Progress In Electromagnetics Research C, Vol. 3, 169-182, 2008

MICROWAVE CHARACTERIZATION OF DIELECTRIC
MATERIALS USING BAYESIAN NEURAL NETWORKS

H. Acikgoz, Y. L. Bihan, O. Meyer, and L. Pichon

Laboratoire de Génie Electrique de Paris
CNRS UMRS507, SUPELEC

UPMC Univ. Paris 06, Univ. Paris-Sud
11 rue Joliot-Curie, Plateau de Moulon
91192 Gif-sur-Yvette Cedex, France

Abstract—This paper shows the efficiency of neural networks (NN),
coupled with the finite element method (FEM), to evaluate the broad-
band properties of dielectric materials. A characterization protocol
is built to characterize dielectric materials and NN are used in order
to provide the estimated permittivity. The FEM is used to create
the data set required to train the NN. A method based on Bayesian
regularization ensures a good generalization capability of the NN. It
is shown that NN can determine the permittivity of materials with a
high accuracy and that the Bayesian regularization greatly simplifies
their implementation.

1. INTRODUCTION

The determination of dielectric constant & and loss factor &’ of
dielectric materials using a measurement cell can be a difficult
problem. For a coaxial open-ended probe, the relationship between
the admittance measured at the discontinuity plane of the waveguide
and the complex permittivity (direct model) can rarely be inverted.
A solution is then to use a direct model in an iterative procedure
aiming to reduce the difference between the measured observation
(e.g., reflection coefficient or admittance) and the calculated one [1].
However, in many cases an analytical solution does not exist and
numerical solutions are computationally expensive when used in an
iterative procedure.

In order to avoid the drawbacks of an iterative procedure, a more
efficient approach is to use a parametric model fitted thanks to a
database constituted of examples of the relation linking the observation
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to the permittivity. A good candidate are the neural networks (NN)
since they can be universal and parsimonious approximators and can
allow to approximate a wide range of functions provided that they
are previously trained with a consistent data set [2]. NN is a well
recognized technique in the field of microwave for solving source
reconstruction problems or optimization problems [3-7]

The training aims to adjust the parameters of the NN so that
it correctly approximates the physical behaviour of the system [8].
Whenever one likes to perform the training of a NN, a high number of
hidden neurons can lead to have an overfitting phenomenon. In order
to avoid this problem, a method based on Bayesian regularization [9]
is introduced. This method is quite fast and leads to a good
generalization capability.

NN were used in [10] and [11] in order to characterize fluids.
The implemented method consists in the training of the NN by
using measurements made on several standard materials (fluids).
This approach implies to have all these materials and to know their
frequency dielectric behaviour. Such a technique can appear to be close
to the reality but at the same time it can be expensive and difficult to
implement because of the necessity to elaborate standard samples.

The approach proposed in this paper is based on the combination
of NN and a finite element method (FEM). The FEM is a robust
and versatile computational method that can simulate the physical
behaviour of the measurement cell. It is used to provide the equivalent
admittance of the cell containing the material to be characterized
by carrying out the direct problem. Thus, the FEM permits to
be unrestricted on specific materials and enlarges the training set
according to the request.

The FEM provides the data set, called training set, required for
the NN adjustment. A data set is constituted of input (complex
admittance, frequency) and output (¢/, €”) pairs. The validity of
the proposed NN-based inversion method is assessed by using a
characterization protocol developed in the laboratory which has a
restricted analytic solution [12]. Inversion results obtained with NN
(from 1 MHz to 1.8 GHz) are presented and compared with other results
obtained using a protocol having an analytic solution and that are
inverted with an iterative procedure [13].

2. MEASUREMENT SETUP AND NUMERICAL
METHOD

The characterization cell, called SuperPol, consists in a junction
between a coaxial waveguide and a circular waveguide which is filled
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in an inhomogeneous way. This means that the material under test is
located at the continuity of the inner conductor and that it is held up
by a Teflon crown (¢/ =2.1) (Fig. 1(a)). The whole device is connected
to an impedance analyzer.

The interest of such a configuration is that it allows having a
homogenous electrical field in all the material which is favourable
in several applications such as microwave heating. = Compared
with the protocol SuperMit (Fig. 1(b)) which has a homogeneous
filling (consisting of a junction between a coaxial waveguide and a
circular waveguide filled by the dielectric material), this configuration
may be used from low frequencies until only a few gigahertz
using the coaxial waveguide GR900 (inner diameter =6.2mm, outer
diameter = 14.28 mm).

Inner conductor of the

TEM : .
* ‘ coaxial waveguide
C 4 —

Sample under test

/

e#(

Teflon crown

(a) Electric wall (b)

Figure 1. Measuring cells: (a) SuperPol. (b) SuperMit.

