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Abstract—In this paper we describe an effective and inherently
parallel approximate inverse preconditioner based on Frobenius-norm
minimization that can be easily combined with the fast multipole
method. We show the numerical and parallel scalability of the
preconditioner for solving large-scale dense linear systems of equations
arising from the discretization of boundary integral equations in
electromagnetism. We introduce simple deflating strategies based
on low-rank matrix updates that can enhance the robustness of
the approximate inverse on tough problems. Finally, we illustrate
how to improve the locality of the preconditioner by using nested
iterative schemes with different levels of accuracy for the matrix-vector
products. Experiments on a set of model problems representative
of realistic scattering simulations in industry illustrate the potential
of the proposed techniques for solving large-scale applications in
electromagnetism.

1. INTRODUCTION

Electromagnetic scattering problems address the physical issue of
detecting the diffraction pattern of the electromagnetic radiation
scattered from a large and complex body when it is illuminated by an
incident incoming wave. A good understanding of these phenomena is
crucial to the design of many industrial devices like radars, antennae,
computer microprocessors, optical fibre systems, cellular telephones,
transistors, modems, and so on. In recent years, the application in
the context of the study of radar targets of different materials [1–
3] and the availability of larger computer resources have motivated
an increasing interest towards the use of integral methods for solving
high-frequency scattering problems in electromagnetism. In this paper
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we discuss fast iterative solution strategies based on preconditioned
Krylov methods for this problem class. We consider the case of a
perfectly conducting object Ω with boundary Γ. We assume that
the domain Ω is illuminated by an incident plane wave ( �Einc, �Hinc)
of angular frequency ω = ck = 2πc/λ, where the constant c is the
speed of light, k is the wavenumber and λ = c/f is the wavelength (f
is the frequency). In this study we concentrate our attention on the
Electric Field Integral Equation (EFIE) formulation that reads as:

find the surface current �j such that for all tangential test functions
�jt, we have∫

Γ

∫
Γ
G(|y − x|)

(
�j(x) ·�jt(y) − 1

k2
divΓ�j(x) · divΓ�jt(y)

)
dxdy

=
i

kZ0

∫
Γ

�Einc(x) ·�jt(x)dx. (1)

In (1) we denote by G(|y − x|) = eik|y−x|
4π|y−x| the Green’s function

and by Z0 =
√
µ0/ε0 the characteristic impedance of vacuum (ε

is the electric permittivity and µ the magnetic permeability). This
formulation can be used to model arbitrary geometries, including
those with cavities, disconnected parts, breaks on the surface and
is the most difficult to solve by iterative methods. However, the
solution techniques described in this paper are applicable to the
Combined Field Integral Equation (CFIE) and to the Magnetic Field
Integral Equation (MFIE) as well. A thorough presentation of integral
equations in electromagnetism is found in [4]. We consider the
Galerkin discretization of Equation (1) using the Rao-Wilton-Glisson
basis functions [5] for the surface current expansion that gives rise
to a dense and complex linear system of equations, whose coefficient
matrix is symmetric for EFIE, nonsymmetric for CFIE and MFIE.
The unknowns of the linear system arising from the discretization
are associated with the vectorial flux across an edge in the mesh,
and the right-hand side depends on the frequency and the direction
of the illuminating wave. Direct methods are often the method of
choice for solving these systems in industrial environment since they
are reliable and predictable in terms of accuracy and cost but they
become impractical for solving large applications even on parallel
platforms because they require O(n2) storage and O(n3) floating-point
operations to compute the factorization, where n denotes the size of the
problem. Iterative methods can solve the bottleneck of memory but
their success depends on the characteristics of the underlying integral
formulation. The CFIE formulation gives rise to well conditioned
systems, and the number of iterations of nonsymmetric Krylov solvers
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scale as O(n0.25). The condition number for the EFIE formulation
can grow like p1/2, where p denotes the size of the scatterer in
terms of wavelength, and linearly with the number of points per
wavelength [10]. On EFIE, Krylov methods scale as O(n0.5), thus
preconditioning is crucial to accelerate the convergence. In this paper
we discuss preconditioning strategies for the iterative solution of high-
frequency scattering problems expressed in an integral formulation. In
Section 2 we describe an approximate inverse preconditioner based on
Frobenius-norm minimization with a static pattern selection strategy.
In Section 3 we introduce simple strategies based on low-rank matrix
updates that induce a global deflation of the eigenvalues of the
preconditioned matrix enhancing the robustness of the approximate
inverse on tough problems. In Section 4 we show how to improve
the locality of the preconditioner on large problems by using nested
iterative schemes with different levels of accuracy for the matrix-vector
products. Finally, in Section 5 we draw some conclusions arising from
the work.

