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Abstract—A rigorous solution in L2 to the EFIE for 2-D screens
is developed and proposed as a reference solution for testing the
convergence rate and scattering amplitude error of any MoM algorithm
in L2. The proposed reference solution permits to choose judiciously
an appropriate mesh density for a MoM algorithm instead of using
the ten-points-rule in all cases. Additionally, using the reference
solution it is demonstrated that the discrepancy should not be used as
a performance value of the scattering amplitude error while solving the
EFIE with the MoM in L2. Both the E- and H-cases are considered.

1. INTRODUCTION

Recently, we can observe an explicit shift in practical investigations
from experimental modeling to computer simulation. In this
connection, an experimentalist has the need for adequate and cheap
method, which permits to provide such a simulation. Nowadays,
to provide computer simulations in electromagnetics practitioners
frequently use the MoM solution to boundary integral equations.

The method of moments (MoM) for solving surface integral
equations in scattering problems is widely used in computational
electromagnetics. At that, the appropriate 2-d kind equations can
be solved without significant computational problems, but they do not
applicable to screens. For these ones, first kind integral equations
are frequently used in practice. The convergence problem for MoM
solutions to the electric field integral equations (EFIE) was not
solved for a long time until landmark works [1–5] was published.
In these works, both the convergence of a MoM algorithm and the
boundness of MoM matrix condition number were proved in fractional
order Sobolev spaces. Unfortunately, a theoretical analysis for MoM
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solutions to the first kind integral equations in the Sobolev spaces does
not permit to estimate a magnitude of an actual error and hence a
scattering amplitude error. Besides, the usage of an inner product
in the appropriate Sobolev space leads to dramatic increasing in
computational burden. This issue prevents from wide dissemination of
this method. Because of that, practitioners use the MoM algorithms in
the common space of square integrable functions (L2) with preliminary
extraction of edge singularities. This issue reduces significantly the
computational complexity of scattering problems but in the same time
causes the convergence problem of MoM algorithms in L2 and the
problem of poor conditioning of MoM matrices. Besides, the scattering
amplitude error estimation problem remains unsolved.

As to the convergence problem for two-dimensional E-screens, the
proved convergence of a MoM algorithm in the Sobolev space H−1/2

ensures the convergence in L2 because L2 is smaller than H−1/2. Worth
noting that for H-screens, the proved convergence in H1/2 does not
ensure the convergence in L2 because L2 ⊃ H1/2.

Additionally, in the both E- and H-cases, transition from the
Sobolev space to L2 in the moment’s method gives rise to a new
problem: the condition number of a MoM matrix in L2 increases with
mesh density and electrical size of the scatterer. Also remains the
actual error estimation problem and hence the problem estimation of
scattering amplitude errors.

Recently, some authors have pointed out the lack of investigation
of these problems for the MoM algorithms in L2 [6–10]. Because of
that, the detailed investigation of solution errors for the Dirichlet and
Neumann problems for closed contour and screens has been provided
in these works. So, in the work [8] authors have obtained theoretical
estimates of actual errors and scattering amplitude errors for closed
perfectly conducting cylinder in the non-resonance case. In addition,
the theoretical estimates of matrix condition number were obtained in
this work. In [9], the actual and scattering amplitude errors were
estimated as for a closed contour as for an open one. At that,
the circular perfectly conducting cylinder and flat metal strip were
considered as testing geometries. To estimate actual errors, authors
used the benchmarking on the solution based on:

• The PO approach;
• The same MoM algorithm but with very high mesh density.

However, it is worthwhile to note that the PO approach has limited
area of application. For example, this one cannot be used for the nose
illumination of a strip. Hence, the PO solution cannot be used as a
reference solution in all cases. As to the second RS used in [9], we
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should note that its realization is very expensive and has not sufficient
background in H-case where the convergence of a MoM algorithm in
L2 is not proven to date.

The benchmarking on canonical problems, the rigorous solutions
for which are known, can be also fulfilled (see, for example, [11–13]).
However, such a benchmarking is indirect, because errors obtained
for test cases may not extrapolate readily to other problems, due
to problem-dependent phenomena such as resonance or edge effects.
Theoretical estimation of actual error of a solution as in [9] and [14], for
example, is very difficult and far not in all cases applicable. It is more
convenient to use a rigorous and sufficiently simple solution in L2 valid
for any geometry as a reference solution for testing more simple MoM
algorithms in L2 and many other ones ([14, 15], for example). Such a
reference solution has been not found to date for the tree-dimensional
case. In the two-dimensional case, such solutions were constructed in
[16, 17] for closed cylinders and in [18] for H-screens. In this work, we
develop such a solution for E-screens.

Analogously to the H-case, we use here the Galerkin method
on a complete set of trigonometric functions. This issue permits us
to obtain a Fredholm algebraic equation for modal coefficients with
the aid of analytical regularization and specific property of Fourier
integrals. With the Fredholm matrix equation in hand, we prove the
convergence of the Galerkin MoM in L2, the boundness of the condition
number of MoM matrix, and obtain a direct estimation of an actual
error, and hence, of a scattering amplitude error for smooth screens.
This issue permits one to provide adequate simulations of scattering
from screens for both E- and H-cases.