The electromagnetic problem is solved by using the FEM. The
problem is expressed in terms of the electric field E which satisfies the
following harmonic wave equation:

curl [—;curlE} —iweE =0 (1)
Wi

w is the pulsation, € (¢ = go(¢/ — j&”)) and p are the permittivity
and the permeability, respectively. ¢g is the permittivity of the free
space.

At the input of the coaxial waveguide, an excitation port is
applied. An incident TEM electromagnetic field is prescribed. Perfect
electric conductor (PEC) boundary conditions are applied on the
surface of the waveguide conductors and at the end of the measurement
cell. These boundary conditions are given by:

nAE = 0 on conductors
n AE = n A Eg on the excitation plane with FEj a source field
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Databases are created using second order 3D tetrahedral vector
finite elements. The degrees of freedom (DOF's) of the tangential vector
elements are the projections of the electric field on the edges and faces
of an element. The number of DOFs relevant to an element is 20.
Thanks to the axial symmetry of the system, only an angular sector (5
degrees) of the geometry is meshed (Fig. 2). The system is meshed so
that there are at least 10 elements per wavelengths. The whole mesh
contains 4902 elements.

A perfect magnetic conductor (PMC) boundary is applied to both
symmetry planes. This condition is given by:

nAH =0 On symmetry planes

Coaxial wave guide Teflon crown

N

Figure 2. View of the meshed measurement cell.

3. IMPLEMENTATION OF THE NN

Two single-output networks corresponding to the two estimated
quantities (¢ and €”) are used. This approach is preferred to a single
network (with two outputs) in order to avoid too complex NN including
many internal parameters [14]. The inputs of a NN are the values
of the complex admittance (real part G, imaginary part B) and the
measurement frequency (f).

MLP (Multi-Layer Perceptron) NN are used. The retained
structure consists in two layers NN with hyperbolic tangent activation
functions in the hidden layer and an output layer constituted of a
single neuron having a linear activation function. This structure of NN
exhibits the properties of an universal and parsimonious approximator.

Figure 3 shows the structure of a NN with three inputs, N hidden
neurons and an output.
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Figure 3. Structure of a NN.

Nevertheless, the design of the NN has to be achieved carefully.
Indeed, in the classical approaches, a NN can be successfully used
only if the number of hidden neuron is correctly chosen. As a matter
of fact, a NN having too few neurons will not be able to learn
correctly the training set data (underfitting). On the other hand, a
NN having too many neurons can lead to an overfitting phenomenon:
good learning of the training set data but poor generalization ability.
That means that data not contained in the training set will be wrongly
approximated. Consequently, in order to have a good learning and a
good generalization, the NN designer has to determine the number of
hidden neurons (and therefore the number of NN internal parameters).
The most widely used method to define the size of a NN is the split
sample procedure [15]. It consists in dividing the data set into two
different sets: training and validation sets, different one from the other
regarding the examples that they contain. The training of the NN
(adjustment of its internal parameters) is carried out using the training
set by iteratively minimizing an objective function, typically the mean
square error (MSE), between the output of the NN and the one of the
training set. Algorithms based on a first or second order expansion of
the objective function are typically used. The validation set is used to
determine the number of hidden neurons. This is done by calculating
the MSE on the validation set for different NN having different number
of hidden neurons. The optimal NN is the one which gives the lowest
MSE on this set. It is obvious that this procedure is a consuming time
task since it demands the creation of a validation set in addition to the
training one and to train several NN of different sizes.

This paper presents a method based on the Bayesian regulariza-
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tion that was first introduced in the field of NN by MacKay [9] to
solve the problem of overfitting. It is based on the maximization of
the a posteriori distribution of the NN parameters. Contrary to the
previous method described above, this approach does require neither
a validation set nor the systematic training of NN of different size. We
present below an overview of the Bayesian regularization applied for
fitting of the NN weights, i.e., the internal parameters of the NN.

Let us define D the training dataset. Assuming that the
approximation error of these data is Gaussian, white and centred leads
to the following distribution of the error:

P(D/w, (3, M;) = exp (—GEDp) (2)

1
Zp(B)
where w is the vector of the weights of M;, the particular NN
used. Ep = %Z (enn, —€;)? where eyy, & and Np are the NN

N

D
output, training set output and the number of training set examples,

respectively. The summation is done over the training set examples.
0 is a parameter representative of the standard deviation of the noise
and Zp = (2r/B)Np/2,

The a priori distribution (i.e., without knowledge of the database)
of the weights is also assumed as Gaussian, white and centred. It can
be written as:

P(w/a, M;) = exp (—aEy) (3)

Zw(a)

where Zy = (2rn/a)¥»/2, N, is the number of NN weights and
E, = % > ij. This assumption on the distribution is based on the
N

knowledge that the weights can be either positive or negative and that
it is reasonable to have small magnitude weights in order to obtain a
smooth fitting allowing a good generalization capability.

