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Abstract—This work demonstrates an efficient and simple PML
absorbing boundary conditions (ABCs) implementation for the high-
order extended-stencil M24 FDTD algorithm. To accomplish this
objective, the integral forms of the PML split-field formulations were
derived and discretized using the same M24 weighted multiple-loop
approach, resulting in ABC performances that match the standard
FDTD-based PML formulations. This proposed approach eliminates
the impedance mismatches caused by switching from M24 to regular
FDTD update equations within the PML regions and the necessary
cumbersome subgridding implementations needed to minimize the
effects of these mismatches. It also eliminates the need to use large
separations between the scatterers and the PML regions as a simpler
though more costly alternative. This achievement coupled with the
recent effective resolution of the PEC modeling issue finally eliminates
the last hurdles hindering the wide adoption of the M24 algorithm
and its three-dimensional counterpart, the FV24 algorithm, as a
viable option for accurate and computationally efficient modeling of
electrically large structures.

1. INTRODUCTION

The perfectly-matched layer (PML) absorbing boundary condition
(ABC) introduced by Bérenger in 1994 [1] proved to be as versatile
and widely used as the FDTD method itself, for which it was
designed, as evidenced by the many and varied extensions and
specialized implementations in the literature [2–6]. Most of these
works, however, catered to the FDTD method in its standard form
(S22 for second-order finite differencing in both time and space of
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Maxwell’s equations). Consequently, the optimum PML parameters
proposed by the various researches and invariably used in later PML
applications as is (e.g., [7–10]) can only be relied upon for the S22

algorithm. In particular, only a few published works considered
investigating PML parameter sensitivities and trade-offs when used
in higher order FDTD implementations [11, 12]. The latter reference
in particular demonstrated the clear advantage of custom-optimized
PML parameters for high-order FDTD implementations, in that case
Fang’s standard fourth-order time and space finite-difference (or S44)
algorithm [13].

The highly phase-coherent M24 algorithm developed by Hadi and
Piket-May [14], which is the subject of this work, differs from other
high-order FDTD algorithms in that it relies strictly on the integral
form of Maxwell’s equations and thus cannot be implemented directly
within the PML region with its differential form-based formulations.
The workaround in [14] was to switch from M24 to S22 update equations
as soon as the PML inner boundaries are encountered. This transition
from one differencing scheme to another proved to be a major source of
spurious reflections as demonstrated by Hadi and Dib [15], especially
for waves impinging on the interface at steep angles. This phenomenon
necessitates large and computationally costly separations between the
scatterer and the PML layers to ensure that most outgoing energy will
impinge on the boundaries at angles within the relatively tame range
of ±75 degrees. For the wave propagation through a building problem
in [14] as an example, this meant an unwelcome increase of the total
modeled domain size to 48λ× 51λ even though the maximum building
dimensions were 22λ × 33λ. That amounted to more than three-fold
increase in both memory requirements and simulation times, just to
accommodate the absorbing boundary conditions.

In this presented work the PML split-field formulations will be
revisited and related to the integral forms of Maxwell’s equations.
The new forms will then be used to directly implement the M24
algorithm within the PML absorbing boundary conditions. Following
that, comparative sensitivity analysis of the various PML parameters
will be conducted for both M24 and the benchmark S22 algorithms to
validate the new formulations.

2. INTEGRAL EQUIVALENCE OF THE PML
SPLIT-FIELD DIFFERENTIAL EQUATIONS

Bérenger’s PML ABCs are based on the idea of splitting the differential
form of Maxwell’s equations into twin sets of equations that would
allow introducing independent PML loss profiles along the FDTD grid
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axial dimensions. Considering as an example the two dimensional TMz

equations (∂/∂z = 0)
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we can write the Bérenger twin-equation version of (1)
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with Ez = Ezx + Ezy in (2)–(3). These equations can be re-cast into
their integral forms as
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where Cx and Cy are the same square h×h FDTD loop that circulates
an Ez node in a standard staggered Yee cell, except that Cx includes
only the Hy tangential nodes and Cy includes only the Hx tangential
nodes as demonstrated in Fig. 1. Discretizing (5) according to these
loop definitions will produce the same Ezx and Ezy update equations
as those traditionally produced from (4)
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The remaining two TMz update equations are derived in a similar
manner,
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Figure 1. Ampere’s law representation of the PML split Ez =
Ezx + Ezy update equation: Cx loop for Ezx and Cy loop for Ezy.

