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Abstract—The three-dimensional Gaussian beam scattering from
the bounded periodic sequence of one-to-one composed isotropic
magnetodielectric and bi-isotropic layers are investigated. The beam
field is represented by an angular continuous spectrum of plane wave.
The problem of the partial plane wave diffraction on the structure is
solved using the circuit theory and the transfer matrix methods. It
is found that after reflection from the structure, the circular Gaussian
beam becomes, in general, an elliptical Gaussian beam, in addition to
a displacement of the beam axis from the position predicted by ray
optics.

1. INTRODUCTION

For solving many diffraction problems the simple plane waves are
employed. In practice, a simple plane wave is not an option, but must
approximated by a beam of radiation, which can be modeled as it is
in the present paper by a Gaussian beam [1, 2].

The problem of reflection and transmission of a wave beam from
single isotropic and anisotropic layers, metal-dielectric heterogeneities
and their periodical sequences has been the subject of numerous
research papers [1–12]. Several beam-wave phenomena such as lateral
shift, focal shift, angular shift, beam splitting that are not found in the
reflection of plane wave are the major features for investigation. Papers
[13–20] are devoted to investigate the wave beam scattering on the
structures with the spatial dispersion that include single layers of the
natural and artificial reciprocal (chiral) and nonreciprocal bi-isotropic,
bi-anisotropic medium, gyrotropic crystals, etc. Most of these studies
were based on a two-dimensional beam-wave structure. The reason for
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this choice was perhaps the confidence that essential insights would not
be lost while mathematical complexities could be reduced. However,
it was shown in [5, 20] that this confidence may not be warranted, in
particular, the two-dimensional model is not to take into consideration
the polarization effects and not able to predict the change in ellipticity
of the scattered beam.

In the present work the scattered fields of a tree-dimensional
Gaussian beam on a bounded periodical sequence of one-to-one
composed isotropic magnetodielectric and bi-isotropic layers are
investigated. The scattering coefficients of the plane monochromatic
waves are determined using the circuit theory and the transfer matrix
methods [21–25] and the beam field is represented by the angular
continuous spectrum of the plane wave [1, 2, 9, 20].

The aim of this work is the performance improvement and
functionality expansion for the electromagnetic field systems based on
the exploitation of the media chirality [26–37].

2. PROBLEM FORMULATION

A periodic in the z-axis direction, with period L, structure of N
identical basic elements (periods) is investigated (Fig. 1). Each of
periods includes a homogeneous magnetodielectric and bi-isotropic
layers with thicknesses d1 and d2 (L = d1 + d2) that are defined with
the material parameters ε1, µ1 and ε2, µ2, ξ, ζ, respectively (ξ, ζ are the
magnetoelectric interaction parameters). In general, the parameters
ε1, µ1 and ε2, µ2, ξ, ζ, can be frequency dependent and complex for loss
media. The outer half-spaces z ≤ 0 and z ≥ NL are homogeneous,
isotropic and have permittivities ε0, µ0 and ε3, µ3, respectively.

Note that if ξ = ζ = 0 (i.e., the both of layers are conventional
materials), then the structure in Fig. 1 is known as a distributed Bragg
reflector (DBR) [23].

The auxiliary coordinate system xin, yin, zin is introduced for an
incident beam field description [9]. In it, the incident field Ein,H in

is written as the continued sum of the plane waves with the spectral
parameter κin (it has a sense of the transverse wave vector of the
partial plane wave):

Ein = ein

∫∫ ∞

−∞
U(κin) exp(iκin · (rin+ain)+iγin(zin+a3))dκin,

H in = hin

∫∫ ∞

−∞
U(κin) exp(iκin · (rin+ain)+iγin(zin+a3))dκin,

(1)
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Figure 1. The periodical sequence of bi-isotropic and material layers.

