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Abstract—The Sub-Entire-Domain (SED) basis function method
has been applied to solve electromagnetic problems of irrectangular
periodic structures with finite sizes efficiently. Three typical
irrectangular periodic structures such as parallelogrammic periodic
structures, triangular periodic structures, and trapeziform periodic
structures are investigated using the SED basis function method. Just
as the SED basis functions for rectangular periodic structures, the new
SED basis functions for irrectangular periodic structures are defined
on the support of each single cell, and the corresponding dummy cells
are introduced to obtain the new SED basis functions. Using the
proposed SED basis function method, the original large-scale problem
is decomposed into two small-size problems. One is the determination
of new SED basis functions, and the other is to solve the whole problem
using MoM and SED basis functions. Numerical examples are given
to prove the validity and efficiency of the new method.

1. INTRODUCTION

Fast and accurate analysis of large-scale periodic structures with finite
sizes becomes more and more important due to their large variety
of applications [1–11]. Among the full-wave analysis methods, the
fast algorithm based on MoM [12], such as the fast multipole method
(FMM) and the multilevel fast multipole algorithm (MLFMA), can
solve very large problems [13–15]. By the use of MLFMA, the
complexity of the matrix-vector multiplication can be reduced from
O(N2) to CN log N . When the finite-sized periodic structure is very
large, however, MLFMA is still expensive due to the large constant C.
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Recently, some physically-based entire-domain (ED) and sub-
entire-domain (SED) basis functions have been developed to solve the
challenging problem [16–23]. For example, the Macro basis function
(MBF) [16], synthetic functions (SFs) [17], characteristic basis function
(CBF) [18–20], and sub-entire-domain (SED) basis functions [21–23]
have been proposed. Among those physically-based basis functions,
the SED basis functions have been proved to be efficient and can
be implemented more easily [21–23]. But in the early records [21–
23], problems solved by SED functions are all confined to rectangular
periodic structures. In fact, the shape of the periodic structures is not
always rectangular.

In order to handle the irrectangular periodic structures, a
new SED basis function is proposed, which can analyze large-scale
irrectangular periodic structures with finite sizes efficiently. The new
SED basis function for irrectangular periodic structures is referred as
irrectangular SED basis function (ISED). In this paper, three typical
irrectangular periodic structures, parallelogrammic periodic structures,
trapeziform periodic structures, and triangular periodic structures, are
presented for the implementation of the ISED basis function method.
Similar to the SED basis function, the ISED basis function are also
defined on each single cell of the periodic structure, and the mainly
mutual coupling effects are considered in each single cell by using
dummy cells. According to the relative position, three kinds of ISED
basis functions are involved, which are defined on supports of interior
cells, edge cells and corner cells. Further study has shown that all
kinds of ISED basis functions can be obtained by solving a single small
problem. Numerical results are given to test the accuracy and efficiency
of the proposed method.

2. BRIEF INTRODUCTION OF ISED BASIS FUNCTION
METHOD

The implementation of the SED basis function method has been
introduced in details in [21–23]. In this section, we give a brief
introduction of the ISED basis function method, which is similar to
the SED basis function method. Consider a 2D irrectangular periodic
structure consisting of NC PEC cells, in which each cell has M
conventional RWG basis functions. The ISED basis function is defined
on the support of each single cell of the periodic structure. Considering
the relative positions of all element cells, K types of ISED basis
functions are required. As introduced later in Section 3, K is equal to
nine for the parallelogrammic periodic structure, twelve for trapeziform
periodic structure, and ten for triangular periodic structure. The k-th
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type ISED basis function at the n-th cell is defined as

hk
n(r) =

M∑
m=1

Ik
nmfm(r), (1)

where fm(r) is the conventional RWG basis function as defined in [12],
and Ik

nm is the corresponding coefficient. As a consequence, the current
distribution in the whole structure can be expressed as

J(r) =
NC∑
n=1

αnhk
n(r). (2)

When illuminated by electromagnetic plane waves, the electric field
integral equation (EFIE) for the surface electric current J(r) in the
periodic structure can be written as

t̂ · L̄E · J(r′) = −t̂ · Einc, (3)

where t̂ is a unit tangential vector on surface S of the periodic
structure. The operator L̄E is defined as

L̄E · J(r′) = iωµ0

∫
S

dr′Ḡ(r, r′) · J(r′), (4)

in which Ḡ(r, r′) as introduced in [22] is the electric field dyadic
Green’s function in free space. After using the Galerkin’s procedure
based on the ISED basis function instead of conventional RWG basis
functions, the EFIE (3) is converted into a matrix equation

Z̄ · I = V, (5)

where I = (I1, I2, · · · , INC
)t is the expansion-coefficient vector, the

elements of vector, and V is given by

Vm = −
∫

Sm

drhm(r) · Einc(r). (6)

The impedance matrix Z̄ is an N × N matrix, in which the element
Zmn can be expressed as [23]

Zmn =
〈
hk∗

m (r), L̄E · hl
n(r′)

〉
, (k, l = 1, 2, · · · , K), (7)

in which m, n = 1, 2, · · · , NC , 〈 , 〉 denotes an inner product, and
∗ represents a complex conjugate. Obviously, the dimension of the
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impedance matrix in the conventional MoM can be extremely reduced
from NCM × NCM to NC × NC using the ISED basis function,
which can make a great reduction of the memory requirement and
computational complexity. The key step in the above ISED basis
function method is how to define the ISED basis functions accurately
and how to determine the ISED basis functions efficiently.

