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Abstract—An expression for the eddy current loss in solid
rectangular cores is obtained using linear electromagnetic field analysis.
Wherefrom text book formula for eddy current loss is derived
highlighting various assumptions involved. To get an insight into the
current interruption phenomena, electromagnetic fields in a composite
rectangular core are analyzed. It is concluded that the reduction in
eddy current loss in a laminated cores is basically due to the insertion
of distributed capacitors in eddy current paths. Presence of these
capacitors increases the impedance of the eddy current path, reducing
eddy currents and eddy current loss.

1. INTRODUCTION

Time-varying magnetic fields are established in the core of a coil
carrying alternating currents. This may result in eddy currents leading
to eddy current loss in the core. Expressions for eddy current loss
commonly found in text books [1–3] are derived using lumped circuit
approach and assumed eddy current paths. Eddy current loss per unit
volume of a thin plate is given by

Pe =
π2

6
B2

mf2T 2σ (1)

where Bm, f , T and σ indicate maximum value of flux density, supply
frequency, plate thickness and conductivity respectively.

Since loss density, Pe, is proportional to the square of plate
thickness T , it appears that eddy current loss can be reduced if
the plate is laminated. However it has been noticed [4] that since
Eq. (1) is based on a simplification of actual conditions, it is unreliable.
Therefore core loss is generally estimated from curves based on
laboratory tests [4].
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It is an experimental fact that the eddy current loss in a core with
finite cross-section, is reduced if the core is laminated [4, 5]. Fitzgerald
et al. [6] observe that magnetic structures are usually built of thin
sheet of laminations of the magnetic material. These laminations are
insulated from each other. This greatly reduces the magnitude of
eddy currents since the layers of insulation “interrupt” the current
path. It is often surmised [7–9] that this “interruption” totally blocks
eddy currents in one lamination from flowing into the other, thereby
altering the shape and size of eddy current paths, thus reducing the
eddy current loss.

Many technical papers have been published on electromagnetic
transients [10–16] resulting eddy currents. In this paper, using linear
electromagnetic field analysis, an expression for the eddy current loss
in solid rectangular core subjected to sinusoidal excitation current is
found. Wherefrom, based on simplification of the actual conditions,
Eq. (1) is developed as a special case,. Also, to glean an insight into the
current interruption phenomena, electromagnetic fields in a composite
rectangular core are analyzed.

The work reported in the companion paper [17] takes cognizance
of the current interruption in laminated cores.

2. HOMOGENEOUS RECTANGULAR CORES

Consider a long magnetic core of width W and thickness T , as shown
in Fig. 1. The exciting coil carrying an alternating current

i = Iejωt (2)

is simulated by a surface current density

Jo = I ·N (3)

where N indicates the number of turns per unit core length.
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Figure 1. Solid rectangular core.
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The current carrying coil will produce a magnetic field Hz. This
time varying field will induce eddy currents in the conducting core.
The magnetic field outside the coil is neglected. Maxwell’s equations
for harmonic fields are:

∇× E = −jωµH (4.1)
∇×H = (σ + jωε)E (4.2)
∇ · E = 0 (4.3)
∇ ·H = 0 (4.4)

Therefore, for constant permeability µ:

∇2H = −γ2H (5)

where

γ =
√
ω2µε− jωµσ ≈ (1 − j)

√
ωµσ

2
(6)

This is a two dimensional problem as fields vary along x- and y-
directions only. Thus

∂2Hz

∂x2
+

∂2Hz

∂y2
= −γ2Hz (7)

The boundary conditions for the magnetic field Hz, in the core are

Hz = Jo, at x = ±W/2, over (−T/2) < y < (T/2) (8.1)

and

Hz = Jo, at y = ±T/2, over (−W/2) < x < (W/2) (8.2)

Therefore, the solution for Eq. (7) can be given as follows:

Hz =
∞∑

p=1

am cos
(
mπ

W
x

)
· cosh (αmy)
cosh (αmT/2)

+
∞∑

q=1

bn cos
(
nπ

T
y

)
· cosh (βnx)
cosh (βnW/2)