2. SPARSE APPROXIMATE INVERSE METHODS
(SPAI)

The design of robust preconditioners for solving boundary integral
equations can be a tough problem. Basic preconditioners like the
diagonal of A, diagonal blocks, or a band can be effective when the
coefficient matrix has some degree of diagonal dominance [7]; they are
generally unreliable at high frequencies when the coefficient matrices
become poorly diagonally dominant. Incomplete factorizations have
been successfully used on nonsymmetric integral equations [8] and
hybrid formulations [9], but on EFIE the triangular factors computed
by the factorization may be very ill-conditioned and the preconditioner
is useless [10]. However, we mention that successful experiments with
ILU-type preconditioners on EFIE are reported in [11, 12]. In this
study we consider a sparse approximate inverse preconditioner based
on Frobenius-norm minimization. The preconditioner is computed as
the matrix M that minimizes the Frobenius-norm of the error matrix
‖I −AM‖F , subject to certain sparsity constraints. The construction
reduces to solving n independent linear least-squares problems, one for
each column (resp. row) of M when preconditioning from the right
(resp. left). The independence of these least-squares problems follows
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from the identity:

‖I −AM‖2
F =

n∑
j=1

‖ej −Am•j‖2
2, (2)

where ej is the jth canonical unit vector and m•j is the column vector
representing the jth column of M . Both the construction and the
application of M are embarrassingly parallel. The primary motivation
to consider approximate inverse preconditioners is to exploit the rapid
decay of the discrete Green’s function. As shown in Figure 1, only a
very small number of entries in the exact inverse have large magnitude
compared to most of the others that are much smaller. This means that
a very sparse matrix is likely to retain the most relevant contributions
to the inverse. The sparsity pattern of M can be computed adaptively
during the computation ofM itself (see e.g., [16]) or prescribed a priori
based on some heuristics. We compute the pattern in advance using
graph information from the mesh, by selecting for the jth column of
the approximate inverse edge j and its qth level nearest-neighbors.
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Figure 1. Sparsity pattern of sparsified (A−1).

In the last twenty years, fertile research efforts have led to the
development of fast hierarchical methods for performing approximate
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matrix-vector products with boundary integral operators (see e.g., [14–
19]), including reliable implementations on distributed memory
computers [4, 20]. Hierarchical methods partition the mesh of the
object by recursive subdivision into disjoint aggregates or boxes of
small size compared to the wavelength, each roughly formed by an
equal number of separate triangles. The box-wise decomposition of
the object naturally leads to an a priori pattern selection strategy
for the approximate inverse using geometric information, that is on
the spatial distribution of the degrees of freedom. In the context
of fast methods we will adopt the following criterion: the nonzero
structure of the column of the preconditioner associated with a given
edge in the mesh is defined by retaining all the edges within the
box itself and one level of neighboring boxes. The preconditioner
is constructed from a sparse approximation of the dense coefficient
matrix, computed by retaining the entries associated with edges
included in the given box as well as those belonging to two levels of
neighbors. Thus the approximate inverse has a sparse block structure;
each block is a dense matrix associated with one box. Indeed the
least-squares problems corresponding to edges within the same box are
identical because they are defined using the same nonzero structure
and the same set of entries of A. It means that we only have
to compute one QR factorization per box. In our implementation
the size of the smallest boxes in the partitioning associated with
the preconditioner is a user-defined parameter that can be tuned to
control the number of nonzeros computed per column, that is the
density of the preconditioner. According to our criterion, the larger
the size of the boxes, the larger the geometric neighborhood that
determines the sparsity structure of the columns of the preconditioner.
Parallelism can be exploited by assigning disjoint subsets of boxes
to different processors and performing the least-squares solutions
independently on each processor. We refer to [21] for more algorithmic
and implementation details of the sparse approximate inverse.

To study the numerical behavior of the preconditioning algorithms
described in this paper, we consider a set of test examples
representative of calculations in electromagnetics applications. The
tests examples are defined by:
Example 1: a sphere of radius, a matrix of order n = 1080, see

Figure 2(a);
Example 2: a cylinder with a break on the surface, a matrix of order

n = 1299, see Figure 2(b);
Example 3: a Cetaf, typical test case in the electromagnetic

community representing the wing of an aircraft, a matrix of order
n = 86256, Figure 2(c);
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Example 4: an Airbus aircraft, a matrix of order n = 94704,
Figure 2(d);

(a) Example 1 (b) Example 2 

(c) Example 3 (d) Example 4

Figure 2. Mesh associated with test examples.

We mention that, for physical consistency, we have set the
frequency of the incident wave so that there are about ten discretization
points per wavelength [22]. In Table 1 we report on comparative results
with different preconditioners to compute the approximate solution on
the cylinder problem. This problem can be considered representative
of the general observed trend. In connection with GMRES, we
consider different standard preconditioners computed from a sparse
approximation Ã of the dense coefficient matrix, all having roughly
the same number of nonzero entries. In the table, we use the following
acronyms:
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• None, means that no preconditioner is used;
• Diag, the point-wise Jacobi preconditioner, i.e., a simple diagonal

scaling;
• SSOR, the symmetric successive overrelaxation method;
• ILU(0) [23], the incomplete LU factorization with zero level of

fill-in, i.e., taking for the factors the same sparsity pattern as Ã;
• SPAI [24], a sparse approximate inverse based on Frobenius-norm

minimization, with a static pattern selection strategy;
• AINV [25], a factorized approximate inverse preconditioner with

a dropping strategy based on value.

