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Abstract—This paper investigates the scattering of electromagnetic
plane wave from an impedance strip. Both E- and H-polarizations
are considered. The method of analysis is Kobayashi potential, which
uses the discontinuous properties of Weber-Schafheitlin’s integrals.
Imposition of boundary conditions result in dual integral equations.
Using the projection, equations reduces to matrix equations. The
elements are given in terms of infinite integrals that contains the
poles for particular values of surface impedance and these integrals
are computed numerically. Far diffracted fields in the upper half space
for different angles of incident are computed. To check the validity
of the results, we have derived the physical optics (PO) approximate
solutions. Numerical results for both the methods are compared. The
agreement is good. Current distribution on the strip is also presented.

1. INTRODUCTION

Scattering of electromagnetic waves from a strip is a classic problem in
electromagnetics. This has been the subject of many investigations [1–
10]. A variety of methods may be used to analyze the problem [11–18].
When the width of the strip is very large as compared to the operating
wavelength, high frequency approximate solution may be obtained by
using the concept of geometrical theory of diffraction (GTD) [19]. But
when the width is not large compared to the wavelength, numerical
approaches like the method of moment [8, 9, 20] are more reliable.
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Other methods like Wiener-Hopf [18, 21], Maliuzhinet’s techniques [22]
may be used to solve the problem.

In this paper, we have formulated the problem by applying the
Kobayashi potential method [23, 24]. This method has been applied to
various kinds of problems, such as the potential problems of electrified
circu-lar disks [25, 26], the diffraction of acoustic waves by a circular
disk and rectangular plate [27, 28], diffraction of electromagnetic plane
wave by rectangular plate and hole, parallel slits, disk and circular
hole [29–31]. In Kobayashi potential method, imposition of boundary
conditions give us the dual integral equations. These equations
are solved using the discontinuous properties of Weber-Schafheitlins
integrals [32]. Incorporating the edge conditions, we transform the
resulting expressions into the matrix equations. The elements of the
matrix are the infinite integrals which are difficult to solve analytically.
Numerical computations are con-ducted and results for impedance
strip obtained using Kobayashi method are compared with those based
on physical optics method.

2. FORMULATION

Consider an impedance strip of width 2a as shown in Figure 1. The
strip is excited by a uniform electromagnetic plane wave. φ0 is the
angle of incidence with the x-axis. Impedances of the upper and lower
surfaces of the strip are Z+ and Z− respectively. If Ei

z and H i
z be the

incident fields for E- and H-polarization respectively, then(
Ei

z
H i

z

)
= exp

[
jk(x cosφ0 + y sinφ0)

]
(1)

For simplicity we assumed the amplitude of the incident field is unity.
The corresponding diffracted fields may be expressed as(
Ed

z

Hd
z

)
=

∫ ∞

0

[
g1(ξ) cos(xaξ) + g2(ξ) sin(xaξ)

]
exp

[
−

√
ξ2 − κ2ya

]
dξ,

ya > 0 (2a)(
Ed

z

Hd
z

)
=

∫ ∞

0

[
h1(ξ) cos(xaξ) + h2(ξ) sin(xaξ)

]
exp

[√
ξ2 − κ2ya

]
dξ,

ya < 0 (2b)

Since in 2D problems, the wave in each polarization (E- and H-) does
not couple, we use the same symbols g(ξ) and h(ξ) for the unknown
functions. In the above equations xa = x

a and ya = y
a are the

normalized variables and κ = ka is the normalized wave number. We
consider each polarization separately.
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Figure 1. Geometry of the problem.