(9)
for (−W/2) < x < (W/2) and (−T/2) < y < (T/2)

where, αm =

√(
mπ

W

)2

− γ2 (9.1)

and

βn =

√(
nπ

T

)2

− γ2 (9.2)
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m = 2p− 1

and
n = 2q − 1

while, the Fourier coefficients for rectangular waveforms are:

am = Jo
4
mπ

sin
(
mπ

2

)
(10.1)

and
bn = Jo

4
nπ

sin
(
nπ

2

)
(10.2)

The distribution of eddy current density in the homogeneous core can
be found using

J = σE (11)

where σ indicates the conductivity of the core material. Therefore in
view of Eq. (4.2)

J = δ(∇×H) (12)

where,
δ =

σ

σ + jωε
(12.1)

Thus from Eqs. (9) and (12):

Jx =
∞∑

p=1

(δαm) am cos
(
mπ

W
x

)
· sinh (αmy)
cosh (αmT/2)

−
∞∑

q=1

(
δ
nπ

T

)
bn sin

(
nπ

T
y

)
· cosh (βnx)
cosh (βnW/2)

(13)

Jy =
∞∑

p=1

(
δ
mπ

W

)
am sin

(
mπ

W
x

)
· cosh (αmy)
cosh (αmT/2)

−
∞∑

q=1

(δβn) bn cos
(
nπ

T
y

)
· sinh (βnx)
cosh (βnW/2)

(14)

Next, consider the complex Poynting vector and its components, as
given below,

P =
1
2
E ×H∗ (15)

Px =
1
2σ

JyH
∗
z (15.1)
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and
Py = − 1

2σ
JxH

∗
z (15.2)

Now, eddy current loss per unit core length, Pe is given as the real part
of Pc, the complex power per unit core length. While

Pc = −2

T/2∫
−T/2

Px|x=W/2 dy − 2

W/2∫
−W/2

Py|y=T/2 dx (16)

Using Eqs. (10.1), (10.2), (13) and (14), one gets in view of Eqs. (6),
(9.1), (9.2) and, (12.1):

Pc =
8
π2

JoJ
∗
o jωµ


W ∞∑

p=1

tanh (αmT/2)
m2αm

+T
∞∑

q=1

tanh (βnW/2)
n2βn


 (17)

where, m = 2p− 1and n = 2q − 1.
Therefore the loss density Pe, in the rectangular core is given by:

Pe =
8
π2

JoJ
∗
oωµ



W

∞∑
p=1

αmi sinh (αmrT ) − αmr sin (αmiT )
m2

(
α2

mr + α2
mi

)
[cosh (αmrT ) + cos (αmiT )]

+T
∞∑

q=1

βni sinh (βnrW ) − βnr sin (βniW )
n2

(
β2

nr + β2
ni

)
[cosh (βnrW ) + cos (βniW )]




(18)
where,

αmr =Re [αm]

=
1√
2



√√√√{(

mπ

W

)2

−ω2µε

}2

+ω2µ2σ2+

{(
mπ

W

)2

−ω2µε

}


1
2

(18.1)

αmi=Im [αm]

=
1√
2



√√√√{(

mπ

W

)2

−ω2µε

}2

+ω2µ2σ2−
{(

mπ

W

)2

−ω2µε

}


1
2

(18.2)

βnr =Re [βn]

=
1√
2



√√√√{(

nπ

T

)2

−ω2µε

}2

+ω2µ2σ2+

{(
nπ

T

)2

−ω2µε

}


1
2

(18.3)
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βni=Im [βn]

=
1√
2



√√√√{(

nπ

T

)2

−ω2µε

}2

+ω2µ2σ2−
{(

nπ

T

)2

−ω2µε

}


1
2

(18.4)

The expression for eddy current loss per unit core length given in
Eq. (18) is quite involved. This can, however, be simplified by noting
that the hyperbolic functions are usually much larger than sinusoidal
functions. Thus for large values of (αmr · T ) and (βnr ·W ), on setting
tan hyperbolic functions to unity:

Pe≈
8
π2

JoJ
∗
o jωµ


W ∞∑

p=1

αmi

m2
(
α2

mr + α2
mi

)+T
∞∑

q=1

βni

n2
(
β2

nr + β2
ni

)