Table 1. Number of iterations using preconditioned GMRES on
a test problem, a cylinder with an open surface, discretized with
n = 1299 edges. The tolerance is set to 10−8. The results are for
right preconditioning.

Density of Ã = 3.18% - Density of M = 1.99%.

Precond. GMRES(30) GMRES(80) GMRES(∞)
None +1000 +1000 302
Diag +1000 +1000 272
SSOR +1000 717 184
ILU(0) +1000 454 135
SPAI 308 70 70
AINV +1000 +1000 +1000

From the numerical results reported in Table 1, we can observe
that approximate inverse methods are amongst the most effective
standard preconditioners on this problem class. On indefinite systems
they are less prone to instabilities than incomplete factorizations that
tend to compute very ill-conditioned factors and produce unstable
triangular solves in GMRES.

In Table 2 we show results of experiments on the numerical
scalability of the sparse approximate inverse on a set of test problems
arising from realistic radar cross section (RCS) calculations in industry.
Large problem size is obtained by increasing the value of the
frequency of the illuminating wave on the same obstacle. In these
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Table 2. Number of matrix-vector products and elapsed time required
to converge on the four problems on 8 processors of the Compaq
machine, except those marked with (k), that were run on k processors.
Tolerance for the iterative solution was 10−3. Acronyms: N.A. ≡ not
available. M.L.E. ≡ memory limits exceeded.

Cetaf

Size Density SPAI Time SPAI
GMRES(∞) GMRES(120)

Iter / Time Iter / Time

86256 0.18 4m 656 / 1h 25m 1546 / 1h 44m

134775 0.11 6m 618 / 1h 45m 1125 / 1h 55m

264156 0.06 13m 710 / 9h 1373 / 4h 46m

531900 0.03 20m 844 / 1d 18m 1717 / 14h 8m

1056636 0.01 37m +750 / +9h(32) +2000 / > 1d

Aircraft

Size Density SPAI Time SPAI
GMRES(∞) GMRES(120)

Iter / Time Iter / Time

94704 0.28 11m 746 / 2h 9m 1956 / 3h 13m

213084 0.13 31m 973 / 7h 19m +2000 / 7h 56m

591900 0.09 1h 30m 1461 / 16h 42m(64) +2000 / 1d 57m

1160124 0.02 3h 24m M.L.E.(64) / N.A. +2000 / > 4d

experiments we use the multilevel fast multipole algorithm (MLFMA)
[17] for performing approximate matrix-vector products. In the
last few years active research eorts have been devoted to develop
robust MLFMA techniques for solving high-frequency electromagnetic
scattering problems, including efficient implementations on parallel
computers (see e.g., [26–30]). Details of the implementation of our
multipole code are described in [11, 32]. In Table 2 we report on the
number of matrix-vector products using GMRES(30) with a required
accuracy of 10−3 on the normwise backward error ||r||

||b|| , where r denotes
the residual and b the right-hand side of the linear system. We remark
that this level of accuracy is in the same order of magnitude as the
relative error of the matrix-vector product operation in our multipole
code, estimated comparing with the level 2 BLAS routine GEMV on a
small setup. This tolerance is accurate for engineering purposes, as it
enables the correct construction of the radar cross section of the object.
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All the runs have been performed in single precision on eight processors
of a Compaq Alpha server. The Compaq Alpha server is a cluster of
Symmetric Multi-Processors. Each node consists of four DEC Alpha
processors (EV 6, 1.3 GFlops peak) that share 512 MB of memory. On
that computer, the temporary disk space that can be used by the out-
of-core solver is around 189 GB. Among all the possible right-hand sides
for each geometry, we have selected those that are the most difficult
to solve in order to better illustrate the robustness and the efficiency
of our preconditioner. The initial guess is the zero vector. In Table 2
“d” means day, “h” hour and “m” minute. We see that the numerical
behavior of the preconditioner does not scale well with the problem
size, especially GMRES(120) on the Cetaf, and there is no convergence
on the largest aircraft problems. For GMRES(∞) the increase in the
iteration count is less significant, even though on the Cetaf and the
aircraft convergence cannot be obtained because we either exceed the
memory limits of our computer or the time limit allocated to a single
run. From a timing point of view, we see that the solution time of
full GMRES is strongly affected by the orthogonalisation involved in
the Arnoldi procedure. On the Cetaf problem discretized with 531900
points, the number of iterations of GMRES(120) is twice as large with
respect to full GMRES, but GMRES(120) is about twice as cheap.
Provided we get convergence, the use of a large restart often reduces the
solution time even though it significantly deteriorates the convergence.
On the Cetaf geometry, the solution time for the GMRES method
increases superlinearly for small and medium problems, but nearly
quadratically for large problems. On the largest test case, discretized
with one million unknowns, unrestarted GMRES does not converge
after 750 iterations requiring more than nine hours of computation on
32 processors. The Airbus aircraft is very difficult to solve because
the mesh has many surface details and the discretization matrices
become ill-conditioned. On small and medium problems, the number
of GMRES iterations increases with the problem size, and the solution
time increases superlinearly. On the largest test case, discretized with
one million unknowns, full GMRES exceeds the memory limit on 64
processors. In this case, the use of large restarts (120 in this table)
does not enable convergence within 2000 iterations except on a small
mesh of size 94704. We see in Table 2 that our strategy for adjusting
the box dimension for increasing frequencies causes the density of the
sparse approximate inverse to decrease for increasing problem size.
The number of unknowns per box remains constant, but the number
of boxes increases leading to a decrease in density and to poorer
preconditioners. Finally, in Table 3, we show the parallel scalability of
the implementation of the preconditioner in the multipole code. We
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solve problems of increasing size on a larger number of processors,
keeping the number of unknowns per processor constant. It can be
observed the very good parallel scalability of the construction and of
the application of the preconditioner; for the matrix-vector product
operation, the nlogn factor appears in the results.