2.1. E-polarization

The required boundary conditions are given by

Et
z

∣∣∣
y=0+

= −Z+H
t
x

∣∣∣
y=0+

, Et
z

∣∣∣
y=0−

= Z−H
t
x

∣∣∣
y=0−

|xa| ≤ 1 (3a)

Et
z

∣∣∣
y=0+

= Et
z

∣∣∣
y=0−

, Ht
x

∣∣∣
y=0+

= Ht
x

∣∣∣
y=0−

|xa| ≥ 1 (3b)

where ‘t’ in superscript means total. From the condition (3b) we have∫ ∞

0

{[
g1(ξ) − h1(ξ)

]
cos(xaξ)

+
[
g2(ξ) − h2(ξ)

]
sin(xaξ)

}
dξ = 0 |xa| ≥ 1 (4a)∫ ∞

0

√
ξ2 − κ2

{[
g1(ξ) + h1(ξ)

]
cos(xaξ)

+
[
g2(ξ) + h2(ξ)

]
sin(xaξ)

}
dξ = 0 |xa| ≥ 1 (4b)

With the help of the discontinuous properties of the Weber-
Schafheitlin’s integrals, we can assume

g1(ξ) − h1(ξ) =
∞∑

m=0

AmJ2m+ 3
2
(ξ)ξ−

3
2 ,

g2(ξ) − h2(ξ) =
∞∑

m=0

BmJ2m+ 5
2
(ξ)ξ−

3
2 (5a)

g1(ξ) + h1(ξ) =
∞∑

m=0

Cm

J2m+ 1
2
(ξ)√

ξ2 − κ2
ξ−

1
2 ,

g2(ξ) + h2(ξ) =
∞∑

m=0

Dm

J2m+ 3
2
(ξ)√

ξ2 − κ2
ξ−

1
2 (5b)



306 Imran, Naqvi, and Hongo

where we have taken into account the edge conditions of Et
z and Ht

x.
From the condition (3a) we have∫ ∞

0

[
1 − j

ζ+
κ

√
ξ2 − κ2

] [
g1(ξ) cos(xaξ) + g2(ξ) sin(xaξ)

]
dξ

= −2
[
1 − ζ+ sinφ0

]
exp[jκxa cosφ0] (6a)∫ ∞

0

[
1 − j

ζ−
κ

√
ξ2 − κ2

] [
h1(ξ) cos(xaξ) + h2(ξ) sin(xaξ)

]
dξ

= −2
[
1 + ζ− sinφ0

]
exp[jκxa cosφ0] (6b)

for |xa| ≤ 1

In the above expression ζ± = Z±/Z0 and Z0 be the impedance of
free space. Now we substitute the weighting functions g1(ξ) ∼ h2(ξ)
determined from equations (5) into equations (4), comparing even
and odd functions and then project the resulting equations into the

functional space with elements p
± 1

2
n (x2

a). We have[
K+

RE,E

][
Am

]
+

[
G+

RE,E

][
Cm

]
= −[1 − ζ+ sinφ0]

[
JE

]
(7a)[

K−
RE,E

][
Am

]
−

[
G−

RE,E

][
Cm

]
= [1 + ζ− sinφ0]

[
JE

]
(7b)[

K+
RE,O

][
Bm

]
+

[
G+

RE,O

][
Dm

]
= −j[1 − ζ+ sinφ0]

[
JO

]
(7c)[

K−
RE,O

][
Bm

]
−

[
G−

RE,O

][
Dm

]
= j[1 + ζ− sinφ0]

[
JO

]
(7d)

where

cosx =
√
π

2
J− 1

2
(x), sinx =

√
π

2
J 1

2
(x)

and

x−m/2Jm(ξ
√
x) =

∞∑
n=0

2(2n+m+1)
γ(n+m+1)

Γ(n+1)Γ(m+1)
J2n+m+1(ξ)

ξ
pm

n (x)

pm
n (x) =

γ(n + 1)Γ(m + 1)
Γ(n + m + 1)

x−m/2
∫ ∞

0
Jm(

√
xξ)J2n+m+1(ξ)dξ

where the correspondence between the matrices and their elements are
given by [

K±
RE,E

]
⇐⇒ KRE

(
2n +

1
2
, 2m +

3
2
; ζ±

)
[
K±

RE,O

]
⇐⇒ KRE

(
2n +

3
2
, 2m +

5
2
; ζ±

)
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[
G±

RE,E

]
⇐⇒ GRE

(
2n +

1
2
, 2m +

1
2
; ζ±

)
(8a)

