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Abstract—A new canonical scattering problem consisting of the
propagation of the dominant TEM mode at the finite-length impedance
discontinuity in the outer conductor of a coaxial waveguide is solved.
The contributions from the successive impedance discontinuities are
accounted for through the solution of a modified Wiener-Hopf equation.
Some graphical results displaying the reflection and transmission
characteristic are presented.

1. INTRODUCTION

The discontinuities in coaxial waveguides are a very important topic
in microwave theory and have been subjected to numerous past
investigations. Most simple types of discontinuities such as steps
in inner or outer conductors (see e.g., [1–4]) and wall impedance
discontinuities [5–7] were analyzed and characterized. For example,
in [5] and [6] the scattering of a shielded surface wave in a coaxial
waveguide by a wall impedance discontinuity in the inner cylinder has
been analyzed. These classical results are related mostly with isolated
discontinuities, and fail when there are several of them close enough to
interfere with each other.

In the present work we consider a new canonical scattering
problem consisting of the propagation of the dominant TEM mode at
the finite-length impedance discontinuity in the outer conductor of a
coaxial waveguide (see Figure 1). The contributions from the successive
impedance discontinuities are accounted for through the solution of a
modified Wiener-Hopf equation. Notice that the present problem may
also be thought a first order approximation for coaxial waveguides
loaded with a shallow groove in the outer conductor.
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Figure 1. Coaxial cable with a finite length impedance loading in the
outer conductor.

2. ANALYSIS

Consider a coaxial waveguide whose inner cylinder is of radius ρ = a,
while the radius of the outer cylinder is ρ = b with (ρ, φ, z) being
the usual cylindrical coordinates. The part 0 < z < l of the outer
conductor is characterized by constant surface impedance denoted by
Z = ηZ0 with Z0 being the characteristic impedance of the free space.

Let the incident TEM mode with angular frequency ω and
propagating in the positive z direction be given by

ui = exp(ikz) (1a)

where an exp(−iωt) time factor is assumed and suppressed. k is the
propagation constant which is assumed to have a small imaginary part
corresponding of medium with damping. The lossless case can be
obtained by letting Imk → 0 at the end of the analysis.

The total field uT (ρ, z) can be written as

uT = ui + u1(ρ, z), ρ ∈ (a, b), z ∈ (−∞,∞) (1b)

u1(ρ, z) appearing in (1b) is unknown function which satisfies the
Helmholtz equation and the following boundary conditions and
continuity relations

∂

∂ρ
[ui + u1(ρ, z)]

∣∣∣∣
ρ=b

= 0 z ∈ (−∞, 0) ∪ (l,∞) (2a)
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∂

∂ρ
[ui + u1(ρ, z)]

∣∣∣∣
ρ=a

= 0 z ∈ (−∞,∞) (2b)

[η − 1
ik

∂

∂ρ
]
(
ui + u1(ρ, z)

)∣∣∣∣
ρ=b

= 0 z ∈ (0, l) (2c)

In the region, ρ ∈ (a, b) where the field u1(ρ, z) satisfies the
Helmholtz equation in the range z ∈ (−∞,∞).(

1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+
∂2

∂z2
+ k2

)
u1(ρ, z) = 0 z ∈ (−∞,∞) (3a)

Its Fourier transform is:(
1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+K2(α)

)
F (ρ, α) = 0 (3b)

with

F (ρ, α) =

∞∫
−∞

u1(ρ, α)eiαzdz. (3c)

Here, K(α) denotes the square-root function

K(α) =
√
k2 − α2, (4)

which is defined in the complex α-plane, cut along α = k to α = k+i∞
and α = −k to α = −k − i∞, such that K(0) = k.

F (ρ, α) which is the Fourier transform of u1(ρ, z) can also be
written as

F (ρ, α) = F−(ρ, α) + F1(ρ, α) + eiαlF+(ρ, α) (5a)

with,

F−(ρ, α) =

0∫
−∞

u1(ρ, α)eiαzdz, (5b)

F1(ρ, α) =

l∫
0

u1(ρ, α)eiαzdz, (5c)

F+(ρ, α) =

∞∫
l

u1(ρ, α)eiα(z−l)dz (5d)
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Owing to the analytical properties of Fourier integrals, F+(ρ, α) and
F−(ρ, α) are yet unknown and regular functions of α in the half-planes
Im(α) > Im(−k) and Im(α) < Im(k), respectively, while F1(ρ, α)
defined by (5c) is an entire function.

