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Abstract—An approach for the microwave nonlinear device modeling
technique based on a combination of the conventional equivalent circuit
model and support vector machine (SVM) regression is presented in
this paper. The intrinsic nonlinear circuit elements are represented
by Taylor series expansions, coefficients of which are predicted by its
support vector regression (SVR) model. Example of a SiC MESFET
nonlinear model is demonstrated, and good results is achieved.

1. INTRODUCTION

SiC MESFETs are popular devices for power amplifier design in high-
power and high-temperature applications because of SiC’s superior
properties, such as high breakdown voltage, high thermal conductivity,
and high saturated electron velocity [1]. The development of SiC
devices in wireless applications provides the impetus of researching in
the area of nonlinear modeling, which is useful for device performance
analysis in designing microwave circuits and characterizing the device
technological process.

In general, models for microwave nonlinear devices belong to two
categories: physical and empirical. The empirical models, including
closed-form equation models (equivalent circuit models) [15, 16] and
look-up table models, are by far the most commonly used in nonlinear
CAD [2]. Recently, The artificial neural network (ANN) based
modeling methods have showed superiorities, while physical-based
models are computational cost and lack of accuracy, closed-form
models are in defect of robust for different type devices, and look-up
table models require a large amount of data [3]. However, although
many advantages owned, ANN modeling methods have drawbacks
as well. For example, it is difficult to determine the proper ANN
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configurations, and on-convex quadric minimization may result in
multiple minima [4].

A new microwave active device nonlinear modeling technique
based on the combination of the conventional closed-form equation
models and support vector machine (SVM) is proposed. Different
from ANN, the SVM is based on structural risk minimization (SRM)
principle and resolving convex quadratic program (QP), which shows
more powerful generalization ability than ANN [5, 6]. In this
paper, example of SiC MESFET nonlinear modeling utilizing the
proposed support vector regression (SVR) based modeling technique
are demonstrated. The main frequency independent intrinsic nonlinear
elements (source-drain current Ids, nonlinear capacitances Cgs and
Cgd) are, firstly, modeled by SVR. By using Taylor series expansion
of intrinsic nonlinear elements, their coefficients are predicted by
related SVR models. With this method, the nonlinear characteristic
of SiC MESFET can than be good described in numerical way
while preserving the original physical meaning of closed-form equation
models.

The organization of this paper is as follows: Section 2 summarizes
the theory of support vector regression. Section 3 describes the
structure of SiC MESFET used in this paper and the proposed SVR-
based nonlinear modeling technique. Section 4 shows the results by
using proposed method applied to SiC MESFET.

2. SUPPORT VECTOR REGRESSION

SVMs are state-of-the-art tools for linear and nonlinear input-output
knowledge discovery [7, 8]. Given a training dataset (yi, xi), i = 1,
2, . . . , n, xi ∈ Rm, n is the size of training data. SVR tries to find
the mapping function f(x) between the input variable and the desired
output variable. Traditional regression method find the regression
function f(x) by the rule of empirical risk minimization principle, i.e.,
minimize:

Remp[f ] =
1
n

n∑
i=1

L(f(xi) − yi) (1)

with L(x, y, f) = |y − f |ε = max {0, |y − f | − ε}. L(f(xi) − yi)
represents the error function, ε is the insensitive loss function. yi is
real value, f(xi) is the prediction value.

However, the actual risk minimization can not be realized only
with the empirical risk minimization. A typical example is the over-
fitting of ANN. Support vector regression method based on SRM
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principle, which minimize the following cost function:

1
2
‖w‖2 + C ·Remp[f ] (2)

where 1
2‖w‖2 is the term characterizing the modeling complexity. C

is a regularization which determines the trade off between model
complexity and empirical loss function. After some reformulations and
introduction of the slack variables: ξi, ξ∗i . Equation (2) is transformed
into primal problem:

minimize:

1
2
‖w‖2 + C · 1

n

∑
(ξi + ξ∗i ) (3)

subject to: 


(w · xi) + b− yi ≤ ε+ ξi
yi − (w · xi) + b ≤ ε+ ξ∗i
ξi > 0, ξ∗i > 0, ε > 0.