[
G±

RE,O

]
⇐⇒ GRE

(
2n +

3
2
, 2m +

3
2
; ζ±

)
[
JE

]
⇐⇒ 2

J2n+ 1
2
(κ cosφ0)

(κ cosφ0)
1
2

[
JO

]
⇐⇒ 2

J2n+ 3
2
(κ cosφ0)

(κ cosφ0)
1
2

and

KRE(m,n;ζ) =
∫ ∞

0

[
1 − j

ζ

κ

√
ξ2 − κ2

]
Jm(ξ)Jn(ξ)

ξ2
dξ

=
∫ ∞

0

Jm(ξ)Jn(ξ)
ξ2

dξ − j
ζ

κ
K(m,n)

=
4
π

sin
[
1
2
(m− n + 1)π

]
(m+n+1)(m+n−1)(n−m+1)(m−n+1)

−j
ζ

κ
K(m,n)

(8b)

GRE(m,n;ζ) =
∫ ∞

0

[
1 − j

ζ

κ

√
ξ2 − κ2

]
Jm(ξ)Jn(ξ)
ξ
√
ξ2 − κ2

dξ

=
∫ ∞

0

Jm(ξ)Jn(ξ)
ξ
√
ξ2 − κ2

dξ − j
ζ

κ

∫ ∞

0

Jm(ξ)Jn(ξ)
ξ

dξ

=
∫ ∞

0

Jm(ξ)Jn(ξ)
ξ
√
ξ2 − κ2

dξ − j
ζ

κ

sin
[
1
2
(m− n)π

]
m2 − n2

(8c)

where
K(m,n) =

∫ ∞

0

√
ξ2 − κ2

Jm(ξ)Jn(ξ)
ξ2

dξ

Equations (7) may be rewritten as
{[

K+
RE,E

]−1[
G−

RE,E

]
+

[
K+

RE,E

]−1[
G−

RE,E

]}[
Cm

]
= −

{
[1 − ζ+ sinφ0]

[
K+

RE,E

]−1
+[1+ζ− sinφ0]

[
K+

RE,E

]−1}[
JE

]
[
Am

]
= −

[
K+

RE,E

]−1[
G+

RE,E

][
Cm

]
− [1 − ζ+ sinφ0]

[
K+

RE,E

]−1[
JE

]
{[

K+
RE,O

]−1[
G−

RE,O

]
+

[
K+

RE,OE

]−1[
G−

RE,O

]}[
Dm

]
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= −j
{
[1−ζ+ sinφ0]

[
K+

RE,O

]−1
+[1 + ζ− sinφ0]

[
K+

RE,O

]−1}[
JO

]
[
Bm

]
= −

[
K+

RE,O

]−1[
G+

RO,E

][
Dm

]
− j[1 − ζ+ sinφ0]

[
K+

RE,O

]−1[
JO

]
(9)

For the case of ζ+ = ζ− = ζ, equations (7) or (9) reduce to[
Am

]
= ζ sinφ0

[
KRE,E

]−1[
JE

]
,

[
Bm

]
= jζ sinφ0

[
KRE,O

]−1[
JO

]
(10a)[

Cm

]
= −

[
G±

RE,E

]−1[
JE

]
,

[
Dm

]
= −j

[
G±

RE,O

]−1[
JO

]
(10b)

Far scattered field in the upper region can be evaluated by
applying the saddle point method of integration. The result is given
by

Ed
z =

1
2

∞∑
m=0

∫ ∞

0

{[
Am

J2m+ 3
2
(ξ)

ξ
3
2

+ Cm

J2m+ 1
2
(ξ)√

ξ(ξ2 − κ2)

]
cos(xaξ)

