200.
Solid curve corresponds to χ1 = 100, dotted line to χ2 = 50.

Calculations show, that the gap arises in the direction of prolate
inhomogeneities and increases considerably with parameter χ. Figure 2
presents the dependence of normalized intensity of scattered field
versus direction of scattered wave for various angles of incidence:
sx0 = 0.07 and sx0 = 0.1 at the fixed parameters χ = 100, β = 200.
It could be seen that the amplitude of a reflected wave decreases with
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Figure 2. Dependence of normalized intensity of scattered radiation
versus the direction of scattered wave at α⊥ = 5, χ = 100, β = 200.
Solid curve corresponds to sx0 = 0.07, dotted line to sx0 = 0.1.

Figure 3. Dependence of normalized intensity of scattered radiation
versus the direction of scattered wave at sx0 = 0.07, α⊥ = 5, χ = 100.
Solid curve corresponds to β1 = 200, dotted line β2 = 10.

increasing the angle of incidence; maximum of intensity is not changed
in magnitude along the direction of an incident wave and is displaced
to the right. The gap is broadening but direction of its depth does
not vary. The curves of normalized intensity of scattered EM waves
for different parameter β = 10; 200 are presented in Figure 3. It is
shown that the dip is getting substantially pronounced in proportion
to parameter β and slope of a curve increases. A “double-peaked”
shape could be explained by summation of scattered waves, incident
on oriented inhomogeneities at different angles. “Double-humping”
effect disappears at normal incidence sx = 0 (see Figure 4).
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2.3. Incidence of a Plane Wave on Disordered Irregularities

Let a plane wave is incident on disordered inhomogeneities of a
randomly-inhomogeneous medium. Intensity of scattered field, in this
case, could be obtained from (2) rotating a coordinate system at
fixed direction of an incident wave along an unit vector s(sx, sy, sz),

sz =
√

1 − s2
x − s2

y:

I(s′x) = G−1

2π∫
0

dϕ

π∫
0

dθ exp
{
− α2

x

[
(s′x − sx) cos θ cosϕ

+s′y cos θ sinϕ +
(√

1 − s′2x − s′2y −
√

1 − s2
x

)
sin θ

]2

−α2
y

[
−(s′x − sx) sinϕ+ s′y cosϕ

]2

−α2
‖
[
−(s′x − sx) sin θ cosϕ− s′y sin θ sinϕ

+
(√

1 − s′2x − s′2y −
√

1 − s2
x

)
cos θ

]2 }
exp(−α2θ2), (4)

where α⊥ = (αx, αy) is a linear scale of anisotropic irregularities in
XOY plane; normalizing multiplier G corresponds to maximum value
of an integral; parameter α characterizes disorder of inhomogeneities
over the polar angle θ at uniform distribution over the azimuth angle
ϕ. Scattering is observed in plane s′y = 0. Calculations can be carried
out also in a curvilinear coordinate system using the relation between
polar and bipolar coordinates [17].

We are investigating dependence of the angular spectrum of
intensity of scattered radiation in case of chaotically oriented
inhomogeneities versus parameter α. Numerical calculations have been
carried out at the following fixed parameters αx = αy = α⊥ = 5,
α‖ = 500. Curves at α = 1 and α = 10 are presented in Figure 5.
Numerical calculations illustrate that at normal incident (sx = 0)
peak of intensity is located in direction of prolate inhomogeneities and
has a symmetrical shape; width of an angular spectrum increases in
proportion to parameter α. On the other hand, at oblique incidence
sx = 0.2 (Figure 6) maximum of the curve is displaced. Comparison
of the curves presented in Figures 5 and 6 shows that the width of the
angular spectrum at a level 0.5 of its maximum, in case of incident
plane waves on chaotically oriented inhomogeneities is much less than
in case of incident plane waves along the direction of prolate oriented
inhomogeneities. From Figure 6 is evident that the width of the angular
spectrum at a level 0.5 of its maximum decreases with increasing
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Figure 4. Dependence of normalized intensity of scattered radiation
versus the direction of scattered wave at normal incidence of a wave
(sx0 = 0), α⊥ = 5, β = 200. Solid curve corresponds to the parameter
of anisotropy χ1 = 50, dotted line χ2 = 100.