Table 3. Parallel scalability of the code on the aircraft problem.

Parallel scalability results

Problem

size
Nb procs

Construction

time (sec)

Elapsed time

precond (sec)

Elapsed time

mat-vec (sec)

112908 8 513 0.39 1.77

221952 16 497 0.43 2.15

342732 24 523 0.47 3.10

451632 32 509 0.48 2.80

900912 64 514 0.60 3.80

Remark. As mentioned already, our main focus is on linear
systems arising from EFIE. The advantages of this formulation are
numerous; in particular, it does not require any hypothesis on the
geometry of the objects. We should nevertheless mention that for
closed geometries the CFIE can also be used. The linear systems
arising from the CFIE formulation are much easier to solve. For
instance the solution of the problem associated with the aircraft
with 213084 degrees of freedom requires only 129 iterations of
unpreconditioned full GMRES, and 22 iterations of preconditioned full
GMRES. Furthermore, preconditioned full GMRES converges in 24
iterations on the aircraft with more than a million degrees of freedom.
Because the linear systems arising from the CFIE are not challenging
from a linear algebra point of view, we do not consider them further
in this paper.

3. SPECTRAL DEFLATION

The Frobenius-norm minimization preconditioner succeeds in cluster-
ing most of the eigenvalues far from the origin. This can be observed
in Figure 3 where we see a big cluster near one in the spectrum of
the preconditioned matrix for a model problem that is representative
of the general trend. However, it tends to leave a few very small
eigenvalues close to the origin that can slow down the convergence
significantly (see [31]).
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Figure 3. Eigenvalue distribution for the coefficient matrix
preconditioned by the Frobenius-norm minimization method on a
model problem that is representative of the general trend.

In this section, we propose a refinement technique which enhances
the robustness of the approximate inverse by removing the effect of the
smallest eigenvalues in magnitude in the preconditioned matrix. The
proposed technique is based on the introduction of low-rank corrections
computed by using spectral information associated with the smallest
eigenvalues in MA. Roughly speaking, we solve the preconditioned
system exactly on a coarse space and use this information to update
the preconditioned residual.

We consider the linear system

Ax = b, (3)

where A is a n×n complex unsymmetrical nonsingular matrix, x and b
are vectors of size n. The linear system is solved using a preconditioned
Krylov solver and we denote by M1 the left preconditioner, meaning
that we solve

M1Ax =M1b. (4)

We assume that the preconditioned matrixM1A is diagonalizable,
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that is:

M1A = V ΛV −1, (5)

with Λ = diag(λi), where |λ1| ≤ . . . ≤ |λn| are the eigenvalues and
V = (vi) the associated right eigenvectors. We denote by U = (ui) the
associated left eigenvectors; we then have UHV = diag(uH

i vi), with
uH

i vi �= 0,∀i [32]. Let Vε be the set of right eigenvectors associated
with the set of eigenvalues λi with |λi| ≤ ε. Similarly, we define by Uε

the corresponding subset of left eigenvectors. The following results are
simple to derive.
Theorem 1 Let

Ac = UH
ε M1AVε,

Mc = VεA
−1
c U

H
ε M1

and
M =M1 +Mc.

Then MA is diagonalisable and we have MA = V diag(ηi)V −1

with {
ηi = λi if |λi| > ε,
ηi = 1 + λi if |λi| ≤ ε.

Ac represents the projection of the matrix M1A on the coarse space
defined by the approximate eigenvectors associated with its smallest
eigenvalues.
Theorem 2 Let W be such that

Ãc = WHAVε has full rank,
M̃c = VεÃ

−1
c W

H

and
M̃ =M1 + M̃c.