 (19)

where, m = 2p− 1 and n = 2q − 1.
A further simplification is possible if both (π/W ) and (π/T ) are

large compared to
√
ωµσ. Therefore for small values of σ, in view of

Eqs. (18.1)–(18.4), Eq. (19) reduces to:

Pe ≈
4
π5

SJoJ
∗
oω

2µ2σ
[
W 4 + T 4

]
(20)

where,

S =
∞∑

p=1

1
m5

(20.1)

where, m = 2p− 1.
The value of S found from tables [18, 19] is

S = 1.00452 ≈ 1 (20.2)

Alternatively for large values of σ, only the first terms in the two fast
converging infinite series involved in Eq. (19) could be retained. Then,
from Eqs. (9.1) and (9.2):

α1 ≈ β1 ≈ jγ (21)

Thus, using Eq. (6)

α1 ≈ β1 ≈ (1 + j)
√

ωµσ

2
(22)



Progress In Electromagnetics Research B, Vol. 7, 2008 123

Therefore from Eq. (19), for large values of σ

Pe ≈
4
√

2
π2

JoJ
∗
o

√
ωµ

σ
[W + T ] (23)

A large conducting plate of thickness T , can be considered as
a special case of the rectangular core with its width, W , tending to
infinity. While, the eddy current loss per unit plate volume, pe, is
given by

pe = (Pe/WT )|w→∞ (24)
Therefore, in view of Eqs. (9.1), (6), (18) and (24), one gets:

pe ≈ JoJ
∗
o

√
ωµ

2σ


 1
T

sinh
(√

ωµσ

2
· T

)
− sin

(√
ωµσ

2
· T

)

cosh
(√

ωµσ

2
T

)
+ cos

(√
ωµσ

2
T

)

 (25)

Therefore, for thick plates

pe ≈ JoJ
∗
o

√
ωµ

2σ

[
1
T

]
(25.1)

while for thin plates,

pe ≈ JoJ
∗
o

σ

24
ω2µ2T 2 (25.2)

This leads to Eq. (1), on substituting 2πf for ω and B2
m for µ2JoJ

∗
o .

3. COMPOSITE MAGNETIC CORES

Let the homogeneous core in Fig. 1 be replaced by a composite core,
made up of two different materials and placed symmetrically inside the
current carrying coil, as shown in Fig. 2.

Three core-regions can be identified, viz, region-1 (or central
region) for (−T1/2) < y < (T1/2); region-2 (or top region) for (T1/2) <
y < (T/2) and region-3 (or bottom region) for (−T/2) < y < (−T1/2).
Each region extends over (−W/2) < x < (W/2). In view of symmetry
it will be sufficient to consider, say, the first two regions. We shall use
suffix-1, to indicate region 1 and suffix-2, to indicate region-2.

Noting that H1z is an even function of x and y; further, it satisfies
Eqs. (7) and (8.1). Let

H1z =
∞∑

p=1

c′m cos
(
mπ

W
x

)
· cosh (α1my)
cosh (α1mT/2)
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Figure 2. Composite magnetic core.

+
∞∑

q=1

c′′n cos
(
nπ

T1
y

)
· cosh (β1nx)
cosh (β1nW/2)

(26)

where, in view of Eq. (7)

α1m =

√(
mπ

W

)2

− γ2
1 (26.1)

β1n =

√(
nπ

T1

)2

− γ2
1 (26.2)

γ1 =
√

(−jωµ1)(σ1 + jωε1) (26.3)

and in view of Eq. (8.1)

c′′n = Jo
4
nπ

· sin
(
nπ

2

)
(26.4)

while c′m indicate a set of arbitrary constants and m = 2p − 1 and
n = 2q − 1.

Now, H2z is an even function of x only. It satisfies Eqs. (7) and
(8.1). Further,

H2z = H1z, at y = T1/2 over (−W/2) < x < (W/2) (27.1)

and

H2z = Jo, at y = T/2 over (−W/2) < x < (W/2) (27.2)

Therefore,

H2z =
∞∑

p=1

cos
(
mπ

W
x

)[
dm

sinhα2m(y−T1/2)
sinh(α2mT2/2)

−c′m
sinhα2m(y−T/2)
sinh(α2mT2/2)

]
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+
∞∑

q=1

c′′n cos
n2π
T2

(
y − T1

2
− T2

4

)
· cosh (β2nx)
cosh (β2nW/2)