Figure 5. Dependence of normalized intensity of scattered radiation
versus the direction of scattered wave at normal incidence (sx = 0),
α⊥ = 5, α‖ = 500. Solid line corresponds to α = 1, dotted line to
α = 10.

a spread of inhomogeneities. We estimate the width of an angular
spectrum at a level 0.5 of its maximum (∆θ1/2):

a) for normal incident waves on oriented irregularities: ∆θ1/2 ∝√
λ/l‖ =

√
π/α‖. Numerical calculations show that at α = 10,

∆θ1/2 ∝ 0.079, that approximately corresponds to a half-width of
a curve ∆θ1/2 ∝ 0.09 presented in Figure 5;



Progress In Electromagnetics Research B, Vol. 7, 2008 199

Figure 6. Dependence of normalized intensity of scattered radiation
versus the direction of scattered wave at oblique incidence (sx = 0.2),
α⊥ = 5, α‖ = 500. Solid curve corresponds to α = 1, dotted line
α = 10.

b) for oblique incident waves on oriented irregularities: ∆θ1/2 ∝
λ/l‖ · sx we obtain ∆θ1/2 ∝ 0.031. For a half-width of a curve
presented in Figure 6 at α = 10, ∆θ1/2 ∝ 0.017. Good agreement
between estimations and numerical calculations on the basis of
formula (4) is obvious.

In this section, we can conclude that SPS in the medium
with strongly prolated inhomogeneities along a certain direction
substantially depends as on the angle between the wave-vectors of
scattered and incident waves as well as on the angle γ between the
wave-vector of an incident wave and an axis of prolated irregularities.
Phase function at γ = 0 has a Gaussian form and the maximum
coincides with the direction of elongated inhomogeneities (Figure 4).
The obtained results are valid for large-scale inhomogeneities l⊥, l‖ �
λ, when observation point is in Fraunhofer zone l‖ · λ � l2⊥.

3. MULTIPLE SCATTERING IN RANDOM MEDIUM
WITH STRONGLY PROLATE IRREGULARITIES

3.1. Formulation of the Problem

If wavelength λ is small in comparison to the linear scales of
permittivity irregularities lε the scattered waves are concentrated in
narrow solid angle θ, i.e., scattered waves are propagating in the same
direction as an incident wave. One of the methods describing multiple
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scattering in random media is the ray-(optics) approximation,
√
λL �

lε, but it neglects the diffraction effects. If a distance L passing by the
wave in random media is substantially big, diffraction effects become
essential. In this case, multiple scattering is effectively described by
the smooth perturbation method (narrow-angle scattering) [1, 2]. In
this section the features of SPS of multiply scattered EM waves in
random medium with strongly elongated irregularities are considered.
Dielectric permittivity of medium, as well as in case of single-scattering,
we present as ε(r) = 1 + ε1(r)|ε1| � 1.

Initial is the following scalar wave equation:

∆E(r) + k2
0[1 + ε(r)]E(r) = 0. (5)

Wave field we introduce as E(r) = E0 exp{Φ(r)}, where Φ(r) is the
complex phase, which is presented as a sum Φ(r) = ϕ0 +ϕ1 +ϕ2 + . . . ,
ϕ0 = ik0x + ik⊥y. At small fluctuations of dielectric permittivity, in
the expansion of Φ(r) we confine only the terms of order ε2

1 and the
wave field could be written as: E = E0 exp(ϕ1 + ϕ2 + ik0x + ik⊥y).
We suppose that the following inequalities are satisfied∣∣∣∣∂ϕ1

∂x

∣∣∣∣ � k0|ϕ1|,
∣∣∣∣∂2ϕ1

∂x2

∣∣∣∣ � k0

∣∣∣∣∂ϕ1

∂x

∣∣∣∣ ,∣∣∣∣∂ϕ2

∂x

∣∣∣∣ � k0|ϕ2|,
∣∣∣∣∂2ϕ2

∂x2

∣∣∣∣ � k0

∣∣∣∣∂ϕ2

∂x

∣∣∣∣
(6)