Then M̃A is similar to a matrix whose eigenvalues are{
ηi = λi if |λi| > ε,
ηi = 1 + λi if |λi| ≤ ε.

For right preconditioning, that is AM1y = b, similar results hold.
Lemma 1 Let

Ac = UH
ε AM1Vε,

Mc = M1VεA
−1
c U

H
ε



Progress In Electromagnetics Research, PIER 79, 2008 163

and
M =M1 +Mc.

Then AM is diagonalisable and we have AM = V diag(ηi)V −1 with
{
ηi = λi if |λi| > ε,
ηi = 1 + λi if |λi| ≤ ε.

Lemma 2 Let W be such that

Ãc = WHAM1Vε has full rank,
M̃c = M1VεÃ

−1
c W

H

and
M̃ =M1 + M̃c.

Then AM̃ is similar to a matrix whose eigenvalues are
{
ηi = λi if |λi| > ε,
ηi = 1 + λi if |λi| ≤ ε.

We should point out that in the nonsymmetric case a natural
choice exists for the operator W , i.e., to select W = Vε, that saves the
computation of left eigenvectors. We also mention that an additional
scaling can be introduced in the low-rank update so that the k
smallest eigenvalues are not just shifted by one, but rather are all
transformed to one with multiplicity equal to k. This feature can
be obtained by using Mc = Vε(I − Dε)A−1

c U
H
ε in Proposition 1, and

Mc = Vε(I − Dε)A−1
c W

H in Proposition 2. Similar transformations
can be applied to get the same property for right preconditioning. We
report on experiments to illustrate the effectiveness of the spectral
preconditioning updates when used to accelerate restarted GMRES.
For ease of presentation, we compute the eigenpairs in a preprocessing
step, that is before solving the linear system. We mention that the
standard implementation of the GMRES algorithm is based on the
Arnoldi process, and this allows us to recover spectral information of
A during the iterations [33]. We use the IRA method implemented in
the ARPACK package [34] to compute approximations to the smallest
eigenvalues and their corresponding approximate eigenvectors. This
makes the preconditioner independent of the Krylov solver. We
consider the formulation described in Proposition 2 that requires
computation of only right eigenvectors and we apply the spectral
updates on top of the preconditioned system AM1x = b. The first
level preconditioner M1 is the Frobenius-norm minimization method
introduced earlier. All the numerical experiments are performed in
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Table 4. Number of iterations required by GMRES preconditioned
by a Frobenius-norm minimization method updated with spectral
corrections to reduce the normwise backward error by 10−8 for
increasing size of the coarse space.

Cylinder problem

Size of the
coarse space

GMRES(m), Toler. 1e-8

m=10 m=30 m=50 m=80 m=110
0 +500 +500 496 311 198
4 279 192 152 125 93
8 188 147 129 90 84

12 196 148 131 91 83
16 183 137 114 74 74
20 168 130 100 69 69

Sphere problem

Size of the
coarse space

GMRES(m), Toler. 1e-8

m=10 m=30 m=50 m=80 m=110
0 297 87 75 66 66
4 345 66 64 58 58
8 55 43 40 40 40

12 52 43 38 38 38
16 52 44 39 39 39
20 53 45 40 40 40

double precision complex arithmetic on a SGI Origin 2000 and the
number of iterations are for right preconditioning. In Table 4 we show
the number of iterations required by GMRES to obtain convergence
for increasing size of the coarse space up to twenty on the cylinder
problem and on the sphere. In these experiments, the small problem
size enables us to carry out the matrix-vector products exactly, i.e.,
using the level 2 BLAS routine GEMV. Thus the tolerance adopted
in the stopping criterion for GMRES, that is related to the normwise
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Table 5. Effect of shifting the eigenvalues nearest zero on the
convergence of GMRES(30). We show the magnitude of successively
shifted eigenvalues and the number of iterations required when these
eigenvalues are shifted.

Cylinder problem

Nr of shifted

Eigenvalues

Magnitude of

the eigenvalue

GMRES(30)

Toler = 10−8

0 +1500

1 7.1116e-04 215

2 4.9685e-02 202

3 5.2737e-02 193

4 6.3989e-02 192

5 7.0395e-02 190

6 7.7396e-02 189

7 7.8442e-02 161

8 8.9548e-02 147

9 9.1598e-02 146

10 9.9216e-02 144

Sphere problem

Nr of shifted

Eigenvalues

Magnitude of

the eigenvalue

GMRES(30)

