
Progress In Electromagnetics Research, PIER 80, 77–105, 2008

COMPUTATION OF EM FIELD SCATTERED BY AN
OPEN-ENDED CAVITY AND BY A CAVITY UNDER
RADOME USING THE ITERATIVE PHYSICAL OPTICS

R. Hemon

Laboratoire IREENA, EA 1170, Ecole Polytechnique de Nantes
Bât. IRESTE, La Chantrerie 44306 Nantes cedex 3, France

P. Pouliguen

DGA/DET/Centre d’ELectronique de l’ARmement (CELAR)
35170 Bruz, France

H. He and J. Saillard

Laboratoire IREENA, EA 1170, Ecole Polytechnique de Nantes
Bât. IRESTE, La Chantrerie 44306 Nantes cedex 3, France

J. F. Damiens

DGA/DET/Centre d’ELectronique de l’ARmement (CELAR)
35170 Bruz, France

Abstract—It is always a challenge to predict Radar Cross Section
(RCS) of a full scale military platform with a good accuracy. Most of
the time antennas and cavities are the main contributors of aircrafts
RCS. Several methods have been developed to compute the RCS of
cavities such as analytical methods (modal methods) and asymptotic
methods (geometrical optics (GO) methods and physical optics (PO)
methods). This article presents the Iterative Physical Optics (IPO)
method which consists in an iterative resolution of the Magnetic
Field Integral Equation (MFIE) to compute the currents on the
inner walls of the cavity. This method allows computing arbitrarily
shaped cavity with a good accuracy even for cavity with a depth
inferior to the wavelength. Comparisons of IPO results with Rays
and Finite element methods show a better accuracy of IPO than Rays
especially for cross polarization. But computation time represents one
of the main limitations of the IPO method. We present here a new
formulation of the Segmented IPO method which coupled with the
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generalized reciprocity theorem decreases significantly the complexity
of the method and consequently the computation time. The S-IPO
method has been validated by comparisons with Modal method and
measurements. We have observed that the repartition of the electric
currents density on the inner walls of the cavity is quite the same with
IPO and S-IPO computations. Lastly we propose an evolution of the
IPO method we have developed to compute the RCS of cavities under
radome. This method has been validated by comparison with finite
element results.

1. INTRODUCTION

Electromagnetic signature of targets with cavities, like inlets of
aircrafts and missiles, has been the subject of numerous theoretical and
experimental studies [1]. Inlets of such targets contribute significantly
to their Radar Cross Section (RCS). Numerical methods like Method
of Moments and Finite Element Methods could be employed to analyze
cavities but complexity of these methods increases with frequency and
dimensions of the cavities. That’s why these methods are generally not
used to solve this problem. Modal methods have been developed to
analyze cavities with canonical shapes [2, 3]. In other way asymptotical
methods like Ray methods [5, 7, 8] or Physical Optics methods [11, 12]
allow to compute RCS of relatively arbitrarily shaped cavities. The
method presented here, the Iterative Physical Optics method [12–
14], is one of these asymptotical methods. The first part recalls the
IPO method. Some comparisons of IPO results with modal, Ray, FE
methods and measurements are presented. A convergence criterion is
proposed and results are showed. Then the second part, presents a
new formulation of the Segmented-IPO method [15] used to increase
the efficiency of IPO method with and without the use of the general
reciprocity integral [6] and the convergence criterion. The last part
presents an evolution of the IPO method we have developed to compute
the RCS of cavities under radome [23].

2. DESCRIPTION OF THE IPO METHOD

The Iterative Physical Optics method has been developed in 1995 [12]
to compute the RCS of electrically large open-ended cavities. It is an
asymptotical method which consists in an iterative resolution of the
Magnetic Field Integral Equation to compute the electric and magnetic
currents on the inner walls of the cavity. The computation of EM field
scattered to the observation point by the cavity is divided in five steps:



Progress In Electromagnetics Research, PIER 80, 2008 79

1. Computation of electric and magnetic equivalent currents induced
by incident EM field over the aperture

2. Computation of EM fields radiated by equivalent currents over the
aperture on the inner walls of the cavity

3. Iterative computation of electric and magnetic currents induced on
the facets of the inner walls by EM fields radiated by equivalent
currents over the aperture and by currents on the other facets of
the inner walls.