In the equation (1) the vectors are introduced

ein = PVp − bin × PVs, hin = PVs + bin × PVp. (2)

Here the vector P describes the field polarization,

P = z0 × n, (3)

and in the structure coordinates x, y, z, the vector n is characterized via
the components (cos θin cosϕin, cos θin sinϕin, 0), θin = 90◦ − αin, z0

is the basis vector of z-axis, and the vector bin describes the direction
of the incident wave beam propagation

bin =
(

cos θin cosϕin, cos θin sinϕin,−
√
ε0µ0 − cos2 θin

)
,
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U(κin) is the spectral density of the beam in the plane zin = 0, γin =√
k2

0 − κin · κin, 0 < arg(
√
k2

0 − κin · κin) < π and ain = (a1, a2).
The transformation from the coordinate system x, y, z to

xin, yin, zin can be realize via three possibility: rotating on the angle
ϕin around the z-axis; rotating on the angle αin around the x-axis;
shifting the point of origin to point (a1, a2, a3). The transition matrix
for the first and the second transformations is written in standard view:

x0

in

y0
in

z0
in


 =




cosϕin sinϕin 0
− cosαin sinϕin cosαin cosϕin sinαin

sinαin sinϕin − sinαin cosϕin cosαin


 ·



x0

y0
z0


 .
(4)

From relations (4) it is continue, that the wave vector components in
the mentioned coordinate systems are related in the following way:

κx

κy

γ


 =




cosϕin − cosαin sinϕin sinαin sinϕin

sinϕin cosαin cosϕin − sinαin cosϕin

0 sinαin cosαin


 ·



κxin

κyin

γin



(5)

or,

κx

κy

γ


 =




cosϕin − sin θin sinϕin cos θin sinϕin

sinϕin sin θin cosϕin − cos θin cosϕin

0 cos θin sin θin


 ·



κxin

κyin

γin


 ,
(6)

where γ =
√
k2

0 − κ · κ, 0 < arg(
√
k2

0 − κ · κ) < π. Taking into
account (4) and (5) for the reflected field we have

Eref = U ee
ref + Uhe

ref

= PVe

∫∫ ∞

−∞
U(κin)Ree(κ) exp(iκ · r − iγz)dκin

−bref × PVh

∫∫ ∞

−∞
U(κin)Rhe(κ) exp(iκ · r − iγz)dκin,

Href = Uhh
ref + U eh

ref

= PVh

∫∫ ∞

−∞
U(κin)Rhh(κ) exp(iκ · r − iγz)dκin

+bref × PVe

∫∫ ∞

−∞
U(κin)Reh(κ) exp(iκ · r − iγz)dκin,

(7)
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and for the transmitted field

Etr = U ee
tr + Uhe

tr

= PVe

∫∫ ∞

−∞
U(κin)τ ee(κ) exp(iκ · r + iγ(z −NL)dκin

−btr × PVh

∫∫ ∞

−∞
U(κin)τhe(κ) exp(iκ · r + iγ(z −NL)dκin,

H tr = Uhh
tr + U eh

tr

= PVh

∫∫ ∞

−∞
U(κin)τhh(κ) exp(iκ · r + iγ(z −NL)dκin

+bref × PVe

∫∫ ∞

−∞
U(κin)τ eh(κ) exp(iκ · r + iγ(z −NL)dκin,

(8)
In (7) and (8) the reflection Rss′ and transmission τ ss′ complex
coefficients (s, s′ = e, h) of the partial plane electromagnetic waves
from the structure were introduced. They depend from the frequency
of the incident field, angles (αin, ϕin) and the other electromagnetic
and geometrical parameters of the structure. The coefficients with
coincident indexes (ss) describe the transformation of the incident wave
of the perpendicular (s = e) or the parallel (s = h) polarization into
the co-polar wave, and the coefficients with indexes (ss′) describe the
transformation into the cross-polar wave. The left index corresponds to
the incident wave and the right index — to the reflected or transmitted
wave. The scattering coefficients Rss′ and τ ss′ are determined trough
the solution of the plane monochromatic wave diffraction problem on
the structure under study.

3. TRANSFER MATRIX OF PERIOD. SCATTERING
COEFFICIENTS OF PLANE MONOCHROMATIC
WAVES

According to the phenomenological description [26, 27], the spatial
dispersion effects of the first order are defined via the constitutive
equations where the electric and the magnetic inductions are
related with the electromagnetic field intensity via the permittivity,
permeability and magnetoelectric interaction parameters (the gyration
parameters in terms of crystalloptics)

D = ε2E + ξH, B = µ2H + ζE, (9)

where ξ = χ+ iρ, ζ = χ− iρ, χ is a parameter of the nonreciprocality
degree of the medium, ρ is the chiral parameter. In a particular case
of ρ �= 0, χ = 0 the medium is chiral and reciprocal (the Pasteur
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medium), when ρ = 0, χ �= 0 is the nonchiral, nonreciprocal medium
(the Tellegen medium).