Toler = 10−8

0 87

1 8.7837e-03 79

2 8.7968e-03 79

3 8.7993e-03 66

4 9.8873e-03 66

5 9.9015e-03 66

6 9.9053e-03 66

7 9.9126e-03 43

8 2.3331e-01 43

9 2.4811e-01 43

10 2.4813e-01 44
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backward error, is significantly smaller than in the runs with MLFMA
reported in the previous section. We can see that the introduction of
the low-rank updates can remarkably accelerate the iterative solution.
By selecting up to ten eigenpairs the number of iterations decreases by
at least a factor of two. On the cylinder problem the preconditioning
updates enable fast convergence of GMRES with a low restart whereas
no convergence was obtained in 1500 iterations without updates.
The remarkable robustness of the preconditioner enables the use of
very small restarts for GMRES. We observe that the gain in terms
of iterations is strongly related to the magnitude of the shifted
eigenvalues. A speedup in convergence is obtained when a full cluster
of small eigenvalues is completely removed from the spectrum. This is
illustrated in Tables 5 where we show the effect of deflating eigenvalues
of increasing magnitude on the convergence of GMRES(30). On the
cylinder, the presence of one very small eigenvalue slows down the
convergence significantly. Once this eigenvalue is shifted, the number
of iterations rapidly decreases. On the sphere, there is a cluster of seven
eigenvalues of magnitude around 10−3. When the eigenvalues within
the cluster are shifted, a quick speedup of convergence is observed; the
shifting of the remaining eigenvalues does not have any impact on the
convergence.

The application of the correction update at each iteration step
costs 2nk + k2, where k is the size of the coarse space. The setup of
the preconditioner is more expensive. In Table 6 we show the number
of matrix-vector products required by the ARPACK implementation
of the IRA method to compute the smallest approximate eigenvalues
and the associated approximate right eigenvectors. The matrix-vector
products do not include those required for the iterative solution. We
see that the computation can be fairly expensive but the cost can
be amortized if the preconditioner is reused to solve linear systems
with the same coefficient matrix and several right-hand sides. This
is the typical scenario in realistic electromagnetic simulations. In
bistatic radar cross section calculations, linear systems with the same
coefficient matrix and up to hundreds of different right-hand sides
are solved, ranging over the complete set of directions between the
transmitter and the receiver. In Table 6 we also show the number of
amortization vectors relative to GMRES(10), that is the number of
right-hand sides that have to be considered to amortize the extra cost
for the eigencomputation.

A multilevel algorithm based on spectral deflation is introduced
in [35]; the idea is inherited from standard two-grid cycles that are fully
defined by the selection of the coarse grid, the choice of the smoother
applied on the fine grid and of the grid transfer operators to move
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Table 6. Number of matrix-vector products required by the IRA
algorithm to compute approximate eigenvalues nearest zero and the
corresponding right eigenvectors.

Cost of spectral deflation

Size of the
coarse space

M-V products Amortization

Cylinder Sphere Cylinder Sphere
4 469 103 1 -
8 333 105 1 1

12 579 131 1 1
16 1053 237 1 1
20 1066 220 1 1

between fine and coarse grid. In [35], the preconditioner M is used
to define a weighted stationary method that implements the smoother
and the coarse space is defined using a Galerkin formula Ac = RHAP ,
where R and P are the restriction and the prolongation operator,
respectively. After µ smoothing steps, the residual is projected into
the coarse subspace by means of the operator R and the coarse space
error equation involving Ac = RHAP is solved exactly. Finally, the
error is prolongated back in the original space using the operator P and
the new approximation is smoothed again. These two contributions
are summed together for the solution update. We define the grid-
transfer operators algebraically, and select P = Vε to be the set of
right eigenvectors associated with the set of eigenvalues λi of M1A
with |λi| ≤ ε. For the restriction operator, a natural choice is to select
R =W orthogonal to Vε (i.e.,WHVε = I). Following [36, 37], we define
the filtering operators using the grid transfer operators as (I−VεW

H).
Thus we have (I−VεW

H)Vε = 0 and the filtering operator is supposed
to remove all the components of the preconditioned residual in the Vε

directions. The coarse grid correction computes components of the
residual in the space spanned by the eigenvectors associated with the
few selected small eigenvalues, while at the end of the smoothing step
the preconditioned residual is filtered so that only components in the
complementary subspace are retained. The preconditioner constructed
using this scheme depends on A, M1, µ, ω > 0. For the sake of
simplicity of exposure, we will simply denote it by MAdd(A,M1). A
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sketch of the algorithm is presented in Figure 4. It takes as input
a vector r that is the residual vector we want to precondition, and
returns as output the preconditioned residual vector z.

Figure 4. Additive two-grid spectral preconditioning. The algorithm.

Proposition 1 Let W be such that Ac = WHAVε has full rank and
satisfies (I − VεW

H)Vε = 0, the preconditioning operation described in
the algorithm of Figure 4 can be written in the form z =MAdd r. After
one cycle (iter = 1), MAdd has the following expression:

MAdd = VεA
−1
c W

H + (I − VεW
H)(I − (I − ωM1)µ)A−1. (6)

In the following proposition we examine the effect of MAdd on the
spectrum of the preconditioned matrix. As before, we assume that
M1A has a standard eigendecomposition

M1A = V ΛV −1, (7)



Progress In Electromagnetics Research, PIER 79, 2008 169

with Λ = diag(λi), where |λ1| ≤ . . . ≤ |λn| are the eigenvalues and
V = (vi) the associated right eigenvectors. We denote Vε be the set
of right eigenvectors associated with the set of eigenvalues λi with
|λi| ≤ ε.
Proposition 2 The preconditioner MAdd defined by Proposition 1 is
such that the preconditioned matrix MAddA has eigenvalues:

{
ηi = 1 if |λi| ≤ ε,
ηi = 1 − (1 − ωλi)µ if |λi| > ε.