4. Computation of EM field radiated by currents on the inner walls
over the aperture

5. Computation of EM fields scattered at the observation point.
The notations used in all the following developments are

represented in Figure 2. An e−jωt dependence is assumed and
suppressed. The IPO formulation is given for a cavity with inner
walls coated with dielectric materials [13, 14]. In such case Leontovitch
condition [9] is applied to compute the magnetic current as a function
of the electric current such as:

�M = Z0Zs( �J ∧ n̂)

Where: Zs is relative impedance of medium 1 (Figure 1): Zs =
√
µr

εr
Z0=120π is free space impedance

Figure 1.

Leontovitch condition could be applied when:
• |N | =

∣∣√µrεr
∣∣ � 1

• |Im(N)| kρmin � 1
• ∇Zs

kZs
� 1, this relation limits the application of Leontovitch

condition to homogenous or weakly heterogeneous materials
Where:

N is the refraction index of Medium 1 relative to Medium 0 (free
space)
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k is free space wave number
ρmin is the most little curvature radius of the surface between
media 0 and 1.
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Figure 2.

Step one: Computation of equivalent currents induced over
the aperture

The EM field incident on a point of the aperture is:

�Ei(Pa) = Ei ∗Ge ∗
ejkDa

Da
êi

�Hi(Pa) = Hi ∗Ge ∗
ejkDa

Da
ĥi

(1)

Where:
Da is the distance between the Transmitter and a point Pa over
the aperture.
Ge is the transmitter gain
In the next Ge and Ei are assumed to be equal to 1 thus Hi = 1

Z0

Electric and magnetic equivalent currents induced over the
aperture are given by:

�Ji(Pa) =
�nJi

Z0

ejkDa

Da

�Mi(Pa) = �nMi
ejkDa

Da

(2)

Where:
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�nJi = n̂a ∧ ĥi

�nMi = êi ∧ n̂a

n̂a is the unit vector normal to the aperture

Step two: Computation of the magnetic field induced on the
inner walls of the cavity

It is computed using the Kirchhoff approximation:

�HSa
d (Pc) =

∫
Sa

�Ji(Pa) ∧ �∇′G(�rc − �ra)dSa

− 1
jkZ0

�∇∧
∫
Sa

�Mi(Pa) ∧ �∇′G(�rc − �ra)dSa (3)

Where:
�ra and �rc are respectively points over the aperture Sa and on the
inner wall Sc

�∇′G is the gradient of the free space Green’s function

Step three: Iterative computation of electric and magnetic
currents induced on the inner walls

These currents are induced by radiation of equivalent currents
over the aperture and currents on the other facets of the inner walls.
Consequently the electric current �JN (�rcv) at a point v at iteration N
is given by:

�JN (Pcv) = �J0(Pcv) + 2n̂cv ∧




∫
Sc

�JN−1(Pcu) ∧ �∇′G(−→r )dSc

− 1
jkZ0

�∇∧
∫
Sc

�MN−1(Pcu) ∧ �∇′G(−→r )dSc


 (4)

Leontovitch condition is applied to give:

�JN (Pcv) = �J0(Pcv) + 2n̂cv ∧




∫
Sc

�JN−1(Pcu) ∧ �∇′G(�r)dSc

− 1
jkZ0

�∇∧
∫
Sc

Z0ZS( �JN−1(Pcu) ∧ n̂cu) ∧ �∇′G(�r)dSc


 (5)
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Where:

�r = �rcv − �rcu is the vector between points ‘u’ and ‘v’ of the inner
walls.
�rcv is the vector between the phase center and the point ‘v’
n̂cv is the unit vector normal to the surface Sc at point ‘v’

The initial current on the inner walls is induced by EM field
radiated by equivalent currents over the aperture. The total field is
equal to the sum of incident and reflected fields on the inner walls such
as:

�J0(Pcv) = n̂cv ∧
(
�HSa

i (Pcv) + �HSa
r (Pcv)

)
(6)

Step four: Computation of EM fields radiated over the
aperture

These EM fields are induced by EM fields radiated by electric and
magnetic currents on the inner walls of the cavity using the Leontovitch
condition:

�ESc
d (Pa) = −

∫
Sc

Z0ZS

(
�JN (Pc) ∧ n̂c

)
∧ �∇′G(�ra − �rc)dSc

− 1
jkY0

�∇∧
∫
Sc

�JN (Pc) ∧ �∇′G(�ra − �rc)dSc

�HSc
d (Pa) =

∫
Sc

�JN (Pc) ∧ �∇′G(�ra − �rc)dSc

− 1
jkZ0

�∇∧
∫
Sc

Z0ZS

(
�JN (Pc)∧n̂c

)
∧ �∇′G(�ra−�rc)dSc

(7)