+

[
Bm

J2m+ 5
2
(ξ)

ξ
3
2

+ Dm

J2m+ 3
2
(ξ)√

ξ(ξ2 − κ2)

]
sin(xaξ)

}

× exp
[
−

√
ξ2 − κ2ya

]
dξ

=
√
π

8
1√
kρ

exp
[
−jkρ + j

π

4

] ∞∑
m=0

{[
AmJ2m+ 3

2
(κ cosφ)

+BmJ2m+ 5
2
(κ cosφ)

]
tanφ

−j
[
CmJ2m+ 1

2
(κ cosφ)+DmJ2m+ 3

2
(κ cosφ)

]}
(κ cosφ)−

1
2 (11a)

where ξ = κ cosφ. And expansion coefficients Am, Bm, Cm, Dm can
be obtained from equations (10). The current density induced on the
impedance strip is obtained as follows.

Jz = −
[
Ht

x

∣∣∣
y=0+

−[Ht
x

∣∣∣
y=0−

]

=
jY0

κ

∞∑
m=0

∫ ∞

0

[
CmJ2m+ 1

2
(ξ) cos(xaξ)+DmJ2m+ 3

2
(ξ) sin(xaξ)

]
ξ−

1
2dξ

=
jY0√
2κ

∞∑
m=0

Γ(m + 1
2)

Γ(m + 1)

{
Cmp

− 1
2

m (x2
a) + xa(2m + 1)Dmp

1
2
m(x2

a)
}

(11b)
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2.2. H-polarization

The required boundary conditions of this problem are given by

Et
x

∣∣∣
y=0+

= Z+H
t
z

∣∣∣
y=0+

, Et
x

∣∣∣
y=0−

= −Z−H
t
z

∣∣∣
y=0−

|xa| ≤ 1 (12a)

Et
x

∣∣∣
y=0+

= Et
x

∣∣∣
y=0−

, Ht
z

∣∣∣
y=0+

= Ht
z

∣∣∣
y=0−

|xa| ≥ 1 (12b)

The incident wave is given by (1) and the diffracted wave is given by
(2). From the condition (12b) we have we have the same equations as
(4) and g1(ξ) ∼ h2(ξ) are given by (5). From the condition (12a) we
have∫ ∞

0

[√
ξ2 − κ2 + jκζ+

] [
g1(ξ) cos(xaξ) + g2(ξ) sin(xaξ)

]
dξ

= jκ(sinφ0 − ζ+) exp(jκxa cosφ0) (13a)∫ ∞

0

[√
ξ2 − κ2 + jκζ−

] [
h1(ξ) cos(xaξ) + h2(ξ) sin(xaξ)

]
dξ

= −jκ(sinφ0 + ζ−) exp(jκxa cosφ0) for |xa| ≤ 1 (13b)

We substitute the weighting functions g1(ξ) ∼ h2(ξ) of (13)
determined by (5) and we project the resulting equations into the

functional space with elements p
± 1

2
n (x2

a). Then we have[
K+

RH,E

][
Am

]
+

[
G+

RH,E

][
Cm

]
= j[sinφ0 − ζ+]

[
JE

]
,[

K−
RH,E

][
Am

]
−

[
G−

RH,E

][
Cm

]
= j[sinφ0 + ζ−]

[
JE

]
(14a)[

K+
RH,O

][
Bm

]
+

[
G+

RH,O

][
Dm

]
= −[sinφ0 − ζ+]

[
JO

]
,[

K−
RH,O

][
Bm

]
−

[
G−

RH,O

][
Dm

]
= −[sinφ0 + ζ−]