The effect of the coarse grid correction that shifts the smallest
eigenvalues to one combined with a few Richardson iterations that
cluster the rest of the spectrum can be beneficial in the presence of
outliers or many isolated eigenvalues. The price to pay are additional
matrix-vector products. Applying MAdd requires (µ−1)× iter matrix-
vector products withM1, and (µ×iter−1) products by A. The filtering
operation costs 2nk operations and the low frequency correction costs
2nk+k2, where k is the size of the coarse space. As µ, iter, k are O(1),
the overall cost of applying MAdd if O(n).

In Table 7 we show results of experiments on the Airbus
aircraft problem discretized with 23796 nodes. We have seen that,
although small, this problem is difficult to solve by iterative methods.
Using GMRES and the Frobenius-norm minimization preconditioner,
convergence is achieved only with large values of restart. It can be
observed that the use of MAdd is very beneficial. Using only ten
eigenvectors, the preconditioner enables to obtain convergence for very
small restart (i.e., low memory complexity). We note that the larger
the coarse space, the better the preconditioner; both the number of
GMRES iterations and the solution time decrease when the number of
smoothing steps is increased. Experiments on a larger set of problems
are found in [35, 38].

Table 7. Experiments with MAdd on the Airbus aircraft problem.

Airbus aircraft problem (size 94704)
With MSPAI GMRES(10) +4000 iterations

µ GMRES(10) CPU-time
1 1835 1h07m

2 807 36m

3 368 22m
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Figure 5. Inner-outer solution schemes in the multipole context.
Sketch of the algorithm.

4. INNER-OUTER ITERATIVE SCHEMES

In this section we report on experiments with inner-outer solution
schemes implemented in the multipole context, with the intent of
recovering global information of the discrete Green’s function fort
solving large problems. The motivation that naturally leads us
to consider inner-outer schemes is to try to balance the locality
of the preconditioner with the use of the multipole matrix. The
underlying idea is simply to carry out a few steps of an inner Krylov
method for the preconditioning operation. The overall algorithm
is sketched in Figure 5. The outer solver must be able to work
with variable preconditioners. Amongst various possibilities, we
mention FGMRES [39] and GMRES6 [40, p. 91]; this latter reduces
to GMRESR [41] when the inner solver is GMRES. The efficiency of
the proposed algorithm relies on two main factors: the inner solver has
to be preconditioned so that the residual in the inner iterations can
be significantly reduced in a few steps, and the matrix-vector products
within the inner and the outer solvers can be carried out with a different
accuracy. Experiments conducted in [42] with inner-outer schemes
combined with multipole techniques on the potential equation were
not entirely successful. In that case, no preconditioner was used in the
inner solver. The desirable feature of using different accuracies for the
matrix-vector products is enabled by the use of the MLFMA. In our
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scheme, a highly accurate MLFMA is used within the outer solver as
it governs the final accuracy of the computed solution. A less accurate
MLFMA is used within the inner solver as it is a preconditioner for the
outer scheme; in this respect the inner iterations only attempt to give a
rough approximation of the solution and consequently do not require an
accurate matrix-vector calculation. In fact, we solve a nearby system
for the preconditioning operation, that enables us to save considerable
computational effort during the iterative process as the less accurate
matrix-vector calculation requires about half of the computing time
of the accurate one. In Table 8, we show the average elapsed time in
seconds observed on eight processors for a matrix-vector product using
the MLFMA with different accuracy levels.

Table 8. Average elapsed time observed on eight processors in seconds
for a matrix-vector product using the MLFMA with different levels of
accuracy.

Cost of MLFMA
Geometry inner MLFMA outer MLFMA
Airbus 94704 3.5 4.8
Airbus 213084 6.9 11.8
Airbus 591900 17.4 30.2
Airbus 1160124 34.5 66.5

In the experiments reported in this section, we consider FGMRES
as the outer solver with an inner GMRES iteration preconditioned with
the Frobenius-norm minimization method. For the FGMRES method,
we consider the implementation described in [43]. The convergence
history of GMRES depicted in Figure 6 for different values of the
restart gives us some clues to the numerical behavior of the proposed
scheme. The residual of GMRES tends to decrease very rapidly in
the first few iterations independently of the restarts, then decreases
much more slowly, and finally stagnates to a value that depends on
the restart; the larger the restart, the lower the stagnation value. It
suggests that a few steps in the inner solver can be very effective for
obtaining a significant reduction of the initial residual. In Table 9, we
describe the results of experiments on an Airbus aircraft with 213084
points using different combinations of restarts for the inner and outer
solvers. If the number of inner steps is too small, the preconditioning
operation is poor and the convergence slows down, while too large
restarts of GMRES tend to increase the overall computational cost
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Figure 6. Convergence history of restarted GMRES for different
values of restart on the aircraft problem discretized with 94704 points.