Step five: Computation of electric field scattered outside the
cavity

It is computed using the Kirchhoff approximation:

�ESa
d (P ) = −

∫
Sa

�M(Pa) ∧ �∇′G(�rp − �ra)dSa

− 1
jkY0

�∇∧
∫
Sa

�J(Pa) ∧ �∇′G(�rp − �ra)dSa (8)
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Where:

�M(Pa) = �ESc
d (Pa) ∧ n̂a

�J(Pa) = n̂a ∧ �HSc
d (Pa)

In order to increase the convergence of the solution, shadowing
effects are included in Equations (3), (4) and (7). For example, in
Equation (4), if the point �rcv is not visible from the point �rcu the
contribution to the integral from the point �rcu is zero. It is the same
in Equations (3) and (7) between points �ra and �rc. The density of
facets has to be equal to 9 or 12 facets per square wavelength in order
to obtain accurate results [12]. The number of iterations required to
obtain a convergent result is approximately the same that the number
of wave reflections in the cavity. Nevertheless the number of iterations
could vary with the incident angle. Consequently it could be interesting
to use a convergence criterion. With this criterion, computation time
decreases. One efficient way to test the convergence of the iterative
computation is to compute the total electric current on the inner walls
at iteration N . Then this total current is compared with the current
at the previous iteration N − 1. If the current variation is small the
iterative process is stopped. The criterion can be written:∣∣∣∣1 − JN−1

JN

∣∣∣∣ ≤ δ (9)

Where:

JN−1 =
Nc∑
i=1

∣∣∣ �J i
N−1

∣∣∣

JN =
Nc∑
i=1

∣∣∣ �J i
N

∣∣∣
This method has been validated by comparison with measure-

ments and with FEM and modal method [4] computations. Figure 4
shows the RCS of a rectangular cavity (Figure 3) with a length of 1 m,
a high of 25 cm and a width of 50 cm. The RCS has been measured in
an anechoic chamber and computed with the IPO method at 3.59 GHz,
for an azimuth angle range from 0◦ to 60◦ with a step of 1◦ and a VV
polarization. 8 iterations are required. There is a good agreement
between measurements and IPO computation.

Then IPO results are obtained using convergence criterion and
compared with measurements.
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Figure 3. Rectangular cavity.
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Figure 4. Comparison of IPO results with measurements. F =
3.59 GHz, VV polarization, elevation angle 0◦.

Results obtained with a convergence criterion δ = 0.05 are
presented here (Figure 5). Computations with δ = 0.03 and δ = 0.04
have been performed but are not presented here. In each case there is a
good agreement between measurement and IPO results. Figure 6 shows
the number of iterations versus the incident angle for each convergence
criterion. The number of iterations increases with the incident angle
and consequently with the number of wave reflections in the cavity.
For a criterion of 0.05 there is an average of 5.2 iterations and the
computation time decreases.

Now, we consider a small depth cavity burrowed in a cylinder
representative of cavities that are located on missile fuselage. This



Progress In Electromagnetics Research, PIER 80, 2008 85

0 5 10 15 20 25 30 35 40 45 50 55 60

Azimuth (deg)

20

15

10

5

0

-5

-10

R
C

S
 (

dB
sq

m
)

___  Measure
+++  delta=0.05

Figure 5. Comparison of IPO computations using convergence
criterion with measurements. F = 3.59 GHz, VV polarization,
elevation angle 0◦.
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Figure 6. Number of iterations versus incident angle.

cavity (Figure 7) has an aperture with a size of 15 cm ∗ 7.5 cm and
a depth of 2.5 cm at a maximum. It is placed on a cylinder of
diameter 30 cm and a length of 30 cm. Computations have been made
at 9.2 GHz, for an azimuth angle range from 0◦ to 60◦ with a step of
1◦ and a VV polarization.

We observe Figure 8 a good agreement between IPO computation
and measurements showing that IPO is efficient even for cavities with
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Figure 7.

depth inferior to wavelength.
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Figure 8. Comparison of IPO results with measurements. F =
9.2 GHz, VV polarization, elevation angle 0◦.