The solution of the homogeneous differential equation in (3b) is:

F (ρ, α) = A(α)J0(Kρ) +B(α)Y0(Kρ). (6)

with Jn and Yn being the usual Bessel and Neumann functions of
order n. The spectral coefficients A(α) and B(α) are to be determined
through the boundary conditions in (2a) and (2b). Hence, (6) can be
cast into the following form:

F−(ρ, α) + F1(ρ, α) + eiαlF+(ρ, α) = −T2(a, ρ, α)
T1(a, b, α)

Ḟ1(b, α) (7a)

where the (·) denotes the derivative with respect to ρ i.e., Ḟ1(b, α) =
∂
∂ρF1 (ρ, α)

∣∣∣
ρ=b

. T1(a, b, α) and T2(a, b, α) appearing in (7a) are entire

functions of α, defined by

T1(a, b, α) = K2 (α) [J1(Ka)Y1(Kb) − J1(Kb)Y1(Ka)] (7b)
T2(a, b, α) = K (α) [J1(Ka)Y0(Kb) − J0(Kb)Y1(Ka)]. (7c)

By using the boundary conditions in (2c) and substituting ρ = b
in the Equation (7a) one obtains the following modified Wiener-Hopf
equation valid in the strip Im(−k) < Im(α) < Im(k) :

ikηF−(b, α)+V (α)Ḟ1(b, α)+ikηeiαlF+(b, α) = kη

[
ei(k+α)l−1
k+α

]
(8a)

with

V (α) =
χ(α)

T1(a, b, α)
(8b)

and

χ(α) = T1(a, b, α) + ikηT2(a, b, α) (8c)

The modified Wiener-Hopf equation in (8a) can be rewritten as

ikηR∗
−(α) + V (α)Ḟ1(b, α) + ikηeiαlS+(α) = 0 (9a)

with

R∗
−(α) = F−(b, α) − i

k + α
(9b)
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and

S+(α) = F+(b, α) +
ieikl

k + α
(9c)

Now multiplying (9a) first by 1/V−(α) and then by e−iαl/V+(α) we
obtain the following equations, after applying the well known Wiener-
Hopf decomposition procedure and the Liouville theorem:

R∗
−(α)
V−(α)

=
1

2πi

∫
L−

S+(τ)
V−(τ)

eiτ l

(τ − α)
dτ − i

k + α
1

V+(k)
(10a)

and

S+(α)
V+(α)

= − 1
2πi

∫
L+

R∗
−(τ)
V+(τ)

e−iτ l

(τ − α)
dτ (10b)

The evaluation of the above integrals by using Jordan’s lemma and the
residue theorem yields

R∗
−(α)
V−(α)

=
∞∑

m=0

V+(βm)eiβmlS+(βm)
V ′(βm)(βm − α)

− i

k + α
1

V+(k)
(11a)

S+(α)
V+(α)

=
∞∑

m=0

V+(βm)eiβmlR∗
−(−βm)

V ′(βm)(βm + α)
(11b)

where βn are the simple zeros of χ (α), lying in the upper half-plane:

χ (±βn) = 0, Imβn > Imk, (11c)

and the dash denotes the derivative with respect to α, i.e., V ′(βn) =
∂

∂αV (α)
∣∣
α=βn

.
Substituting (11a) and (11b) into (9a), the formal solution of the

modified Wiener-Hopf equation is obtained in terms of the yet unknown
coefficients S+(βn) and R∗

−(−βn):

Ḟ1(b, α) =−ikη 1
V+(α)

∞∑
m=0

V+(βm)eiβmlS+(βm)
V ′(βm)(βm−α)

+ikη
1

V+(α)
i

k+α
1

V+(k)

−ikη eiαl

V−(α)

∞∑
m=0

V+(βm)eiβmlR∗
−(−βm)

V ′(βm)(βm + α)
. (12)
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Figure 2. Amplitude of the transmitted field versus the truncation
number N .

In order to determine these unknown coefficients one has to replace
α = −αr in (11a) and α = βr in (11b). This gives

R∗
−(−αr)
V−(−αr)

=
∞∑

m=0

V+(βm)eiβmlS+(βm)
V ′(βm)(βm + αr)

− i

(k − αr)V+(k)
(13a)

S+(βr)
V+(βr)

=
∞∑

m=0

V+(βm)eiβmlR∗
−(−βm)

V ′(βm)(βm + βr)
(13b)

This infinite system of algebraic equations is solved numerically. All
the numerical results were derived by truncating the infinite series and
the infinite systems of linear algebraic equations after the firstN terms.
Figure 2 shows the variation of the modulus of the transmitted field
against the truncation number N . It is seen that the amplitude of the
diffracted field becomes insensitive to the increase of the truncation
number after N = 3.