In the homogeneous along the x-direction bi-isotropic layers, the
electromagnetic field is governed by the coupled differential equations

∆⊥Ex + k2
0

(
n2

2 + ζ2
)
Ex − 2ik2

0ρµ2Hx = 0,
∆⊥Hx + k2

0

(
n2

2 + ξ2
)
Hx + 2ik2

0ρε2Ex = 0,
(10)

where n2 =
√
ε2µ2 is the medium refractive index, and ∆⊥ = ∂2/∂y2+

∂2/∂z2.
The waves of the perpendicular (Ee‖x0) and parallel (Hh‖x0)

linear polarizations can be presented as the superposition of the waves
of the right (Q+

s ) and left (Q−
s ) circular polarizations [26]:

Ee
x = Q+

e +Q−
e , He

x = −i
(

1
η+
2

Q+
e − 1

η−2
Q−

e

)
,

Eh
x = i

(
η+
2 Q

+
h − η−2 Q−

h

)
, Hh

x = Q+
h +Q−

h ,

(11)

where η±2 =
√
µ±2 /ε

±
2 is the wave impedances of a bi-isotropic medium,

ε±2 = ε2 ∓ iξη−1
2 exp(∓iυ), µ±2 = µ2 ± iζη2 exp(±iυ), sin υ = (ξ +

ζ)/2n2, η2 =
√
µ2/ε2. Such substitution transforms (10) to two

independent Helmholtz equations:

∆⊥Q
+
s + (γ+)2Q+

s = 0, ∆⊥Q
−
s + (γ−)2Q−

s = 0. (12)

Here s = e, h; γ± = k0

√
ε±2 µ

±
2 = k0n

±
2 is the propagation constants of

the right- (γ+) (RCP) and left- (γ−) (LCP) circularly polarized plane
wave in the unbounded bi-isotropic medium. Their general solutions
for the RCP and LCP waves in a bounded bi-isotropic layer can be
written as

Q±
e =

1

2
√
Y e±

2

{
Ae± exp

[
i
(
γ±y y+γ

±
z z

)]
+Be± exp

[
i
(
γ±y y+γ

±
z z

)]}
,

Q±
h =

√
Y h±

2

2

{
Ah± exp

[
i
(
γ±y y+γ

±
z z

)]
+Bh± exp

[
i
(
γ±y y−γ±z z

)]}
,

(13)
where As±, Bs± are the wave amplitudes, Y e±

2 = cosα±
2 /η

±
2 , Y

h±
2 =

(η±2 cosα±
2 )−1 are the wave admittances, γ±y = γ± sinα±

2 , γ
±
z =

γ± cosα±
2 , sinα±

2 = sinα0n0/n
±
2 , α0 are the incidence angle of the

partial plane wave on the z = 0 structure boundary, α±
2 are the
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refraction angles in the bi-isotropic medium. The substitution (13)
to (11) gives the field components of the E- and H-polarizations.

Due to the scattering of the given polarization plane electromag-
netic wave (s) by the bi-isotropic layers, the cross-polar components
(s′) appear in the secondary field. Denote their amplitudes as As′ and
Bs′ for the transmitted and reflected waves, respectively. The field
components in the m-th period are shown in the Appendix A.