According to [5], an improved SVR has been presented,
Equation (3) can be changes to minimize:

minφ(w, b) =
1
2
‖w‖2 + C

(
νε+ 1/l

l∑
i=1

Li

)

s.t. yi =< w, xi > +b ≥ 1 − Li, Li ≥ 0, ∀i (4)

where C (penalty parameter) is a regularization which determines the
trade off between model complexity and empirical loss function, ε is
tolerance of termination criterion, and v (0 < v < 1) is a constant.

Introducing Lagrange multipliers to solve this problem of convex
optimization and making some substitutions, we arrive to the Wolfe
dual of the optimization problem:

maximize:

W (α, α∗) =
∑

(αi − α∗
i )yi −

1
2

n∑
i,j=1

(α∗
i − αi)(α∗

j − αj)K(xi, xj) (5)
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subject to: 


n∑
i=1

(α∗
i − αi) = 0

αi ∈
[
0,
C

n

]

α∗
i ∈

[
0,
C

n

]
n∑

i=1

(α∗
i − αi) ≤ C · ν

In order to expand the method to nonlinear decision functions, the
input space projects to another higher-dimensional dot product space
F , called feature space, via a nonlinear map ϕ: Rm → F d(d  m).
In this new space the optimal hyperplane is derived. Nevertheless,
by using kernel functions which satisfy the Mercer’ theorem, it is
possible to make all the necessary operations in the input space by
using< ϕ(xi), ϕ(xj) >= K(xi, xj). The regression estimation function
is formulated in terms of these kernels:

f(x) =
l∑

i=1

(αi − α∗
i )K(xi, x) + b (6)

where ai and a∗i are Lagrange multiples, K(xi, x) is the kernel function.
K is a symmetric positive definite function, which satisfies Mercer’s
condition.

It is easy to demonstrate that < ϕ′(x), ϕ(y) > is given the
derivative of with K(x, y) respect to x [9]. Accordingly, the nth-order
derivatives of f(x) is

g(n)(x) =
l∑

i=1

(αi − α∗
i )K

(n)(xi, x) (7)

This developed SVR model can then be used to predict outputs for
given inputs that were not included in the training data, and the nth-
order derivatives of outputs.

3. NONLINEAR MODELING OF SIC MESFETS BASED
ON SVR TECHNIQUES

An 1µm × 300µm 4H-SiC MESFET is modeled in this paper. This
device consists of a 0.15-µm cap layer (Nd = 5 × 1015 cm−3), 0.35-
µm channel layer (Nd = 1.7 × 1017 cm−3), and 2-µm buffer layer
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(Nd = 1.5 × 1015 cm−3) on a semi-insulated 4H-SiC substrate. The
buffer layer can prevent damage and deep level impurities in the
substrate from the active layer. Due to the lack of p-doping source
at the moment, we use an unintentionally weak n-type layer as the
buffer in order to minimize the influence of substrate. The caculated
cut-off frequency (fT ) and maximum frequency of oscillation (fmax)
are 6.7 GHz and 25 GHz, respctively.

The basic topology of the empirical model for SiC MESFETs is
shown in Fig. 1. The Angelov non-linear gate capacitances model
(Cgs, Cgd) and a modified drain-source current (Ids) equation based on
Angelov model is used, and detail information about empirical model
are showed in [2]. The model has been implemented into ADS as
a user-defined model, and its validity has been proved in predicting
electrical performance of SiC MESFETs. The simulated S-parameters
of empirical model at different bias will construct the data needed for
a SVR model. The simulation has been accomplished by ADS with
directly 50 Ω input-output terms.

Figure 1. Equivalent circuit of the empirical model for SiC MESFETs.