3. DEFINITION AND DETERMINATION OF ISED
BASIS FUNCTIONS

The definition and determination of ISED basis functions are similar
to those of SED basis functions for rectangular periodic structures [21].
Here the parallelogrammic, trapeziform, and triangular periodic
structures are consedered. For each of the three irrectangular periodic
structures, the unit cells are classified as interior cell, edge cell, and
corner cell, according to their relative positions, as shown in Figs. 1–
3. In the parallelogrammic periodic structure, edge cells include the
left-edge cell (LeEC), the right-edge cell (REC), the upper edge cell
(UEC) and the lower edge cell (LoEC), and corner cells include the
left-upper corner cell (LUCC), the right-upper corner cell (RUCC), the
left-lower corner cell (LLCC), and the right-lower corner cell (RLCC),
as illustrated in Fig. 1. Hence, for parallelogrammic periodic structure,

Figure 1. Supports of different types of ISED basis functions in the
parallelogrammic periodic structure.
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nine kinds of ISED basis functions are required, which are defined on
the nine different types of cells.

Similarly, for the trapeziform periodic structure, twelve kinds of
ISED basis functions are involved, which are defined on the supports
of the upper-edge cell (UEC), the left edge cell (LEC), the right edge
cell (REC), the bottom-left edge cell (BLEC), the bottom-middle edge
cell (BMEC), and bottom-right edge cell (BLEC), the left-upper corner
cell (LUCC), the right-upper corner cell (RUCC), the left-upper corner
cell (LUCC), the right-lower corner cell (RLCC), the left interior cell
(LIC), and the right interior cell (RIC), as shown in Fig. 2.

Figure 2. Supports of different types of ISED basis functions in the
trapeziform periodic structure.

For the triangular periodic structures, ten kinds of ISED basis
functions are required, which are defined on the supports of the left-
upper edge cell (LUEC), the left-lower edge cell (LLEC), the right-
upper edge cell (RUEC), the right-lower edge cell (RLEC), the bottom-
left edge cell (BLEC), the bottom-right edge cell (BREC), the top
coner cell (TCC), the bottom-left corner cell (BLCC), the bottom-
right corner cell (BRCC), and the interior cell (IC), as shown in Fig. 3.

In order to obtain the ISED basis functions, dummy cells which are
in fact the nearby cells are introduced to capture the most important
mutual coupling [21]. For parallelogrammic periodic structures, the
corner ISED basis function require three dummy cells, the edge ISED
basis function requires five dummy cells and the interior ISED basis
function requires eight dummy cells, as illustrated in Figs. 4(a),
4(b) and 4(c), respectively. Figs. 5(a)–(c) demonstrate that for the
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Figure 3. Supports of different types of ISED basis functions in the
triangular periodic structure.

trapeziform periodic structure, the corner edge, and interior ISED basis
functions requires three, five, and six dummy cells, respectively. For
the triangular periodic structures, the corner edge, and interior ISED
basis functions requires two, four, and six dummy cells, respectively,
as shown in Figs. 6(a)–(c).

Therefore, for parallelogrammic periodic structure, only nine small
problems need to be involved to obtain all kinds of ISED basis functions
no matter how large the number of total elements N is. For the
trapeziform and triangular periodic structures, the number of small
problems is twelve and ten, respectively. In the actual implementation,
all the ISED basis functions can be obtained by solving a single small-
size problem. As shown in Fig. 7, the single small-size problem
resulting from parallelogrammic periodic structures includes 9 cells
and contains 9M unknowns. For the trapeziform periodic structures
and triangular periodic structures, single small problems with 12M
and 10M unknowns are required to be solved for, as illustrated in
Figs. 8 and 9, respectively. After solving the small problems, the
current distributions on different cells are used as different ISED basis
functions. Furthermore, the MoM procedure using the ISED basis
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(a) (b)

(c)

Figure 4. Dummy cells for different types of ISED basis functions in
the parallelogrammic periodic structure.

functions can be performed to solve the whole problem, which has
been introduced in [16].