The structure under study can be considered as a consecutive
connection of the eight-poles which are equivalent to the illuminated
boundary (T 01), repeated heterogeneity (T = T 1T 2) and the
last element which is loaded on the waveguide channel having
the admittance Y s

3 (T ′) (Fig. 1). The equations coupling the
field amplitudes at the structure input (As

0, B
s
0, B

s′
0 ) and output

(As
N+1, A

s′
N+1) for the incident fields of E-type (Ah

0 = 0) and H-type
(Ae

0 = 0) are obtained as:



As

0

Bs
0

0
Bs′

0


 = T 01T

N−1T ′



As

N+1

0
As′

N+1

0


 ,



As

m

Bs
m

As′
m

Bs′
m


 = T 1



A+

m

B+
m

A−
m

B−
m


 ,



A+

m

B+
m

A−
m

B−
m


 = T 2



As

m+1

Bs
m+1

As′
m+1

Bs′
m+1


 ,



As

m

Bs
m

As′
m

Bs′
m


 = T 1T 2



As

m+1

Bs
m+1

As′
m+1

Bs′
m+1


 , (14)

In [25] it has been shown that T 01T
N−1T ′ = T 01T

NT 13, and in the
block representation (2 × 2) the transfer matrices are

T pv =

(
(T s

pv) 0

0 (T s′
pv)

)
, T 1 =

(
(T ss

1+) (T ss
1−)

(T ss′
1+) (T ss′

1−)

)
, T 2 =

(
(T ss

2+) (T ss′
2+)

(T ss
2−) (T ss′

2−)

)

(15)
where T pv corresponds to the matrices T 01 and T 13. The blocks of the
quasi-diagonal matrices are

T s
pv =

1

2
√
Y s

p Y
s
v

(
Y s

p + Y s
v ±(Y s

p − Y s
v )

±(Y s
p − Y s

v ) Y s
p + Y s

v

)
,

where the upper sign relates to s = h, and the lower sign relates to
s = e in terms of the wave types.
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The elements of the transfer matrices T 1 and T 2 are determined
from solving the boundary-value problem and are shown in the
Appendix B.

The reflection, transmission and transformation coefficients of the
plane monochromatic wave of the reflected (z ≤ 0) and transmitted
(z ≥ NL) fields are determined by the expressions Rss = Bs

0/A
s
0, τ

ss =
As

N+1/A
s
0, R

ss′ = Bs′
0 /A

s
0 and τ ss′ = As′

N+1/A
s
0.

The parametrical (including angular) dependences of the
scattering coefficients of plane monochromatic waves from the
structure with a large number of elements have interleaved areas with
the high (the quasi-stop bands) and low (the quasi-pass bands) average
level of the reflection (Fig. 2). The interference of the reflected wave
from outside boundaries of layers gives N − 1 small-scale oscillations
in the quasi-pass bands. The maximum of the reflection coefficient
magnitude for the cross-polar wave corresponds to the minimum of
the reflection coefficient magnitude for the co-polar wave. When
the structure is backed by a metal ground plane (the reflecting
regime) (Fig. 2(a)), the high-Q resonances of the reflection coefficient
magnitude in the quasi-stop bands appear. In the presence of chirality
(ρ �= 0) and the dissipation losses (Im (ε2, ε1) �= 0), the magnitude of
the small-scale oscillations of the reflection coefficient decreases, and
the full-resonant transparency vanishes. More detailed analysis of the
scattered fields of the partial plane wave on the chiral and material
layer sequence is given in [28].

(a) (b)

Figure 2. The angular dependences of the reflection coefficient
magnitude of the partial plane wave for the sequence of N = 5 bi-
isotropic and material layers in reflecting (a) and passing (b) regimes:
ε0 = ε1 = µj = 1, j = 0 ÷ 3, k0L = 10, d1/L = d2/L = 0.5, ρ = χ =
0.2; (a) ε2 = 4 + 0.02i, ε3 → ∞; (b) ε2 = 4, ε3 = 1.
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Figure 3. The distribution of the absolute value of the incident beam
field in the z = 0 plane: k0wx = k0wy = 10, ϕin = 0◦.

4. ANALYSIS OF GAUSSIAN BEAM SCATTERING

Let’s consider the scattering of a Gaussian beam with the spectral
density U(κin) that assigns due to law

U(κin) = exp
(
−(w · κin)2/16

)
Hn

(
kxinwx/

√
2
)
Hm

(
kyinwy/

√
2
)

(16)
where w = (wx, wy), wx and wy are beam widths along xin and
yin axis, respectively, Hn(·) is the Hermit polynomial of n-th order.
Restrict oneself to case of the zeroth-order (n = m = 0) beam (Fig. 3).