Only there main intrinsic nonlinear element (Cgs, Cgd, and Ids)
will be considered in our method for simple demonstration. Similar
to ANN methods [3], each main intrinsic nonlinear element can be
modeled by independent SVR models

Cgs = fSV R(Vds, Vgd) (8)

Cgd = fSV R(Vds, Vgd) (9)

Ids = fSV R(Vds, Vgs) (10)

Because the SVM is based on SRM principle and resolving convex
QP, the SVR have a good ability to compromise model complexity
and accuracy, and can get the global minimum results. The nonlinear
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model can be carried out by using the similar way of ANN methods [3].
However, the physical mechanism of nonlinear model is still not clearly
enough. Here, a more physical nonlinear modeling method is proposed
based on above SVR models.

Typically, the transistor is polarized in a bias point (Vds0, Vgs0),
and the incremental drain-to-source and gate-to source voltages, vds

and vgs, are applied over this DC polarization. With these premises,
it is necessary to accurately reproduce the nonlinear elements f(Vds,
Vgs) = F (Vds0, Vgs0, vds, vgs) dependence and its derivatives with
respect to the incremental voltages. In applications of amplifiers and
mixers, the usual is to consider up to the third order intermodulation
distortion (IMD) [11]. As a result, the nonlinear elements Qg (Vds, Vgd)
can be expressed as Taylor series expansion

Qg(Vgs, Vgd) = Qg(Vgs0, Vgd0) + Cgs1vgs + Cgd1vgd + Cgs2v
2
gs

+Cgsgdvgsvgd + Cgd2v
2
gd + Cgs3v

3
gs + Cgs2gdv

2
gsvgd

+Cgsgd2vgsv
2
gd + Cgd3v

3
gd (11)

Accordingly, the Cgs (Vds, Vgs), Cgd (Vds, Vgs) and Ids (Vds, Vgs)
expansions are as follows:

Ids(Vds, Vgs) = Ids(Vds0, Vgs0) +Gmvgs +Gdvds +Gm2v
2
gs

+Gmdvgsvds +Gd2v
2
ds +Gm3v

2
gs +Gm2dv

2
gsvds

+Gmd2vgsv
2
ds +Gd3v

3
ds (12)

Cgs(Vgs, Vgd) = Cgs1 + 2Cgs2vgs + Cgsgdvgd + 3Cgs3v
2
gs

+2Cgs2gdvgsvgd + Cgsgd2v
2
gd (13)

Cgd(Vgs, Vgd) = Cgd1 + 2Cgd2vgd + Cgsgdvgs + 3Cgd3v
2
gd

+2Cgsgd2vgsvgd + Cgs2gdv
2
gs (14)

where Qg (Vds0, Vgs0) and Ids (Vds0, Vgs0) is the static DC values at bias
point, and (Gm, . . . , Gd3, Cgs1, . . . , Cgd3) are coefficients related to
the nth-order derivatives valuated at the bias point.

Different from previous work on Ids (Vds, Vgs) [2, 12], the
coefficients of each nonlinear elements are directly predicted by SVR
nth-order derivatives models for each nonlinear elements. Benefit to
the great generalization ability of SVM, the coefficients of nonlinear
elements model can be accurately extracted. For example,

Gm =
∂ISV R

ds (Vgs, Vds)
∂Vgs

(15)
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Cgsgd =
∂CSV R

gs (Vgs, Vgd)
∂Vgd

=
∂CSV R

gd (Vgs, Vgd)
∂Vgd

(16)

Cgd3 =
1
3
∂2CSV R

gd (Vgs, Vgd)

∂V 2
gd

(17)

Cgs1 = CSV R
gs (0, 0)

The detailed flow chat is showed in Fig. 2, where [Cgs], [Cgd], [gm] and
[gd] represents the calculated discrete values at different bias.

Linear
elements

[Cgs] [Cgd]

cold FET
method

Parasitic
Parameters

hot FET
measurements

mutiple bias
S-paramters

Cgs SVR
model

Cgd SVR
model

DC I-V
measurements

Ids SVR
model

S-parameters  and
nonlinear

performance

[gm], [gd]

Cgs (Vgs,Vds) Cgd (Vgs,Vds) Ids (Vgs,Vds)

Figure 2. The proposed SVR based nonlinear modeling flow chat.