Then RCS of a triangular trihedral corner reflector (Figure 9)
computed with a Finite Element (FE), a ray and the IPO methods
have been compared. The RCS is calculated at 9 GHz, for an azimuth
angle range from 0◦ to 90◦ with a step of 1◦, an elevation angle of
35.26◦ and in VV and VH polarizations.

We observe Figure 10 and Figure 11 that IPO results are more
accurate that results from the ray method in comparison with FE
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Figure 9. Triangular trihedral corner reflector.
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Figure 10. Comparison of IPO, Ray and FE methods in VV
polarization. F = 9 GHz, elevation angle 35.26◦.

method. The main differences are obtained for the VH polarization
Figure 11. There are about 5 dB differences between the ray method
result and the FEM.

The precedent results show the accuracy of the IPO method.
Nevertheless one of the principal problems of the IPO method is the
complexity and consequently the computation time. Number of facets
increases with the frequency and the dimensions of the target. That is
why several studies have been made to improve the efficiency of IPO
method [15–22]. One of them is based on a segmentation principle, the
S-IPO method [15].
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Figure 11. Comparison of IPO, Ray and FE methods in VH
polarization. F = 9 GHz, elevation angle 35.26◦.

3. THE SEGMENTED IPO METHOD

The S-IPO method [15] consists in a decomposition of the cavity in N
sections which are separated by exchange surfaces (Figure 12). The
method was initially developed using S parameters. Here we propose a
different approach by exchanging equivalent currents on each interface.

 

N 

Figure 12. Segmentation of the cavity.

Each section is analyzed independently from the rest of the cavity
from Section 1 to Section N . The process to analyze the section ‘i’ is
the following:
Step one: Computation of equivalent currents on exchange
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surface ‘i’:

The electric and magnetic equivalent currents on the exchange
surface ‘i’ are induced by EM fields radiated by the electric and
magnetic currents on the inner walls of the section ‘i − 1’ and by the
equivalent currents on the exchange surface ‘i−1’. They are expressed:

�MSai(Pi) = ( �ESci−1

d (Pi) + �E
Sai−1

d (Pi)) ∧ n̂i
a

�JSai(Pi) = n̂i
a ∧ ( �HSci−1

d (Pi) + �H
Sai−1

d (Pi))
(10)

Where:
�E

Sci−1

d (Pi) and �H
Sci−1

d (Pi) are EM fields radiated by electric and
magnetic currents on the inner walls of the section ‘i− 1’
�E

Sai−1

d (Pi) and �H
Sai−1

d (Pi) are EM fields radiated by electric and
magnetic equivalent currents on the exchange surface ‘i− 1’

Step two: Computation of magnetic field radiated on the
inner walls of Section i

It is computed using the Kirchhoff approximation and an equation
with the same form as relation (3).
Step three: Iterative computation of electric and magnetic
currents on the inner walls

We compute iteratively the electric currents on the inner walls of
the section ‘i’ by using equations with the same form as relations (4)
and (5)
Step four: Computation of equivalent currents on exchange
surface ‘i+ 1’

First the EM fields radiated by the equivalent currents on the
exchange surface ‘i’ are computed:

�ESai
d (Pi+1) = −

∫
Sai

�MSai(Pi) ∧ �∇′G(�ri)dSai

− 1
jkY0

�∇∧
∫

Sai

�JSai(Pi) ∧ �∇′G(�ri)dSai

�HSai
d (Pi+1) =

∫
Sai

�JSai(Pi) ∧ �∇′G(�ri)dSai

− 1
jkZ0

�∇∧
∫

Sai

�MSai(Pi) ∧ �∇′G(�ri)dSai

(11)
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Where: �ri = �rai+1 − �rai is the vector between two points of exchange
surfaces ‘i+ 1’ and ‘i’

Then the EM fields �ESci
d (Pi+1) and �HSci

d (Pi+1) radiated by electric
and magnetic currents on the inner walls of the section ‘i’ to the
exchange surface ‘i + 1’ are computed using relation of the form of
Equation (7).