Some effects, like the beam form distortion, ellipticity change,
beam splitting, lateral shift were discovered in the scattered beam
(Figs. 4–6). Those effects are connected to the angular dependence of
the phase and magnitude of the co-polar |Rss| and the cross-polar |Rss′ |
component of the partial plane wave reflection coefficients (Fig. 2).
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(a) (b)

Figure 4. The distribution of the absolute value of the field (a) and
the lateral shift value of its maximum (b) of the reflected wave beam
in the z = 0 plane for the structure that includes single isotropic and
single bi-isotropic layers (N = 1): ε0 = ε1 = µj = 1, j = 0 ÷ 3, ε2 =
4+0.02i, ε3 → ∞, k0L = k0w = k0b = 10, ρ = χ = 0.2, ϕin = 0◦; (a)
d1/L = 0.2, d2/L = 0.8.
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Figure 5. The distribution of the absolute value of the field |Uref | of
the reflected wave beam in the z = 0 plane for the sequence of N = 5
isotropic and bi-isotropic layers (the passing regime): ε0 = ε1 = µj =
1, j = 0÷3, ε2 = 4, k0L = k0w = k0b = 10, d1/L = d2/L = 0.5, ρ =
χ = 0.2.

If the structure includes the single basic element (N = 1) and is
backed by a metal ground plane, the reflection coefficient magnitude
of the co-polar wave |Rss| is weakly depend from the falling angle and
is nearly per unit (Fig. 2a). When ϕin = 0, for the two-dimensional
beam, during [1], the field components U ee

ref and Uhh
ref of the reflected

beam have the next view

U ss
ref (y, z) = exp {iΦss(κ0)}Rss(κ0)Vs

×
∫ ∞

−∞
U(κin) exp

{
i
[
(κin − κ0)(y + ∆s

y) − iγz
]}
dκin,

(17)

where κ0 = k sinαin and Φss(κ0) is the phase of the reflection
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Figure 6. The distribution of the absolute value of the field |Uref |
of the reflected wave beam in the z = 0 plane for the sequence
of N = 5 isotropic and bi-isotropic layers (the reflecting regime):
ε0 = ε1 = µj = 1, j = 0 ÷ 3, ε2 = 4 + 0.02j, ε3 → ∞, k0L =
k0w = k0b = 10, d1/L = d2/L = 0.5, ρ = χ = 0.2, αin = 30◦.
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coefficient of the partial wave which falls under an angle αin. The
scattered beam shift along the illuminated boundary of the structure
is defined from the condition ∆s

y = −(∂Φss/∂κ)κ=κ0 . It is sizeable
when the phase of the partial plane wave scattering coefficient rapidly
changes with the angle. When the angle of the falling beam is nearly to
the quasi-Brewster angle or greater then it, the splitting of the reflected
beam into two beams with different intensity value appears (Fig. 4).

When N > 1, the shift of the reflected beam along the illuminated
boundary of the structure increases due to multiple reflections of waves
from the boundaries of the layers (Figs. 5, 6). The beam splitting is
observed on the angles that lie nearly of the totally transmission angles
of the partial plane wave.

Increasing the chiral parameter ρ raises the structure reflection,
changes the ellipticity and slightly raises the lateral shift of the
reflected beam. The maximum of the intensity for the cross-polar
wave corresponds to the minimum of the intensity for the co-polar
wave. There are the areas of the practically totally transformation of
the co-polar wave into the cross-polar wave. To the presence of the
media nonreciprocity (χ �= 0) is |U eh| �= |Uhe| and the sizeable cross-
polar component in the scattered field appears even for case of the
straight incident wave beam (αin = 0◦).

We would like to emphasize an important peculiarity of the system
under study regarding its application in the design of high-precision
matched loads and layered absorbing coatings (Fig. 6) [24, 25, 29]. This
peculiarity consists in reducing the co-polar reflection due to wave
transformation into the cross-polar reflection.

5. CONCLUSION

In this paper, we have investigated the tree-dimensional Gaussian beam
scattering for the DBR-like bounded periodic sequence of pairs of bi-
isotropic and magnetodielectric layers. The lateral shift, ellipticity
change, beam splitting is studied. The revealed effects allows us to
recommend the application of the studied structure in the design of
cascaded high-Q and stop-band frequency filters, wave transformers,
angular discriminators, absorbers, etc.