And the system of the differential equations may be written as:

∆⊥ϕ0 + (∇ϕ0)2 + k2
0 = 0, (7a)

∆⊥ϕ1 + 2∇ϕ0∇ϕ1 = −k2
0ε1, (7b)

∆⊥ϕ2 + 2∇ϕ0∇ϕ2 = −(∇ϕ1)2, (7c)

where ∆⊥ = ∂2/∂y2 + ∂2/∂z2. These linear differential equations are
solved by Fourier method:

ϕ1(x, y, z) =

∞∫
−∞

dky

∞∫
−∞

dkyψ(x, ky, kz) exp[i(kyy + kzz)]

ε1(x, y, z) =

∞∫
−∞

dky

∞∫
−∞

dkyf(x, ky, kz) exp[i(kyy + kzz)].

(8)

Substituting (8) into (7b) we obtain linear differential equation with
respect to ψ:

−
(
k2

y + k2
z + 2k⊥ky

)
ψ + 2ik0

∂ψ

∂x
= −k2

0f,
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whose solution has a following form:

ψ(x, ky, kz) =
ik0

2

∞∫
−∞

dξf(ξ, ky, kz) exp
[
− i

2k0
(k2+2k⊥ky)(x−ξ)

]
,(9)

k = {ky, kz}, k2 = k2
y + k2

z .

3.2. Correlation Function and Spatial Power Spectrum

Let us calculate transverse correlation function of a scattered field,
WEE∗(ρ) =< E(r)E∗(r + ρ) > + < E(r) >< E∗(r + ρ) > taking
into account the fact that the observation points are spaced apart at a
very small distance ρ = {ρy, ρz}. Second term represents square of the
mean field, which we shall not take into account and hence, we have:

WEE∗(ρ) =< E(r)E∗(r + ρ) > . (10)

Substituting (9) into (8), taking into account that < ϕ1 >= 0,
exponential terms of the correlation function

WEE∗(ρ, k⊥) = E2
0 exp(−iρyk⊥) exp(2 Re < ϕ2 >)

· exp
[
1
2
(< ϕ2

1(r) > + < ϕ2∗
1 (r + ρ) >)

]
· exp[< ϕ1(r)ϕ∗

1(r + ρ) >], (11)

have the following form:

< ϕ2
1(r) > = −k2

0

4

∞∫
−∞

dkydkzdk
′
ydk

′
z


 x∫

0

dξ1

x∫
0

dξ2X


, (12)

< ϕ∗2
1 (r) > = −k2

0

4

∞∫
−∞

dkydkzdk
′
ydk

′
z


 x∫

0

dξ1

x∫
0

dξ2Y


, (13)

< ϕ1(r)ϕ∗
1(r+ρ) > =

k2
0

4

∞∫
−∞

dkydkzdk
′
ydk

′
z


 x∫

0

dξ1

x∫
0

dξ2Z


, (14)

where E2
0 is the intensity of an incident radiation:

X = < f(ξ1,k)f(ξ2,k′) > exp
[
− i

2k
(k2 + 2k⊥ky)(x− ξ1)

− i

2k
(k′2 + 2k⊥k′y)(x− ξ2) + ikyy + ikzz + ik′yy + ik′zz

]
,
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Y = < f∗(ξ1,k)f∗(ξ2,k′) > exp
[
i

2k
(k2 + 2k⊥ky)(x− ξ1)

+
i

2k
(k′2 + 2k⊥k′y)(x− ξ2) − iky(y + ρy)

−ikz(z + ρz) − ik′y(y + ρy) − ik′z(z + ρz)
]
,

Z = < f(ξ1,k)f∗(ξ2,k′) > exp
[
− i

2k
(k2 + 2k⊥ky)(x− ξ1)

+
i

2k
(k′2 + 2k⊥k′y)(x− ξ2) + ikyy + ikzz

−ik′y(y + ρy) − ik′z(z + ρz)
]
.