Finally the equivalent currents on exchange surface ‘i+1’ are given
by:

−→
MSai+1(Pi+1) = ( �ESci

d (Pi+1) + �ESai
d (Pi+1)) ∧ n̂i

a
−→
J Sai+1(Pi+1) = n̂i

a ∧ ( �HSci
d (Pi+1) + �HSai

d (Pi+1))
(12)

The same method is applied, till the currents on the inner walls of
the last section ‘N ’ are computed. Then the same principle could be
applied from the last to the first section, and finally the Kirchhoff
approximation is used to compute EM fields scattered out of the
cavity with the relation (9). But in order to decrease the computation
time, a generalized reciprocity integral [6] could be evaluated over the
exchange surface ‘N ’ to obtain the amplitude of EM field scattered at
the observation point P such as:

ESN
d (P ) =

2
Fµ0

∫
SN

( �E+
N∧ �H−

N − �E−
N ∧ �H+

N ) · n̂dSc (13)

Where:
�E+

N and �H+
N are the EM fields radiated by currents on the inner

walls of the termination (section ‘N ’) in the exchange surface ‘N ’
�E−

N and �H−
N are the EM fields radiated on the exchange surface ‘N ’

by currents on the inner walls of the section ‘N−1’ and equivalent
currents on exchange surface ‘N − 1’
The use of the segmentation principle decreases significantly the

complexity of the computation. Table 1 compares complexities of IPO,
S-IPO and SIPO/reciprocity methods. where K is the number of

Table 1. Comparison of computational complexity.

Method IPO S-IPO S-IPO/reciprocity

Complexity O
(
KN2

)
O

(
(2P − 1)

KN2

P 3

)
O

(
KN2

P 2

)

iterations of the IPO method, P is the number of sections and N



Progress In Electromagnetics Research, PIER 80, 2008 91

is the total number of facets of the cavity. According to [15] in the
S-IPO method the number of iterations required to analyze a section

is equal to
K

P
and the depth of a section may be equal to the maximum

dimension of its aperture. Moreover the optimization criterion (9) can
be applied in each section.

Figure 14 presents a comparison of S-IPO and S-IPO/reciprocity
RCS computations with a modal method [4]. The target is a cylinder
with a diameter of 30 cm and a length of 45 cm. It is divided in 2
sections (Figure 13) and 4 iterations are performed in each section.
The RCS is calculated at 6 GHz, for an azimuth angle range from 0 to
50◦ with a step of 1◦, in HH polarization.

Figure 13. 30 cm ∗ 45 cm cylinder with 2 sections.

There is a good agreement between the three methods (Figure 14).
Table 2 presents computation times on a PC with a processor of
2.8 GHz and 1 Gb of RAM.

Table 2. Cylinder RCS diagram computation times.

Method IPO S-IPO S-IPO/reciprocity
Computation times 1H10 50min 35min

Computation times are significantly reduced with the use of the
S-IPO method in comparison of IPO computations and more with the
use of the general reciprocity integral. IPO computation time is divided
by 2 with the use of the S-IPO/reciprocity.

Then the convergence criterion is used to reduce computation
times. Figure 16 and Figure 17 present comparisons of Modal Method
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Figure 14. Comparison of S-IPO, S-IPO/reciprocity and modal
method. F = 6 GHz, HH polarization, elevation angle 0◦.

results with S-IPO results obtained using a convergence criterion,
respectively with and without using reciprocity theorem. The target
studied here is a cylinder with a diameter of 25 cm and a length of
76 cm. It is divided in 3 sections (Figure 15). S-IPO computations are
performed at a 10 GHz frequency, for an azimuth angle range from 0◦
to 70◦ with a step of 2◦ and a HH polarization.

Figure 15. 25 cm ∗ 76 cm cylinder with 3 sections.

S-IPO results have a good accuracy in comparison with Modal
Method results in the two cases. Computation times are significantly
reduced. IPO computation time is divided by 3.5 with the use of S-
IPO and a convergence criterion of 0.04, and by 5.5 with the use of
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Figure 16. Comparison of Modal Method and S-IPO with
convergence criterion. F = 10 GHz, HH polarization, elevation angle
0◦.
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Figure 17. Comparison of Modal Method and S-IPO/reciprocity with
convergence criterion. F = 10 GHz, HH polarization, elevation angle
0◦.