[
JO

]
(14b)

where the correspondence between the matrices and their elements are
given by

[
K±

RH,E

]
⇐⇒ KRH

(
2n +

1
2
, 2m +

3
2
; ζ±

)
[
K±

RH,O

]
⇐⇒ KRH

(
2n +

3
2
, 2m +

5
2
; ζ±

)
[
G±

RH,E

]
⇐⇒ GRH

(
2n +

1
2
, 2m +

1
2
; ζ±

)
[
G±

RH,O

]
⇐⇒ GRH

(
2n +

3
2
, 2m +

3
2
; ζ±

)
(15)
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[
JE

]
⇐⇒ 2κ

J2n+ 1
2
(κ cosφ0)

(κ cosφ0)
1
2

[
JO

]
⇐⇒ 2κ

J2n+ 3
2
(κ cosφ0)

(κ cosφ0)
1
2

and

KRH(m,n; ζ) =
∫ ∞

0

[
jζκ +

√
ξ2 − κ2

]
Jm(ξ)Jn(ξ)

ξ2
dξ

= jζκ

∫ ∞

0

Jm(ξ)Jn(ξ)
ξ2

dξ + K(m,n) (16a)

GRH(m,n; ζ) = jζκ

∫ ∞

0

Jm(ξ)Jn(ξ)
ξ
√
ξ2 − κ2

dξ +
∫ ∞

0

Jm(ξ)Jn(ξ)
ξ

dξ (16b)

{[
K+

RH,E

]−1[
G+

RH,E

]
+

[
K−

RH,E

]−1[
G−

RH,E

]}[
Cm

]
= j

{
[sinφ0 − ζ+]

[
K+

RH,E

]−1
+ [sinφ0 + ζ−]

[
K+

RH,E

]−1}[
JE

]
[
Am

]
= −

[
K+

RH,E

]−1[
G+

RH,E

][
Cm

]
+ j[sinφ0 − ζ+]

[
K+

RH,E

]−1[
JE

]
{[

K+
RH,O

]−1[
G+

RH,O

]
+

[
K−

RH,O

]−1[
G−

RH,O

]}[
Dm

]
=

{
−[sinφ0 − ζ+]

[
K+

RH,O

]−1
+ [sinφ0 + ζ−]

[
K−

RH,O

]−1}[
JO

]
[
Bm

]
= −

[
K+

RH,O

]−1[
G+

RH,O

][
Dm

]
− [sinφ0 − ζ+]

[
K+

RH,O

]−1[
JO

]
(17)

For the case of ζ+ = ζ− = ζ, Equations (17) reduce to
[
Am

]
= j sinφ0

[
K±

RH,E

]−1[
JE

] [
Bm

]
= − sinφ0

[
K±

RH,O

]−1[
JO

]
(18a)[

Cm

]
= −jζ

[
G±

RH,E

]−1[
JE

] [
Dm

]
= ζ

[
G±

RH,O

]−1[
JO

]
(18b)

Far scattered field in the upper region can be evaluated by applying the
saddle point method of integration and the result has the same form
as (11a), but the expansion coefficients Am ∼ Dm are given by (17) or
(18), instead of (10). The current density induced on the impedance
strip is obtained as follows.
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Jx = Ht
z

∣∣∣
y=0+

−Ht
z

∣∣∣
y=0−

=
∞∑

m=0

∫ ∞

0

[
Am

J2m+ 3
2
(ξ)

ξ
3
2

cos(xaξ) + Bm

J2m+ 5
2
(ξ)

ξ
3
2

sin(xaξ)

]
dξ

=
1√
2

∞∑
m=0

Γ
(
m +

1
2

)
Γ(m + 1)




Am

4m + 3


p− 1

2
m (x2

a) +
m +

1
2

m + 1
p
− 1

2
m+1(x

2
a)




+ xa
2m + 1
4m + 3

Bm


p 1

2
m(x2

a) +
m +

3
2

m + 1
p

1
2
m+1(x

2
a)





 (19)

3. PHYSICAL OPTICS APPROXIMATE SOLUTIONS

We consider here physical optics solutions for comparison with the
previous solutions.