In these equations, Holland’s exponential time-stepping formula [16]
was used to model the PML loss profiles and the electric and magnetic
conductivities are related by σ/ε = σ∗/µ as mandated by the PML
theory.

Using the loop integrals approach, however, is quite beneficial for
the M24 algorithm since it is strictly based on Maxwell’s integral
equation forms. The M24 algorithm, it must be remembered,
utilizes multiple weighted Ampere’s and Faraday’s loop integrals over
extended-stencil FDTD cells as shown in Fig. 2, where the weighting
coefficients Ka, Kb and Kc are tuning parameters that serve to
minimize the effect of numerical dispersion on wave propagation within
the discrete FDTD lattice. Dispersion analysis have shown [14] that for
the S22 algorithm to match the phase accuracy of the M24 algorithm,
it must use extremely fine resolution factors (R cells per wavelength)
in the order of

RS22 = R3
M24 and RS22 = R2

M24 (10)

for single-frequency and wideband applications, respectively.

3. EXTENDING THE M24 FORMULATION INTO THE
PML REGIONS

Using the split-loop approach of (5) we can write the M24-style
multiply-weighted formulas[
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which can be re-cast using Ampere’s law and with the help of Fig. 3
into
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The corresponding M24-PML update equations will now be
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The remaining two TMz update equations are derived in a similar
manner,
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Figure 2. Multiple weighted Ampere’s loops for updating a centered
Ez node in the M24 algorithm. A uniform ∆x = ∆y = h is assumed
and Ka = 1 − Kb − Kc.
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Figure 3. The split concentric Ampere’s loops for the M24-PML
cells. Ezx and Ezy occupy the same point in space. They are shifted
for illustration purposes only.
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Table 1. Kb and Kc values for the M24 algorithm which are applicable
within the PML regions.

R Kb Kc

5 −0.144931711 0.1020689016
10 −0.116192765 0.0734445091
20 −0.110322272 0.0678920244
30 −0.109282656 0.0669204693
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For simplicity, the K-parameters in the above equations are the
same ones used for the scatterer region and the reader is referred to
[14] for their calculation procedure.† Table 1 lists a few pre-calculated,
frequency-independent values for several FDTD resolutions. As for the
cells immediately adjacent to the PEC backplanes of the PMLs, the
specialized phase -matched update equations developed in [15] could be
used. If the M24-PML design parameters are properly chosen however,
opting for the simpler S22 update equations there should cause no ill-
effects. What remains now is to find appropriate PML parameters
that best fit the M24 algorithm which may not necessarily coincide
with those favorable to the S22 algorithm.

4. OPTIMUM M24-PML DESIGN PARAMETERS

The main PML parameters that need to be optimized for M24
algorithm implementations are the PML depth, d, the conductivity
profile order, n (polynomial profiles are assumed), and the target
† Thankfully, optimizing numerical isotropy is unnecessary within the PML regions.
Otherwise, the lossy version of the dispersion relation there would have needed to be
derived and used to calculate specific optimized K-parameters for each incremental PML
depth.
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theoretical reflection coefficient normal to the scatterer-PML interface,
R(0). All these parameters are interlinked through [1]

σ(ρ) = σmax

(
ρ

d

)n

(19)

and
R(0) = exp

[
− 2

n + 1
σmaxd

εc

]
, (20)

where ρ is the incremental depth of the PML layer starting at the
scatterer-PML interface and c is the vacuum wave velocity.

Following the example of Taflove [17], an experimental setup is
implemented to test the proposed M24-PML formulation where a point
source pulse is initiated at the center of an empty 100 by 50-cells-large
scatterer region surrounded by the absorbing boundary under test.
The same test parameters and observation procedure as in [17] are
followed and need not be repeated here. The only exception being that
an averaged normalized spurious reflection coefficients are calculated
from the entire length of the scatterer-PML bottom interface at one
cell away into the scatterer region and used as a comparison figure of
merit.