S-IPO/reciprocity and convergence criterion of 0.04.
Now, we propose to study the influence of the exchange surfaces

orientation and position on results’ accuracy [24]. To do that, we
consider the cobra cavity whose RCS has been measured in CELAR



94 Hemon et al.

(a) (b)

Figure 18. Orientation of exchange surfaces for the cobra cavity
divided in 5 sections parallel surfaces. (a) Parallel surfaces (b) Normal
surfaces.
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Figure 19. Cobra cavity with 5 sections, comparison of measurements
with S-IPO results. F = 16.09 GHz, VV polarization, elevation angle
0◦.

anechoic chamber. Figure 18 shows two different orientations of
exchange surfaces between sections: parallel to the open-end of the
cobra cavity (Figure 18(a)) and normal to the inner walls of the cobra
cavity (Figure 18(b)).

Figure 19 compares the cobra RCS computed S-IPO methods
with measurements. The two configurations exchange surfaces given
by Figure 18(a) and Figure 18(b) are studied. RCS is calculated at
16.09 GHz, in VV polarization, for an azimuth angle from −40◦ to
40◦. These results show a good accuracy of S-IPO method when the
Cobra is divided into 5 sections. Configuration with parallel surfaces
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Figure 20. Cobra cavity with 4 sections, comparison of measurements
with S-IPO results. F = 16.09 GHz, VV polarization, elevation angle
0◦.

has a better accuracy than the one with normal surfaces. The depth
of a section is approximately the same than the minimum dimension
of the aperture. The same computations have been performed on
the cobra divided in 4 sections with parallel and normal exchange
surfaces (Figure 20). In this case the depth of a section is the same
than the maximum dimension of a section. We observe that with
normal exchange surfaces, S-IPO results present a good agreement with
measurement. But in the case of parallel exchange surfaces, results
are not good. This study shows that results obtained with exchange
surfaces normal to the inner walls are better that results obtained with
parallel surfaces.

Finally the repartition of electric currents density on the inner
walls of the cavity and over the aperture obtained with the IPO
method and S-IPO method are presented. Figure 21 and Figure 22
represent maps of electric currents on the inner walls and aperture of
the cobra cavity. For S-IPO computation the cavity is divided in 5
sections with parallel exchange surface (Figure 18(a)) and the electric
currents density is represented Figure 22 in the forward way. The
electric currents have been represented for an azimuth angle of 30◦, an
elevation angle of 0◦, a 17.5 GHz frequency and a vertical polarization
of the incident wave.

Few differences of electric currents on the inner walls and over
the aperture of the cavity computed with IPO and S-IPO methods
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are observed. These differences are mainly modifications of electric
currents density distributions on the inner walls. We explain these
because S-IPO method calculates currents in a sub-cavity from currents
in the previous section, whereas IPO method takes into account all the
cavity. Moreover Figure 22 shows weak discontinuities at exchange
surfaces.

An acceleration of the IPO method based on a segmentation
principle is presented. A good accuracy is obtained with this method in
comparison with measurements. Computation times are significantly
decreased in regard to IPO ones.

4. EVOLUTION OF THE IPO TO COMPUTE RCS OF
CAVITIES WITH RADOME

In this section, an evolution of the IPO method to solve the problem
of electromagnetic scattering by cavities closed by radome [23] is
presented. Now the aperture is closed by a dielectric layer. Then, the
Fresnel coefficients [10] are used with the IPO algorithm to take into

Figure 21. Electric currents density computed with the IPO method.
F = 17.5 GHz, VV polarization, elevation angle 0◦, Azimuth angle 30◦.
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Figure 22. Electric currents density computed with the S-IPO
method in the forward way. F = 17.5 GHz, VV polarization, elevation
angle 0◦, Azimuth angle 30◦.

account the dielectric layer characteristics. The computation algorithm
is also divided in five steps as in IPO:

1. Computation of currents induced by incident EM field on the
interior surface of the radome after transmission across it.

2. Computation of EM field scattered by the radome on the inner
walls of the cavity.

3. Iterative computation of currents induced on each facet of the
inner walls of the cavity, due to the multiple reflections on the
other facets of the inner walls and the radome inner surface.

4. Computation of currents induced on the exterior surface of the
radome after transmission, of EM fields scattered by the cavity
inner walls, across its dielectric layer.