3.1. E-polarization

The total field on the strip is

Et
z =

2ζ+ sinφ0

1 + ζ+ sinφ0
exp(jkx cosφ0) (20a)

Ht
x = − 2Y0 sinφ0

1 + ζ+ sinφ0
exp(jkx cosφ0) (20b)

The equivalent currents are

Mx = −Et
z, Jz = −Ht

x (20c)

Far field expression of the vector potential is given by

Az =
µY0

j2
Q0C(kρ)

∫ a

−a
exp

[
jk(cosφ + cosφ0)x′

]
dx′

=
µY0

j2
Q0C(kρ)S0(φ),

Fx = −εζ+
j2

Q0C(kρ)
∫ a

−a
exp

[
jk(cosφ + cosφ0)x′

]
dx′

= −εζ+
j2

Q0C(kρ)S0(φ) (21)
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Az and Fx are the components of magnetic and electric vector potential
respectively.

Q0 =
2 sinφ0

1 + ζ+ sinφ0
, C(kρ) =

√
2

πkρ
exp

(
−jkρ + j

π

4

)
.

Thus far electric field is derived as

Ez = −jωAz +
1
ε

∂Fx

∂y
= −k

4
(1 − ζ+ sinφ)Q0C(kρ)S0(φ)

= − 1 − ζ+ sinφ
1 + ζ+ sinφ0

ka sinφ0

√
2

πkρ

× exp
(
−jkρ + j

π

4

)
sinc

[
ka(cosφ + cosφ0)

]
(22)

3.2. H-polarization

The total field on the strip is

Ht
z =

2 sinφ0

ζ+ + sinφ0
exp(jkx cosφ0) (23a)

Et
x = Z0

2ζ+ sinφ0

ζ+ + sinφ0
exp(jkx cosφ0) (23b)

The equivalent currents are

Jx = −Ht
z, Mz = Et

x (23c)

Far field expression of the vector potential is given by

Ax =
µ

j2
Q1C(kρ)S0(φ) (24a)

Fz =
εζ+
j2

Z0Q1C(kρ)S0(φ) (24b)

where Q1 = 2 sin φ0

ζ++sin φ0
, C(kρ) =

√
2

πkρ exp
(
−jkρ + j π

4

)
. Thus far

magnetic field is derived as

Ez = −jωFz −
1
µ

∂Fx

∂y
=

k

4
(sinφ− ζ+)Q1C(kρ)S0(φ)

= − ζ+ − sinφ
ζ+ + sinφ0

ka sinφ0

√
2

πkρ

× exp
(
−jkρ + j

π

4

)
sinc

[
ka(cosφ + cosφ0)

]
(25)
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Figure 2. Comparison of diffracted field patterns for normal
incidence.
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Figure 3. Far diffracted fields in the upper half plane for φ0 = 60.
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Figure 4. Comparison between the two methods for φ0 = 90.
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Figure 6. Current distribution on the strip (E-polarization).
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4. NUMERICAL RESULTS AND DISCUSSION

To study the scattering properties of impedance strip, expansion
coefficients Am ∼ Dm are computed, for large number of ’m’ values,
using equations (10) for E-polarization and equations (18) for H-
polarization. Far diffracted fields are computed using these expansion
coefficients in equation (11a) for both the cases. Fig. 2 and Fig. 3
gives the far field patterns for different values of angle of incidence and
κ = 4.0, ζ = 0.1+0.3i. Line plots with circled symbols corresponds to
kobayashi potential while Line plots with blocked symbols corresponds
to physical optics. To check the validity of these results, we compared
them with those of obtained using physical optics equation (22). Fig. 4
and Fig. 5 give the diffracted patterns and their comparisons for h-
polarization case corresponding to φ0 = π/2 and φ0 = π/3, κ =
4.0, ζ = 0.1 + 0.3i with those obtained using PO equation (25). Fig.
6 and Fig. 7 show the numerical results for current distribution on the
strip obtained from equation (11b) for E-polarization and equation (19)
for H-polarization. The results are as expected.
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