The modeling technique can be carried out with the following
procedures:
a) Measurement of the dc I-V and the multiple biased S-parameter

for a microwave device.
b) Extraction of the parasitic parameters of microwave device using

cold FET method.
c) Extraction of the intrinsic capacitances, gm and gds by using the

method proposed by Dambrine [13].
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d) Modeling of the intrinsic capacitances and dc current by using
SVR technique.

e) Reconstruction of nonlinear elements expression by calculation of
the nth-order derivatives of nonlinear elements SVR models.

f) Calculation of the S-parameters and nonlinear performance by
using the nonlinear elements in the nonlinear circuit simulator.

4. MODEL VERIFICATION

LIBSVM-matlab code [14] is used as a basis to implement SVR model.
v-SVR based on radial basis function (RBF) kernel function has been
considered in our regression experiments. The parameters (ε, v, C and
γ) are extracted by trying with different variable value. The quality of
each model is evaluated as its prediction accuracy, measured by mean
squared error (MSE):

MSE =
1
N

N∑
i=1

(yi − xi)2 (18)

xi is the value of simulated S-parameters of empirical model, yi is the
SVR model predicted value and N is the number of validation data.

Table 1 showed the SVR variables and samples for training and
test data. The same variables (bias points) are selected for each
nonlinear element. And the total number of training data is 30
points, which means only 30 sets of S-parameters and DC I-V data
are needed for build a nonlinear model with this method. And the
samples are selected with the same steps, which mean the SVR model

Table 1. SVR variables and samples selection.

Data Training Data Testing Data

Para. Min Max Step Min Max Step

Vds/V 0 20 4 0 20 1

Vgs/V −15 0 −3 −15 0 −1.5

Table 2. Results of SVR model.

Data Training Data Testing Data

Para./Unit Ids/mA Cgs/pF Cgd/pF Ids/mA Cgs/pF Cgd/pF

MSE 4.3e-2 4.4e-9 3.2e-9 8.5e-2 1.5e-7 1.7e-7
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Figure 3. The plots of predicted results vs. testing samples. (a) Plot
of predicted Ids results (solid line) vs. testing samples (star), (b) Plot
of predicted Cgs results (solid line) vs. testing samples (star), (c) Plot
of predicted Cgd results (solid line) vs. testing samples.

is a robust model that with little dependence of the training samples
distribution while the results of ANN models are greatly depend on
sample selection. Table 2 shows the MSE results of training and
testing data. And Fig. 3 is the plots of predicted results vs. testing
samples for each nonlinear element. The results reveal that the SVR
model can accurately predict each nonlinear element in less than
1 minute on an Intel Pentium IV 3.0 GHz with 1 GB of memory
and running Windows XP. Besides, it is great convenient that the
parameters (ε, v, C and γ) for each SVR model are the same. It
means only four parameters are needed for the nonlinear model, while
ANN based method usually require several hundred parameters [3].

Figure 4 and Fig. 5 shows the comparison of S-parameters and
harmonic performance by using proposed method and simulated data
using empirical model. The reason of small S21 and output power
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Figure 4. Comparison of S-parameters between the empirical model
(circles) and the SVR based model (solid line) of SiC MESFET in the
frequency range of 500 MHz–20 GHz. bias: (a) Vgs = −2 V, Vds = 20 V,
(b) Vgs = −7 V, Vds = 20 V.
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Figure 5. Comparison of harmonic performance between the
empirical model (circles) and the SVR based model (solid line) for
SiC MESFET (f0 = 2 GHz) at bias Vgs = −7 V, Vds = 20 V.
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(Pout) are that the simulations were accomplished by directly 50 Ω
input-output terms and the simulatios frequency is far over fT . The
data are selected for demonstration purpose of the proposed method,
and the good agreements show the validation of the proposed method.

5. CONCLUSION

An approach for the microwave nonlinear device modeling technique
based on a combination of the conventional equivalent circuit model
and support vector machine (SVM) regression is presented in this
paper. The example of SiC MESFET modeling shows that the
proposed method can provide fast and accurately modeling, whilst
preserve the advantages of closed-form equation model. This
technique is very useful for device performance analysis in designing
microwave circuits and characterizing the device technological process
for relatively new compound semiconductors such as GaN and SiC.
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