(28)

where, in view of Eq. (7),

α2m =

√(
mπ

W

)2

− γ2
2 (28.1)

β2n =

√(
n2π
T2

)2

− γ2
2 (28.2)

γ2 =
√

(−jωµ2) (σ2 + jωε2) (28.3)

and in view of Eq. (27.2)

dm = Jo
4
mπ

sin
(
mπ

2

)
(28.4)

and m = 2p− 1, n = 2q − 1.
To find the arbitrary constant c′m, consider the distribution of

electric field in the two regions. In view of Eqs. (12), (12.1), (26) and
(28), the distribution of eddy current density in region-1 is obtained
as:

J1x =
∞∑

p=1

(δ1α1m) c′m cos
(
mπx

W

)
sinh (α1my)

cosh
(
α1m

T1

2

)

−
∞∑

q=1

(
δ1
nπ

T1

)
c′′n sin

(
nπy

T1

)
cosh (β1nx)

cosh
(
β1n

W

2

) (29.1)

and

J1y =
∞∑

p=1

(
δ1
mπ

W

)
c′m sin

(
mπx

W

)
cosh (α1my)

cosh
(
α1m

T1

2

)

−
∞∑

q=1

(δ1β1n)c′′n cos
(
nπy

T1

)
sinh (β1nx)

cosh
(
β1n

W

2

) (29.2)

where, m = 2p− 1, n = 2q − 1 and

δ1 =
σ1

(σ1 + jωε1)
(29.3)
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and in region-2, as:

J2x =
∞∑

p=1

(δ2α2m) cos
(
mπx

W

)

×


dm

coshα2m

(
y−T1

2

)

sinh
(
α2m

T2

2

) − c′m

coshα2m

(
y−T

2

)

sinh
(
α2m

T2

2

)



−
∞∑

q=1

(
δ2
n2π
T2

)
c′′n sin

n2π
T2

(
y−T1

2
−T2

4

)
cosh (β2nx)

cosh
(
β2n

W

2

) (30.1)

and

J2y =
∞∑

p=1

(
δ2
mπ

W

)
sin

(
mπx

W

)

×


dm

sinhα2m

(
y − T1

2

)

sinh
(
α2m

T2

2

) − c′m

sinhα2m

(
y − T

2

)

sinh
(
α2m

T2

2

)



−
∞∑

q=1

(δ2β2n)c′′n cos
n2π
T2

(
y−T1

2
−T2

4

)
sinh (β2nx)

cosh
(
β2n

W

2

) (30.2)

where, m = 2p− 1, n = 2q − 1 and

δ2 =
σ2

(σ2 + jωε2)
(30.3)

Now, since,

J1x

σ1
=

J2x

σ2
, at y = T1/2, over (−W/2) < x < (W/2) (31)

Eqs. (29.1) and (30.1) give,

∞∑
p=1

(
δ1
σ1

α1m

)
tanh (α1mT1/2) c′m cos

(
mπ

W
x

)

−
∞∑

q=1

(
δ1
σ1

nπ

T1

)
sin (nπ/2) c′′n

cosh (β1nx)
cosh (β1nW/2)
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=
∞∑

p=1

(
δ2
σ2

α2m

)[
dmcosech (α2mT2/2)−c′mcoth(α2mT2/2)

]
cos

(
mπ

W
x

)

+
∞∑

q=1

(
δ2
σ2

n2π
T2

)
sin (nπ/2) c′′n

cosh (β2nx)
cosh (β2nW/2)

over (−W/2) < x < (W/2) (32)

and where, m = 2p− 1, n = 2q − 1.
Considering the Fourier series expansion:

cosh (βnx)
cosh (βnW/2)

=
∞∑

p=1


 4
W

mπ

W
sin

(
mπ

2

)
(
mπ

W

)2

+ β2
n


 cos

(
mπ

W
x

)
(33)

over (−W/2) < x < (W/2) and where, m = 2p− 1.
We get from Eq. (32)[(
δ1
σ1

α1m

)
tanh (α1mT1/2)+

(
δ2
σ2

α2m

)
coth (α2mT2/2)