5. Computation of EM fields scattered outside the cavity
Equations are presented for Perfectly Electrical Conducting

(PEC) cavities, but can be easily adapted to cavity with surface
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impedance condition.
Step one: Computation of currents induced on the radome
inner surface

These currents are computed using the Fresnel transmission
coefficients [3]:

�JT
i (Pa) = n̂a ∧ �HT

i (Pa) = n̂a ∧
(
T

//
H
�H

//
i (Pa) + T⊥

H
�H⊥

i (Pa)
)

(14)

�MT
i (Pa) = �ET

i (Pa) ∧ n̂a =
(
T

//
E
�E

//
i (Pa) + T⊥

E
�E⊥

i (Pa)
)
∧ n̂a (15)

Where:

n̂a is the unit normal to the radome interior at Pa

T
//
H , T

⊥
H , T

//
E , T

⊥
E are Fresnel transmission coefficients

�E
//
i ,

�H
//
i ,

�E⊥
i ,

�H⊥
i are normal and parallel components of EM

fields

Step two: Magnetic field scattered on the inner walls of the
cavity

It is computed using the Kirchhoff approximation:

�HSa
d (Pc) =

∫
Sa

�JT
i (Pa) ∧ �∇′G(�rc − �ra)dSa

− 1
jkZ0

�∇∧
∫
Sa

�MT
i (Pa) ∧ �∇′G(�rc − �ra)dSa (16)

Where:

�ra and �rc are respectively points on the radome Sa and on the
inner wall Sc

�∇′G is the gradient of the free space Green’s function

Step three: iterative computation of currents induced on the
inner walls

These currents are induced by EM fields scattered by the inner
walls and also by the interior surface of the radome.
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Consequently at iteration N electric current on Sc is given by:

�JSc
N (Pcv) = 2n̂cv ∧




∫
Sa

�JSa
N (Pa) ∧ �∇′G(�r ′)dSa

− 1
jkZ0

�∇∧
∫
Sa

�MSa
N (Pa) ∧ �∇′G(�r ′)dSa




+2n̂cv ∧




∫
Sc

�JSc
N−1(Pcu) ∧ �∇′G(�r)dSc


 (17)

Where:

�r = �rcv − �rcu is the vector between point ‘u’ and ‘v’ of Sc.
�r′ = �rcv − �ra is the vector between ‘v’ on Sc and ‘a’ on Sa.
n̂cv is the unit normal vector to the inner wall in ‘v’.
�JSa
N and �MSa

N are currents induced on the interior surface of the
radome at iteration N . They are induced by directly incident magnetic
field on the radome and by EM fields radiated by the inner walls �hSc

Sa

and �eSc
Sa

.

�JSa
N (Pa) = �JT

i (Pa) + n̂a ∧
∫
Sc

{
�hSc

Sa
(Pcu) +R//

H
�hSc

//

Sa
(Pcu)

+R⊥
H
�hSc

⊥
Sa

(Pcu)
}
dSc (18)

�MSa
N (Pa) = �MT

i (Pa) − n̂a ∧
∫
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{
�eSc

Sa
(Pcu)

+R//
E�e

Sc
//

Sa
(Pcu) +R⊥

E�e
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⊥
Sa

(Pcu)
}
dSc (19)

Where:

�hSc
Sa

(Pcu) = �JSc
N−1(Pcu) ∧ �∇′G(�ra − �rcu) (20)

�eSc
Sa

(Pcu) = − 1
jkY0

�∇∧ �JSc
N−1(Pcu) ∧ �∇′G(�ra − �rcu) (21)
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R
//
H , R

⊥
H , R

//
E , R

⊥
E are Fresnel reflection coefficients on the radome

�hSc
//

Sa
, �hSc

⊥
Sa
, �eSc

//

Sa
, �eSc

⊥
Sa

are normal and parallel components of
�hSc

Sa
and �eSc

Sa
.

Initially:

�JSc
0 (Pcv) = 2n̂cv ∧ �HSa

d (Pcv) (22)
�JSa
0 (Pa) = �JT

i (Pa) (23)
�MSa

0 (Pa) = �MT
i (Pa) (24)

Step four: currents induced on the exterior surface of the
radome

These currents are induced by EM fields radiated by the inner
walls of the cavity. First EM fields induced by facet ‘c’ of the inner
wall to the facet ‘a’ of the interior surface of the radome (�hNc

d (Pa) and
�eNc

d (Pa)) are evaluated.