Taking into account that < f(ξ1,k)f(ξ2,k′) >= Wε(ξ1 − ξ2,k)δ(k +
k′), where Wε(ξ1 − ξ2, ky, kz) is 2D spatial spectrum of dielectric
permittivity fluctuations, δ is Dirac delta function, changing the
variables ξ1 − ξ2 = ξ, (ξ1 + ξ2)/2 = η and integrating with respect
to η, formulae (12)–(14) are finally expressed as:

< ϕ2
1 > =

k2
0

4

∞∫
−∞

dkydkz

(
i
k0

k2

)
Vε

(
−k⊥
k0

ky, ky, kz

)
[
1 − exp

(
−ik

2

k0
x

)]
, (15)

< ϕ2∗
1 > = −k2

0

4

∞∫
−∞

dkydkz

(
i
k0

k2

)
Vε

(
−k⊥
k0

ky, ky, kz

)
[
1 − exp

(
i
k2

k0
x

)]
, (16)

< ϕ1ϕ
∗
1 > =

k2
0x

4

∞∫
−∞

dkydkzVε

[
− 1

2k0
(k2 + 2k⊥ky), ky, kz

]

exp(−ikyρy − ikzρz). (17)

A term “Re < ϕ2 > ” of (11) is easily calculated by solving a differential
equation (7c) utilizing Green function [1, 2]:

Re <ϕ2>=−k2
0x

8

∞∫
−∞

dkydkz

(
1− k0

k2x
sin

k2x

k0

)
Vε

(
−k⊥
k0

ky, ky, kz

)
. (18)
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So, we have calculated all terms for transversal correlation function
of a scattered field (11) at arbitrary 3D spatial correlation function of
dielectric permittivity fluctuations.

SPS of scattered field in case of incident plane wave W (k′, k⊥)
is easily expressed by Fourier transform of the transversal correlation
function [2]:

W (k′, k⊥) =

∞∫
−∞

dρyWEE∗(ρy, k⊥) exp(ik′ρy). (19)

On the other hand, when the angular spectrum of an incident wave
has a finite width, SPS of scattered radiation is given by:

I(k′) =

∞∫
−∞

dk⊥W (k′, k⊥) exp(−k2
⊥β

2), (20)

where β characterizes the dispersal of an incident radiation.

3.3. Numerical Results

For numerical simulations, in order to visualize the influence of
anisotropy of inhomogeneities on the SPS of scattered waves, we
have assumed that anisotropic inhomogeneities are strongly elongated
towards Z-axis:

Vε

(
−k⊥
k0

ky, ky, kz

)
= Fε

(
−k⊥
k0

ky, ky

)
δ(kz). (21)

Substituting (21) into (15)–(18) and integrating over kz, formula (11)
yields:

WEE∗(ρy, k⊥) = E2
0H(k⊥) exp(−ik⊥ρy) exp

{
k2

0x

4

∞∫
−∞

dkyFε

[
− 1

2k0
(k2

y + 2k⊥ky), ky

]
exp(− i kyρy)

}
, (22)

where H(k⊥) = exp

[
−k0x

4

∞∫
−∞

dkyFε

(
−k⊥

k0
ky, ky

)]
.
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In case of Gaussian correlation function:

Fε(kx, ky) = 2π < ε2
1 > l‖l⊥ exp

[
−1

2
(l2‖k

2
x + l2⊥k

2
y)

]
,

H(µ) = exp
[
−

√
π

2
B(α2

1 + µ2α2
2)

−1/2

]
.