The Bayesian regularization involves two levels of inference.
Firstly, the weight parameters are estimated using Bayes’ theory. The
posterior probability density of the parameters w is:

By substituting (2) and (3) into (4), one obtains:

P(w/D,a, B, M;) = exp(—(BEp + ak,)) (5)

_
ZF(Oé, 6)
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where Zp = Z,(a)Zp(B)P(D/a, 3, M;).

Notice that, the optimal weights should maximize this posterior
probability density. This is equivalent to minimizing the regularized
objective function given by:

Er = BEp + aF, (6)

The first term Ep is proportional to the mean square error function
between the outputs of the training set and the ones of the NN. This
is the usually used objective function for NN training. The second
term F,, is a regularization term (weight decay term). A low value
of the regularizer F,, i.e., a low magnitude of the NN parameters,
leads to a NN having an output varying smoothly and so thwarting
the overfitting phenomenon.

In order to have a good generalization capability, the hyperpa-
rameters « and § have to be tuned. On one hand, if o« < 3, Ep will
be minimized but the generalization capability of the NN will not be
ensured. On the other hand, if a > 3, the network will have a poor
learning capability and will not learn the training set data. That is
why, one must have to reach to a compromise as regard to a and (.
This adjustment has also been performed by a Bayesian theory in a
second level of the inference.

The objective function parameters « and [ are optimized by
applying the Bayes’ rule:

P(D/a7 ﬁa MJP(O[, ﬁ/MZ)

If an uniform prior density P(«, 3/M;) is assigned to (a,3), the
maximization of the posterior density probability P(«, 3/D, M;) for
these parameters is obtained by maximizing the evidence for «, § which
can be written as:

ZF (a7 ﬁ)
PP/e0 M) = 7 ) 20(0)
A Taylor expansion of P(w/D,«, 3, M;) around the most probable
weight value of w(w™?), which is obtained in the first level of inference
by maximizing the posterior density probability for w, allows writing
Zp = (2m)Ne/2 det((HMP)=1))1/2 exp(Ep(w™P)). H is the Hessian
matrix of the regularized objective function calculated for w™?.

Solving Eq. (8) for the most probable values for o and 3, we can
obtain [16]:

(®)

N _
QMP Y 5MP D—7

= 2B, (wMF)’ ~ 2Ep (wMP)
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The parameter v = N, — 2aMPtr(HMP)~1 is defined as the
effective number of parameters of the NN. It is a measure of how many
parameters are effectively used to reduce the error function and to have
a good generalization capability.

Let us remind that using Bayesian regularization, in order to
accomplish a good learning process, the number of neurons must be
sufficiently high. Beyond this minimum number of hidden neurons,
whatever it is (i.e., number of total parameters N, ), the effective
number of parameter v will remain less than N, and therefore the
output of the NN will have a smooth variation (good generalization).

The training of the NN is done by adjusting w™? et o and 3 at
each iteration.

4. INVERSION OF SIMULATED DATA

This section gives some inversion results on simulated data that
compare the two methods described above. NN were trained with
a training set of 3000 examples. The training domain is as follows:
the estimated parameter (¢/ and ") space is regularly discretized,
between 1 to 30 for the real relative permittivity (¢') and 0 to 30 for
the imaginary relative permittivity (¢”), whereas the frequency space is
discretized according to a logarithmic law between 1 MHz and 1.8 GHz..

—Tra:ining )
---Test

MSE

‘, ‘ : !
0 10 20 30 40 50 60 70
number of hidden neurones

Figure 4. MSE obtained on training and test sets for different
numbers of hidden neurones (real permittivity) with MSE objective
function.
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MSE
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number of hidden neurones

Figure 5. MSE obtained on training and test sets for different
numbers of hidden neurones (imaginary permittivity) with MSE
objective function.

The inversion performances are evaluated on a test set constituted of
500 randomly chosen examples in the training domain. Each example
contains the complex admittance, the frequency and one of the two
outputs (¢ or £”).

Figures 4 and 5 show that, when using the MSE as objective
function, an overfitting phenomenon effectively appears when the
number of hidden neurones increases. This is underlined by the
increase of the MSE calculated on the test set.

On the contrary, Figs. 6 and 7 show that the error obtained using
the bayesian regularization on the training and test set vary very few
beyond a sufficient number of neurons. The overfitting phenomenon
occurring usually with NN does not appear in spite of the increase of
the NN size.

These results show that NN inversion with Bayesian regulariza-
tion is more suitable for training than “split sample” method. Conse-
quently, in the following, Bayesian regularization will be applied to NN
to determine the complex permittivity of a dielectric material. In the
remainder, the results below have been obtained with NN that have
20 hidden neurons for each of ¢’ and ”.