4. NUMERICAL RESULTS

In order to verify the accuracy of the ISED basis function emthod
for the irrectangular periodic structure, three typical irrectangular
periodic structures are considered, which are composed by the same
unit cell of a λ × λ PEC square patch. We first consider a
parallelogrammic periodic structure consisting of NC = 6×6 = 36 cells.
As shown in Fig. 10, one of the bottom angle of the parallelogram, α,
is equal to 45 degrees, and the gap between two unit cells is 1λ. In
the conventional MoM based on the RWG basis function, the number
of unknowns in each patch is M = 65. Hence, the total number of
unknowns is N = NC × M = 2340 in the conventional MoM. Using
the ISED basis function method, however, only two smaller problems
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(a) (b)

(c)

Figure 5. Dummy cells for different types of ISED basis functions in
the trapeziform periodic structure.

are involved, where the first problem contains 9M = 585 unknowns
to solve the ISED basis functions, and the second problem contains 36
unknowns to obtain the current distributions on all patches. The radar
cross sections (RCS) computed by the conventional MoM and the ISED
basis function method under the normal illumination of plane waves
are illustrated in Fig. 11, and RCSs computed by such two methods
under the oblique incidence of plane waves at θi = 45 degrees are shown
in Fig. 12. Obviously, the two methods give nearly the same results
under both normal and oblique incidences. However, the CPU time
has been reduced from 150 seconds to 34 seconds in solving the small
problem in a personal computer.

Next we consider the trapeziform periodic structure. As
illustrated in Fig. 13, one of the bottom angle of the parallelogram,
α, is equal to 45 degree, and the gap between two unit cells is 1λ.
The number of the cells along the x direction in the lower edge is
Nxl = 8, the number of the cells along the x direction in the upper
edge is Nxu = 4, and the number of the cells along y direction is Ny = 5.
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(a) (b)

(c)

Figure 6. Dummy cells for different types of ISED basis functions in
the triangular periodic structure.

Figure 7. Small problem
containing all kinds of ISED
basis functions in the par-
allelogrammic periodic struc-
ture.

Figure 8. Small problem containing
all kinds of ISED basis functions in the
trapeziform periodic structure.
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Hence the total number of cells is NC = (4+8)×5/2 = 30, and the total
number of unknowns in the conventional MoM is N = NC×M = 1950.
The RCSs computed by the conventional MoM and the ISED basis
function method under the normal and oblique incidences of plane
waves at θi = 45 degrees are shown in Figs. 14 and 15, respectively.

Figure 9. Small problem con-
taining all kinds of ISED basis
functions in the triangular pe-
riodic structure.

Figure 10. Parallelogrammic peri-
odic structure where the square PEC
patch element has a size of λ × λ,
the gap between two cells is equal 1λ,
and α = 45◦, Nx = 6, Ny = 6, NC =
Nx × Ny = 36.
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Figure 11. Radar cross-sections
of the parallelogrammic periodic
structure shown in Fig. 10 under
the normal incidence of plane
waves.
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Figure 12. Radar cross-sections
of the parallelogrammic periodic
structure shown in Fig. 10 under
the oblique incidence of plane
waves (θi = 45◦).
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We clearly see that the numerical results from MoM and ISED method
have a good agreement. However, the CPU time has been reduced from
92 seconds to 24.3 seconds.

Figure 13. Trapeziform periodic structure where the square PEC
patch element has a size of λ×λ, the gap between two cells is equal 1λ,
and α = 60◦, Nxl = 8, Nxu = 4, Ny = 5, NC = (Nxl + Nxu)Ny/2 = 30.
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Figure 14. Radar cross-sections
of the trapeziform periodic struc-
ture shown in Fig. 13 under the
normal incidence of plane waves.
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Figure 15. Radar cross-sections
of the trapeziform periodic struc-
ture shown in Fig. 13 under the
oblique incidence of plane waves
(θi = 45◦).

At last we consider a trapeziform periodic structure consisting of
NC = (6 + 1)× 6/2 = 21 cells. As shown in Fig. 16, one of the bottom
angle of the triangular, α, is equal to 60 degrees, and the gap between
two unit cells is 0.3λ. In the conventional MoM based on the RWG
basis function, the number of unknowns is N = NC×M = 1365. Using
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ISED basis function method, however, only two smaller problems are
involved, where the first problem contains 10M = 650 unknowns to
solve the ISED basis functions, and the second problem contains 21
unknowns to obtain the current distributions on all patches. The RCSs
computed by the conventional MoM and ISED basis function method
under the normal and oblique incidences of plane waves are shown in
Figs. 17 and 18. The CPU time has been reduced from 93 seconds

Figure 16. Triangular periodic structure where the square PEC patch
element has a size of λ× λ, the gap between two cells is equal 1λ, and
α = 60◦, Nx = 6, Ny = 6, NC = (Nx + 1)Ny/2 = 21.
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Figure 17. Radar cross-sections
of the triangular periodic struc-
ture shown in Fig. 16 under the
normal incidence of plane waves.
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Figure 18. Radar cross-sections
of the triangular periodic struc-
ture shown in Fig. 16 under the
oblique incidence of plane waves
(θi = 45◦).
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to 12.2 seconds. Hence the accuracy and efficiency of the ISED basis
function method have been validated.

5. CONCLUSIONS

In this paper, we have applied the ISED basis function method to
analyze irrectangular periodic structures with finite sizes. Using the
ISED basis function, the original problem can be divided into two
small problems, which makes a great reduction of unknown numbers.
Numerical examples have verified the validity and efficiency. If we
combine the ISED basis functions with fast algorithms such as FMM
and the conjugate-gradient fast Fourier transform, both computational
complexity and memory requirement can be further reduced.
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