but do not cause further reduction of the normwise backward error
at the beginning of convergence. The choice of the restart for the
outer solver depends to a large extent on the available memory of the
target machine and the difficulty of the problem at hand, an issue that
is also related to the illuminating direction of the incident wave that
defines the right-hand side. Amongst the various possibilities, we select
FGMRES(30) and GMRES(60) on the Airbus aircraft and the Cetaf
problem. These combinations are a good trade-off.

In Table 10 we show the results of experiments on the same
geometries that we considered in Section 2. We show the number of
inner and outer matrix-vector products and the elapsed time needed to
achieve convergence using a tolerance of 10−3 on eight processors of the
Compaq machine. In the runs, we use MLFMA for the matrix-vector
products. It can be seen that the combination FGMRES/GMRES
remarkably enhances the robustness of the preconditioner especially
on large problems. The increase in the number of outer iterations is
fairly modest except on the largest aircraft test cases. Nevertheless,
the scheme is the only one that enables us to get the solution of this
challenging problem since classical restarted GMRES does not converge
and full GMRES exceeds the memory of our computer. Similarly,
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Table 9. Global elapsed time and total number of matrix-vector
products required to converge on an Airbus aircraft with 213084 points
varying the inner restart parameter. The runs have been performed
on 8 processors of the Compaq machine.

restart

FGMRES

restart

GMRES

# total inner

mat-vec

# total outer

mat-vec
times

30 40 1960 51 4h 58m

30 50 1900 40 4h 53m

30 60 1920 34 4h 55m

30 70 2030 30 5h 13m

30 80 2240 29 5h 50m

Table 10. Number of matrix-vector products and elapsed time
required to converge on 8 processors of the Compaq machine. The
tests were run on 8 processors of the Compaq machine, except those
marked with (k), that were run on k processors.

Cetaf

Size Density SPAI Time SPAI
FGMRES(30)/GMRES(60)

Iter Time

86256 0.18 4m 17+ 960 55m

134775 0.11 6m 15+ 840 1h 19m

264156 0.06 13m 17+ 960 2h 22m

531900 0.03 20m 19+1080 6h

1056636 0.01 37m 22+1260 14h

Aircraft

Size Density SPAI Time SPAI
FGMRES(30)/GMRES(60)

Iter Time

94704 0.28 11m 27+1560 2h 14m

213084 0.13 31m 34+1920 5h

591900 0.09 1h 30m 57+3300 1d 9h 45m

1160124 0.02 3h 24m 51+2940 16h 41m(64)
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on the Cetaf discretized with one million points, the embedded
scheme enables us to get convergence in 22 outer iterations, whereas
GMRES(120) does not converge in 2000 iterations. The saving in time
is also noticeable. The gain ranges from two to four depending on the
geometry and tends to become larger when the problem size increases.

5. CONCLUSIONS

In this paper we have described an effective and inherently parallel
approximate inverse preconditioner based on a Frobenius-norm
minimization preconditioner, that can easily be implemented in a fast
multipole code. We have studied the numerical scalability of our
method for the solution of very large dense linear systems of equations
arising in realistic electromagnetic scattering simulations. We have
described multilevel strategies based on spectral preconditioning that
induce a global deflation of the eigenvalues of the preconditioned
matrix. The transformation can result in a well clustered spectrum
around one that is more amenable to iterative solvers. The experiments
show that the proposed scheme is fairly robust, requires limited
memory, is easy to combine with multipole techniques and is matrix-
free as it does not require the explicit computation of all the entries
of the coefficient of the linear system to solve. We have illustrated
how to improve the locality of the sparse approximate inverse on large
problems by embedding the preconditioner within inner-outer solution
schemes based on the GMRES method, implemented in a multipole
context using different levels of accuracy for the matrix-vector
products. We have shown that the combination FGMRES/GMRES
can effectively enhance the robustness of the preconditioner and reduce
significantly the computational cost and the storage requirements for
the solution of large problems.

Most of the experiments reported in this paper require a huge
amount of computation and storage, and they often reach the limits of
our target machine in terms of memory and disk storage. To give an
idea of how large these simulations are, the solution of systems with
one million unknowns using a direct method would require 8 Tbytes of
storage and 37 years of computation on one processor of the target
computer (assuming the computation runs at peak performance).
Such simulations are nowadays feasible thanks to the use of iterative
methods and can be integrated in the design processes where the
bottleneck moves from the simulation to the pre and post-processing
of the results as the tools are not yet available to easily manipulate
meshes with millions of degrees of freedom.
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