(23)

transversal correlation function of the scattered field could be rewritten
through the non-dimensional parameters:

WEE∗(η, µ) = E2
0 exp(−iηµ)H(µ) exp

{
B

∞∫
−∞

ds exp
[
− 2s2(α2

1

+µ2α2
2)−2µα2

2s
3− 1

2
α2

2s
4

]
exp(−iηs)

}
. (24)

where: B = π
2ϑν, ϑ =< ε2

1 > k2
0l‖l⊥, ν = k0x, α1 = πl⊥

λ , α2 = πl‖
λ ,

s = ky

k0
, η = k0ρy, µ = k⊥

k0
, k0 = 2π

λ , λ is the wavelength of an incident
wave. Dependence of the real part of normalized correlation function
WEE∗(η, µ) versus non-dimensional

Figure 7. Dependence of normalized correlation function of scattered
field WEE∗(η, µ) versus distance between two observation points η =
k0ρy at different values of parameter B.

parameter η for α1 = 12, α2 = 2000, χ = 166 are presented in
Figures 7 and 8. The curves are normalized on their maximum values
and have a symmetrical form. With increasing of distance passing
by a wave in a chaotic medium (i.e., with increasing parameter B)
B = 1000; 3000 correlation function quickly decreases (Figure 7).
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Figure 8. Dependence of normalized correlation function of scattered
field WEE∗(η, µ) versus distance between two observation points η =
k0ρy at different values of parameter µ.

Location of maximum does not vary and is located at η = 0. Similar
effect is observed at decreasing an incident angle on chaotically oriented
inhomogeneities µ (Figure 8).

SPS versus non-dimensional wavy parameter k for fixed
anisotropic parameters α1 = 12, α2 = 2000, µ = 0.06 and B = 1000;
2000; 3000 is illustrated in Figure 9. Curves are normalized on their
values at a point k = 0.06. From the numerical calculations it
follows that a dip of the curves is getting much more pronounced,
location of spectrum maximums slightly varies and the width is
substantially broadening with increasing a distance passing by the
wave in anisotropic random media. These results are in a good
agreement with the results for 3D prolate inhomogeneities calculated
by statistical Monte-Carlo method. Numerical analyses show that
neglecting diffraction effects, i.e., neglecting the term k2

y/2k
2
0 in the

argument of 2D spectrum of dielectric permittivity, “double-humping”
effect in SPS disappears.

Finally, we calculated the SPS of scattered radiation, when the
incident wave beam has a finite thickness (20). The results are plotted
in Figure 10 at β = 10, B = 300; 500; 1000. The curves are normalized,
as in previous case, on their values at the point k = 0.06. Numerical
results demonstrate that the intensity of scattered radiation has a
strongly pronounced dip along a direction of prolate inhomogeneities.
A dip in SPS is much more pronounced and the maximums are moving
apart in proportion to a distance passing by the wave in random media.

The above presented features of multiple scattered radiation of
EM wave in random media with prolate inhomogeneities are, for the
first time, analytically studied in this paper.
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Figure 9. Dependence of SPS (19) versus k for different parameter B
at the fixed values α1 = 12, α2 = 2000, µ = 0.06.

Figure 10. Dependence of SPS (20) versus k for a finite width of an
original mode β = 10, at α1 = 12, α2 = 2000, µ = 0.06.

4. CONCLUSION

Features of SPS of scattered radiation in an inhomogeneous medium
with strongly elongated anisotropic inhomogeneities of dielectric
permittivity have been studied. Investigation of a single-scattered
radiation has shown that strongly pronounced dip appears in SPS of
scattered radiation along prolate irregularities when the width of the
spectrum of an incident wave substantially exceeds l⊥/l‖. Its maximum
coincides with the direction of prolate irregularities. Phase function
has a maximum towards the direction of incident wave propagation,
when axes of elongated random irregularities are chaotically oriented
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with respect to the direction of an incident wave. The width decreases
with increasing the dispersal of irregularities’ orientation and phase
function has a sharp peak.

The similar features of SPS could be observed at multiple
scattering on prolated inhomogeneities. It has been shown that at
the multiple scattering of an oblique incident wave, SPS has a double-
peaked shape, its width is substantially broadening and the maxima
are slightly changed in proportion to a distance passing by the wave in
random media. The behavior of SPS in lossy media [18–20] is under
the great interest too.

The obtained results could find extensive practical application in
optics and be useful in development of principles of remote sensing of
the above-mentioned media.
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