APPENDIX A.

With zm = mL, zm1 = mL+d1, notations, the field components in the
m-th period of the structure zm ≤ z ≤ zm1 and zm1 ≤ z ≤ (m + 1)L
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are written as follows (the factor exp[−i(ωt− kyy)] is omitted):

{
Ee

x1

Eh
y1

}
= ±




1/
√
Y e

1

i/
√
Y h

1




×
({
Ae

m

Ah
m

}
exp[ikz1(z − zm)] ±

{
Be

m

Bh
m

}
exp[−ikz1(z − zm)]

)
,

{
He

y1

Hh
x1

}
=




√
Y e

1

i
√
Y h

1




×
({
Ae

m

Ah
m

}
exp[ikz1(z − zm)] ∓

{
Be

m

Bh
m

}
exp[−ikz1(z − zm)]

)
,

{
Ex2

Ey2

}
=±




1/2
√
Y e+

2

i/2
√
Y h+

2


(
A+

m exp[iγ+
z (z−zm1)]±B+

m exp[−iγ+
z (z−zm1)]

)

+




1/2
√
Y e−

1

i/2
√
Y h−

1


(
A−

m exp[iγ−z (z−zm1)]±B−
m exp[−iγ−z (z−zm1)]

)
,

{
Hy2

Hx2

}
=




√
Y e+

2 /2

i
√
Y h+

2 /2


 (
A+

m exp[iγ+
z (z−zm1)]∓B+

m exp[−iγ+
z (z−zm1)]

)

±




√
Y e−

2 /2

i
√
Y h−

2 /2


(
A−

m exp[iγ−z (z−zm1)]∓B−
m exp[−iγ−z (z−zm1)]

)
,

The field components at the structure output are

{
Ee

x3

Eh
y3

}
= ±




(
1/

√
Y e

3

)
Ae

N+1(
i/

√
Y h

3

)
Ah

N+1


 exp[ikz3(z −NL)],

{
He

y3

Hh
x3

}
= ±




√
Y e

3 A
e
N+1

i
√
Y h

3 A
h
N+1


 exp[ikz3(z −NL)].

Here kzj = kj cosαj , kyj = kj sinαj , kj = k0nj , nj = √
εjµj , Y

e
j =

η−1
j cosαj , Y

h
j = (ηj cosαj)−1, ηj =

√
µj/εj , sinαj = sinα0n0/nj

and j �= 2.
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APPENDIX B.

The elements of the transfer matrix T = T 1T 2 are:

T ee
1± =

1

2
√
Y e

1 Y
e±
2

(
Y e

1 + Y e±
2 Y e

1 − Y e±
2

Y e
1 − Y e±

2 Y e
1 + Y e±

2

)
E1,

T eh
1± = ± 1

2
√
Y h

1 Y
h±
2

(
Y h±

2 + Y h
1 Y h±

2 − Y h
1

Y h±
2 − Y h

1 Y h±
2 + Y h

1

)
E1,

T hh
1± =

1

2
√
Y h

1 Y
h±
2

(
Y h±

2 + Y h
1 Y h±

2 − Y h
1

Y h±
2 − Y h

1 Y h±
2 + Y h

1

)
E1,

T he
1± = ∓ 1

2
√
Y e

1 Y
e±
2

(
Y e

1 + Y e±
2 Y e

1 − Y e±
2

Y e
1 − Y e±

2 Y e
1 + Y e±

2

)
E1,

T ee
2± =

1

4Y e∓
2

√
Y e

1 Y
e±
2

×



(
Y e∓

2 + Y e
1

) (
Y e∓

2 + Y e±
2

)
−

(
Y e∓

2 − Y e
1

) (
Y e∓

2 − Y e±
2

)
(
Y e∓

2 − Y e
1

) (
Y e∓

2 + Y e±
2

)
−

(
Y e∓

2 + Y e
1

) (
Y e∓

2 − Y e±
2

)
(
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2 ,

where

E1 = Diag(exp(−ikz1d1) exp(ikz1d1)),
E±

2 = Diag(exp(−iγ±z d2) exp(iγ±z d2)).
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