3. THE SCATTERED FIELD

The transmitted field in the region ρ ∈ (a, b) and z > l is obtained
by taking the inverse Fourier Transform of F+(ρ, α). By using (7a) we
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write:

u1(ρ, α) = − 1
2π

∫ ∞

−∞

[
T2(a, ρ, α)
T1(a, b, α)

Ḟ1(b, α)+F−(ρ, α)+F1(ρ, α)
]
e−iαzdα.

(14a)

The application of the residue theorem yields for z > l,

u1(ρ, α) = i
∞∑

m=0

res

(
T2(a, ρ, α)e−iαz

T1(a, b, α)
Ḟ1(b, α)

)∣∣∣∣
α=−ξm

. (14b)

The transmission coefficient T of the fundamental mode is defined as
the complex coefficient multiplying the travelling wave term exp (ikz)
and is computed from the contribution of the first pole at α = −k.
The result is :

T =
ib

k

Ḟ1(b,−k)
(b2 − a2)

(15)

Similarly, the expression of the reflected field in the region ρ ∈
(a, b) and z < 0 can be obtained by taking the inverse Fourier transform
of F−(ρ, α). By using again (7a) and evaluating the resulting integral
through the residue theorem we obtain

u1(ρ, α) = −i
∞∑

m=0

res

(
T2(a, ρ, α)e−iαz

T1(a, b, α)
Ḟ1(b, α)

)∣∣∣∣
α=ξm

. (16)

From the contribution of the first root occurring at α = k we can define
the reflection coefficient of the dominant mode as:

R =
ib

k

Ḟ1(b, k)
(b2 − a2)

. (17)

4. COMPUTATIONAL RESULTS

In this section some computational results displaying the effect of
various parameters such as the radii of the inner and outer cylinders,
the frequency, the surface impedance and its length on the propagation
of the fundamental mode are presented. In what follows the surface
impedance is assumed to be purely capacitive.

Figure 3 displays the amplitude of the reflected and transmitted
fields against the radius of the inner cylinder. It is seen that the
transmitted field amplitude decreases when the spacing between the
inner and outer cylinders diminishes. When the surface impedance is
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capacitive, the curves related to the reflected and transmitted fields
are shifted to the left for increasing values of |η|. Hence, by assigning
higher capacitive values to the surface impedance one can reduce the
transmitted energy even for bigger spacing between the cylinders.

Figure 3. Amplitude of the reflection and transmission coefficients
versus the radius of the inner cylinder a.

Figure 4 shows the variation of the reflection coefficient amplitude
with respect to the wave number. By increasing the purely capacitive
impedance values we can increase the maxima of reflected field
amplitude and the nulls are shifted slightly to the right.

From Figure 5 it is seen that for increasing values of the purely
capacitive impedance the transmitted field is reduced. For bigger
outer cylinder radius the transmitted field amplitude curves become
“sharper” and a more rapid decrease in the transmitted energy is
observed.

Figure 6(a) and Figure 6(b) depict the variation of the reflection
coefficient with the width of the impedance zone for different values
of the outer cylinder radius b and for different impedance values,
respectively. It is seen that below a certain value of the outer cylinder
radius (Figure 6(a)), and above a certain purely capacitive impedance
value (Figure 6(b)) the incident energy is almost totally reflected and
consequently the transmitted field is notably attenuated.
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Figure 4. Amplitude of the reflected field versus the wavenumber
(frequency).

Figure 5. Reflected and transmitted field versus the impedance
loading.
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(a)

(b)

Figure 6. (a) Reflected field amplitudes versus the impedance length
l, for different values of b. (b) Reflected field amplitudes versus the
impedance length l, for different values of η.
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5. CONCLUDING REMARKS

A new scattering problem consisting of the propagation of the
dominant TEM mode at the finite-length impedance discontinuity
in the outer conductor of a coaxial waveguide is considered. The
contributions from the successive impedance discontinuities are
accounted for through the solution of a modified Wiener-Hopf equation.
The influence of various parameters such as the radius of the inner
cylinder, the frequency, the impedance values and the length of
the impedance zone on the outer cylinder on the reflection and
transmission characteristics are displayed graphically.
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