�eNc
d (Pa) = − 1

jkY0

�∇∧ �JSc
N (Pc) ∧ �∇′G(�ra − �rc) ∗ ∆Snc (25)

�hNc
d (Pa) = �JSc

N (Pc) ∧ �∇′G(�ra − �rc) ∗ ∆Snc (26)

Where: ∆Snc is the surface of the interior facet ‘c’
We deduce the currents on the exterior surface of the radome:

�JT (Pa) =
Nc∑
c=1

n̂a ∧
{
T

//
H
�hN

//
c

d (Pa) + T⊥
H
�h

N⊥
c

d (Pa)
}

+ �JR
i (Pa) (27)

�MT (Pa) =
Nc∑
c=1

{
T

//
E �e

N
//
c

d (Pa) + T⊥
E �e

N⊥
c

d (Pa)
}
∧ n̂a + �MR

i (Pa) (28)

where �JR
i (Pa) and �MR

i (Pa) are the currents due to incident EM
reflected by the radome to the observation point. They are given by:

�JR
i (Pa) = n̂a ∧ �HR

i (Pa) = n̂a ∧
(
R

//
H
�H

//
i (Pa) +R⊥

H
�H⊥

i (Pa)
)

(29)

�MR
i (Pa) = �ER

i (Pa) ∧ n̂a =
(
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//
E
�E

//
i (Pa) +R⊥

E
�E⊥

i (Pa)
)
∧ n̂a (30)

Where: R//
H , R

⊥
H , R

//
E , R

⊥
E are Fresnel reflection coefficients.

Step five: electric field scattered outside the cavity
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It is computed using the Kirchhoff approximation:

�ESa
d (P ) = −

∫
Sa

�MT (Pa) ∧ �∇′G(�rp − �ra)dSa

− 1
jkY0

�∇∧
∫
Sa

�JT (Pa) ∧ �∇′G(�rp − �ra)dSa (31)

This method has been validated by comparison with FEM
computations. Figure 23 presents the RCS of the 12 cm∗12 cm cylinder,
closed with a radome in Teflon (εr = 2.1 + j0.005, µr = 1 + j0) and
a thickness of 3 mm. The RCS is computed in VV polarization for an
azimuth angle range from 0 to 50◦ with a step of 1◦ at 10 GHz and 8
iterations are performed.
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Figure 23. Comparison of FE and modified IPO methods for cavities
with radome. F = 10 GHz, VV polarization, elevation angle 0◦.

There is a very good agreement between the two methods. Then
the influence of the radome on the RCS of a X band short-circuited
horn (Figure 24) has been evaluated.

The RCS has been computed at 10 ghz, for an azimuth angle
range from 0 to 60◦ with a step of 1◦ and in VV polarization. Three
configurations are compared Figure 25: the open-ended horn, the horn
with a Rohacell radome (εr = 1.07 + j0, µr = 1 + j0) with a thickness
of 3 mm and the horn with a Teflon (εr = 2.1 + j0.005, µr = 1 + j0)
radome. Observation of Figure 25 shows the radome in Rohacell has
a little influence on the RCS in comparison of the open-ended horn.
The radome in Teflon has more influence but the general shape of the
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Figure 24. X band short-circuited horn.
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Figure 25. RCS of a X band horn with and without radome.
F = 10 GHz, VV polarization, elevation angle 0◦.

curves is similar. Radome in Teflon decreases the RCS for azimuth
angle superior to 10◦.

5. CONCLUSION

This paper recalls the principle of the IPO method. Some comparisons
of this method with measurements and other methods have been made
to validate the IPO method. Comparison with measurements has
shown that the IPO method is also efficient for cavities which depth
is inferior to the wavelength. IPO method presents better results
than Ray method in comparison with FE method especially in cross
polarization. The use of a convergence criterion permits to decrease
computation times. Then a new formulation of S-IPO method and the
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general reciprocity integral are presented. The S-IPO method has a
very accuracy in comparison with modal methods and IPO results, and
S-IPO is more efficient than IPO. The use of the general reciprocity
integral decreases S-IPO computation times with a good accuracy.
The use of a convergence criterion also decreases computation times.
Finally an evolution of the IPO method to compute RCS of cavities
closed by a radome is presented and validated. In future works this
method could be applied to compute RCS of aircraft’s nose cone or
the RCS or radiation pattern of antenna based in a cavity. One other
way of investigation is to hybridize the IPO method with the FEM in
order to compute the RCS of cavity with complex termination. The
IPO method may be used to compute the EM fields radiated by the
currents on the inner walls of the duct in the exchange surface with
the termination. Then FEM may be used to compute the EM fields
radiated by the termination in this exchange surface and finally the
general reciprocity integral could be used to compute the EM fields
scattered at the observation point.
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