Before doing the inversion of data issued from measurement,
one checks the NN capability by comparing its output with the one
contained in the test set. Fig. 8 shows that the outputs of the NN and
the ones of the test set are in good agreement.
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Figure 6. MSE obtained on the test set for different number of hidden
neurons (real permittivity) with Bayesian regularization.

1=—Training

0 10 20 30 40 50 60 70
number of hidden neurones

Figure 7. MSE obtained on the test set for different number of hidden
neurons (imaginary permittivity) with Bayesian regularization.

5. EXPERIMENTAL RESULTS

Since the networks correctly approximate the outputs contained in the
test set, experimental measurements can be presented at the input (G,
B, and f) in order to evaluate the permittivity of the material under
investigation on the desired frequency band.



Progress In Electromagnetics Research C, Vol. 3, 2008 179

35

‘ + NNoutput © Testset output‘
+ + +
30r ¢ o© obee 90 o @ © B
v e ¢ ¢ e epe o9 b
% o & ¢ & & o 5 & o
b ¢ 3 vove & & b
oo RS b dobo ¢
2B obeoe Ve o4 e G ¢ o 1
$% P ES o S0P bO &
& P 00 @ o b @ $6 oG
s ® o @ o ®
v b b v o o @ ® & © &
20+ %@ & ® & o0 @ ® bood & 4
@ b o & & ©
= T booo S S ¢ 9@ o9
w + b o0 0dd ©0 4 a4 R
o e 00 o o 0o @ ® & o
156 o ® b @ d6 b O G B
b 06 & + v o © & &0 P
PR LS PP O oP bo
6 o0 ob oo & @ ¢ & © oP
@ @ @ + £ & @ o @
1040060 oo b ¢ ® ® o o A
@ RS S 4 ¢ v )
6 oo & o & & &b b ¥ op ®
& b & ¢ o ¢ 6 oo b i &
bo & & &b b 6 o be O @
50 & b4 + ob & © & b + B
b+ ® P & PP o o @ ¢
® RS ¢ b o 6 ¢
® ® Poe 9 ve © & oo s
o to  epeose Poep PP o S& &
0 5 10 15 20 25 30

Figure 8. Comparison between NN output and the one contained in
the test set.

Measurements have been carried out by using an impedance
analyzer Agilent 4291A on an ethanol sample whose dielectric
characteristics are known. The thickness of the sample under test
is 29mm. The coaxial guide is a standard GR900 (14mm). The
measurement frequency band is from 1 MHz to 1.8 GHz.

First of all, the permittivity of the material is determined using
NN with 20 neurons (for both ¢ and &”) trained on the one hand
with MSE objective function and on the other hand with Bayesian
regularization. In this case, the generalization is quite good for both
procedures as shown in Fig. 9. Indeed, this figure shows the good
agreement between the results obtained with SuperPol with NN and
those obtained with the iterative inversion based on SuperMit’s. An
analytical solution obtained by Debyes law is also represented.

The broad band permittivity of the ethanol obtained by Debye’s
law has also been represented. Results of the NN trained with Bayesian
regularization show a good agreement with the analytical ones. The
slight difference between the Debye’s results and those obtained by the
inversion of the experimental data (NN and iterative inversion) is due
to the experimental conditions such as the temperature, the presence of
impurities in the sample, etc. ... Furthermore, Debye’s model doesn’t
take into account the conduction phenomenon that appears at low
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Figure 9. Permittivity of ethanol obtained with 20 neurons: MSE
(left), Bayesian regularization (right).
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Figure 10. Permittivity of ethanol obtained with 50 hidden neurons:
MSE (left), Bayesian regularization (right).

frequency on the imaginary part of the permittivity.

The generalization capability of the two previously described
methods of NN learning has also been studied by chosen a high number
of hidden neurons (and so of NN internal parameters). 50 hidden
neurons in the hidden layer would be sufficient to remark the good
generalization capability of the Bayesian regularization and on the
contrary the bad generalization of the method with the MSE as the
objective function. One can see on Fig. 10 that using MSE as objective
function, NN badly generalise and this phenomenon mainly appears
at high frequencies, whereas with the Bayesian regularization the
permittivity of ethanol is correctly obtained even at high frequencies.
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6. CONCLUSIONS

The interest of NN inversion in microwave dielectric characterization
has been shown. MLP NN are good candidates to solve inverse problem
that has no analytical solution. The Bayesian regularisation has been
successfully applied and it is noticed that the NN generalize well when
they are trained according to the Bayesian framework. The use of
the Bayesian regularization allows reducing the criticity of the hidden
neuron number. Compared to the split-sample procedure, the training
became quite faster (reduction of about 80% of the training time) and
less example data are required because of the unnecessity to have a
validation set.
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