]
c′m

=
(
δ2
σ2

α2m

)
cosec (α2mT2/2) dm +

4
W

mπ

W
sin

(
mπ

2

)


(
δ1
σ1

1
T1

) ∞∑
q=1

nπ sin
(
nπ

2

)

β2
1n+

(
mπ

W

)2 c′′n+
(
δ2
σ2

2
T2

) ∞∑
q=1

nπ sin
(
nπ

2

)

β2
2n+

(
mπ

W

)2 c′′n


 (34)

where, n = 2q − 1.
Now, in view of Eqs. (26.1), (26.2) and (26.4)

∞∑
q=1

nπ sin
(
nπ

2

)

β2
1n +

(
mπ

W

)2 c
′′
n =

∞∑
n−odd

4Jo (T1/π)2

n2 +
(
T1

π
α1m

)2 (34.1)

where, n = 2q − 1 and in view of Eqs. (28.1), (28.2) and (26.4)

∞∑
q=1

nπ sin
(
nπ

2

)

β2
2n +

(
mπ

W

)2 c
′′
n =

∞∑
q=1

4Jo (T2/2π)2

n2 +
(
T2

2π
α2m

)2 (34.2)
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where, n = 2q − 1.
These infinite series can be summed up [11, 12]. Thus, using the

identity:
∞∑

q=1

1
n2 + θ2

≡ π

4θ
tanh

(
π

2
θ

)
(35)

where, n = 2q−1 and Eqs. (34) and (28.4), the expression for c′m found
as:

c′m =




4
W

Jo sin
(
mπ

2

)
δ1
σ1

{
mπ/W

α1m
tanh (α1mT1/2)

}

+
4
W

Jo sin
(
mπ

2

)
δ2
σ2

{
mπ/W

α2m
tanh (α2mT2/4)

+
α2m

mπ/W
cosech (α2mT2/2)

}




[(
δ1
σ1

α1m

)
tanh (α1mT1/2) +

(
δ2
σ2

α2m

)
coth (α2mT2/2)

] (36)

4. DISCUSSION

Expressions for eddy current loss in the solid rectangular core are given
by eqns. (18), (19), (20) and (23). From each of these equations it can
be concluded that for a given core area and coil current, the loss density
is minimum for a core with square cross section. Incidentally, for each
metre of coil length, both the amount of copper in the coil as well
as the copper loss will also be minimum in the case of a square cross
section.

For the rectangular core, the eddy current density, Jy, is given by
eqn. (14). This component of eddy current density vanishes as the core
width, W , tends to infinity. Therefore, in large plates, eddy currents
flow parallel to the plate surfaces. Thus if the plate is laminated, eddy
currents are not interrupted. However, because of non-zero thickness of
interlaminar insulation, laminating large plates alters the distribution
of eddy currents in the plate volume.

Consider the composite core shown in Fig. 2. It may be seen
from Eqs. (29.2) and (30.2), that the normal component of both, the
displacement- and the conduction-current densities are continuous at
the boundary between the two adjacent regions, provided that the
relaxation times for these regions are identical.

In general, these current densities are discontinuous at the
interface of two adjacent regions. This indicates the existence of a
distribution of time-varying surface charge density on the interface.
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Figure 3. Cross-sectional view of composite cores with perfect
insulation. (a) Small insulation thickness, (b) Large insulation
thickness.

In view of eqns. (29.1), (29.2) and (29.3), there will be no eddy
currents in region-1 when the conductivity of this region, s1, is zero.
Eddy currents in region-2 and -3, flowing in open paths deposit charges
on the two interfaces between conducting and non-conducting regions,
vide Fig. 3. The region-1 provides a distributed capacitance in the
eddy current paths. For a non-zero conductivity of region-1, σ1, eddy
currents flow through leaky capacitance. It is therefore, concluded that
even with perfect interlaminar insulation, eddy currents in a lamination
are not totally restrained from flowing into another.

5. CONCLUSION

The presence of capacitance in the eddy current path increases the
impedance of the path. Thus reducing eddy currents and eddy current
loss for a given core flux.

An application of the theory discussed here, is presented in the
companion paper [[17]. Lastly, it may be pointed out that the
treatment given in this paper can be readily adapted for cores made
of left-handed materials with simultaneously negative permittivity and
permeability [20–22].
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