Fig. 4a demonstrates the clear advantage of the M24-PML
formulation presented in this work evidenced by a local spurious
reflections reduction of approximately 35 dB off the PML ABC,
compared to the hybrid scheme that uses M24 formulation for the
scatterer region and S22 for the PML regions. Furthermore, Fig. 4b
shows the excellent match between the spurious reflections levels
of the proposed M24-PML formulation and the standard S22-PML
formulation.

Fig. 5 illustrates the spurious reflections, averaged across the
bottom scatterer/PML interface, at several selections of PML depths
(d), target theoretical normal reflections (R(0)), and conductivity
profiles (n). Several observations can be made from these comparative
plots:
(i) In most combinations of d, R(0) and n, a close match is achieved

between the M24-PML and S22-PML performances. The only
exception being with the cubic conductivity profile (n = 3), where
the M24-PML formulation exhibits a slightly inferior performance
compared to that of the S22-PML. A possible explanations is the
inability of the extended-stencil M24 cells from closely tracking
the fast changing conductivity values from one incremental PML
depth to the next at such a steep profile.

(ii) Both formulations show limited sensitivities to the R(0) parameter
as long as the chosen value is within the range 10−6 to 10−8.
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Figure 4. Comparing the normalized spurious reflections off the
PML interface for the M24-PML, S22-PML and the hybrid M24 in
the scatterer region/S22 in the PML region. PML parameters used:
15-cell depth, R(0) = 10−7 and parabolic (n = 2) conductivity profile.
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(dashed) algorithms at several values of R(0), conductivity profile order
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150 Shreim and Hadi

(iii) The optimum M24-PML parameters are d = 12 to 15 cells, and
n = 3 (cubic conductivity profile).

(iv) For shallow M24-PML depths (under 6 cells deep), a parabolic
(n = 2) conductivity profile will out-perform the cubic profile.
Since the M24 algorithm is meant for modeling electrically large
structures however, choosing the larger optimum PML depths
above will only add a small percentage to the computational cost
of the model.

(v) Further analysis have shown that increasing the PML conductivity
profile order beyond n = 3 has limited or no added advantage for
either algorithm as illustrated in Fig. 6.

In all the above analysis a consistent FDTD grid resolution of R = 20
cells per wavelength was used.
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Figure 6. Comparison of spurious reflections for S22-PML and M24-
PML implementations. In each plot the four curves correspond to
(from top to bottom at 13 layers) n = 1, 2, 3, 4. R(0) = 10−6.

5. CONCLUSION

Although extended-stencil high-order algorithms such as the M24
formulation have consistently demonstrated superior phase accuracy,
they have long been suffering from neglect due to their inherent
modeling challenges around PEC and ABC boundaries. The PEC
modeling issue has been recently resolved in an efficient and simple
manner for the M24 algorithm, and the successful formulation was later
extended to its 3D version, the FV24 algorithm [18]. In this present
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work, the remaining challenge of absorbing boundary conditions has
also been solved in an efficient and simple manner. Through recasting
the Bérenger split-field formulations into their integral forms, the same
multiple loop formulations of the M24 algorithm were made possible
within the PML regions. This successful realization removed the highly
disruptive stipulation of having to stop the M24 update equations short
of the PML regions and switching to the lower order FDTD update
equations with the inevitable cross-scheme impedance mismatches.
With such effective resolutions to the PEC and ABC modeling issues,
the highly phase-coherent M24 (and FV24) algorithm can now be used
exclusively throughout the computational domain. Both developed
PEC and ABC solutions can also be easily adapted to other extended-
stencil high-order FDTD algorithms.
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1. Bérenger, J.-P., “A perfectly matched layer for the absorption
of electromagnetic waves,” Journal of Computational Physics,
Vol. 114, No. 2, 185–200, 1994.

2. Chew, W. C. and W. H. Weedon, “A 3D perfectly matched
medium from modified Maxwell’s equations with stretched
coordinates,” Microwave Opt. Technol. Lett., Vol. 7, No. 13, 599–
604, Sept. 1994.
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