The proposed method gives the opportunity to simulate scattering
from screens in all cases. What is peculiarly valuable in the Galerkin
solution proposed is that it permits to estimate the magnitude of
scattering amplitude error and the condition number of the MoM
matrix is bounded. However, its algorithm is more complicated
than those of commonly used in practice, and hence more expensive.
Because of that, there is the need to investigate the existent
MoM algorithms in L2 with regard to their convergence rate and
scattering amplitude error behavior via incidence angle, scatterer
configuration and its electric size. To this end, we propose to use
the developed Galerkin method as a reference solution (RS) for testing
practically used MoM algorithms in L2 for which a condition number
is not bounded and actual error magnitude cannot be estimated.
Benchmarking on this RS permits one to investigate as the convergence
rate of any MoM algorithm as the behavior of scattering amplitude
error for some specific scattering geometry at microwave frequencies. It
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is worthwhile to note that any solution in the Sobolev space cannot be
used as a reference solution because one cannot calculate a magnitude
of an actual error of such a solution, and hence, a scattering amplitude
error.

All abovementioned considerations permit us to affirm that the RS
problem has been not solved to date in acceptable manner. Therefore,
we propose in the paper a new solution based on the Galerkin MoM
in L2 which can be used as a reference solution. This issue permits to
achieve the following results:

• To estimate the convergence rate of a MoM algorithm in L2 for
any smooth screen and arbitrary incidence angle;

• To investigate the behavior features of an actual error with mesh
density or electric size of a scatterer increasing;

• To choose an optimal mesh density for a specific scattering
problem instead using of the widely known rule-of-thumb that
gives ten points per wavelength in all cases.
To use a novel method solution with confidence as the reference

solution, one should be convinced in adequacy of such a solution. To
verify this issue, we compare the novel method with convergent series
solution for scattering from semicircular cylindrical screen [19]. The
remainder of the paper will proceed as follows. Section 2 presents
a novel method solution to the Dirichlet problem for screens, which
converges in L2, and permits to estimate directly a magnitude of
scattering amplitude error. Section 3 details the method estimation of
an actual error of the EFIE solution. Section 4 presents the adequacy
verification of the new method. Section 5 presents implementations of
this method for testing some practically used MoM algorithms. The
final section presents conclusion.

2. THE GALERKIN METHOD FOR E-SCREENS

Let the electric field outside a screen be a sum of an incident field

E0(x, y) = exp(−jkx sin i0 − jky cos i0) (1)

and a scattered field, which we will seek as a single-layer potential

Esc(x, y) =
∫

∂L

G(x, y, s)ϕ(s)ds. (2)

Here, the incidence angle i0 is counted clockwise from the −Y direction
(Fig. 1), k is the free space wave number, and ϕ is an unknown function,
which is proportional to the surface current. The function



Progress In Electromagnetics Research, PIER 71, 2007 299

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Y 

X 
a -a 

b 

-b 

a 
io 

Figure 1. Geometry of the problem.

G(x, y, s) =
1
4j

H
(2)
0 (kR(x, y, s)) (3)

stands for the free space Green’s function with

R(x, y, s) =
√

(x− x(s))2 + (y − y(s))2

and
x = x(s), y = y(s), s ∈ [0, L] (4)

being a C∞-parameterization of a smooth boundary ∂L of the length
L of a screen. Let us go to new parameterization using new variable:

σ = −1 + 2s/L, σ ∈ [−1, 1]. (5)

The scattered field (2) can be then represented as

Esc(x, y) =
L

2

1∫

−1

G(kR̄(x, y, σ))ϕ̄(σ)dσ (6)

with
R̄(x, y, σ) =

√
(x− x̄(σ))2 + (y − ȳ(σ))2, (7)

new parameterization of the boundary ∂L:

x = x̄(σ) = x(0.5L + 0.5Lσ), y = ȳ(σ) = y(0.5L + 0.5Lσ), (8)
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and new unknown function ϕ̄(σ) = ϕ(0.5L + 0.5Lσ). The Dirichlet
condition yields the EFIE

0.5L
1∫

−1

G(kR̄(σ, σ′))ϕ̄(σ′)dσ′ = F (σ), σ ∈ [−1, 1] (9)

when using (6). Here, F (σ) = −E0(x̄(σ), ȳ(σ)) and

R̄(σ, σ′) =
√

(x̄(σ) − x̄(σ′))2 + (ȳ(σ) − ȳ(σ′))2.

It is known that a solution to (9) exhibits the singular behavior
∼

∣∣1 − σ2
∣∣−1/2 at the end points: σ = ±1. This issue prevents from

seeking a solution in familiar Hilbert space L2. This obstacle can be
circumvented with the aid of special change of variable in (9) proposed
first in [20]: σ′ = − cos t′, t′ ∈ [0, π]. Using this procedure, the
Equation (9) can be rewritten as

π∫

0

H
(2)
0 (kR̃(t, t′))ψ(t′)dt′ = f(t), t ∈ [0, π] (10)

with
R̃(t, t′) =

√
(x̃(t) − x̃(t′))2 + (ỹ(t) − ỹ(t′))2, (11)

new unknown function

ψ(t) =
L

8j
ϕ̄(cos t) sin t, (12)

new parameterization

x = x̃(t) = x̄(cos t), y = ỹ(t) = ȳ(cos t), (13)

and new right-hand side (RHS)

f(t) = F (cos t). (14)

It is clear that the new unknown function (12) is nonsingular now
at end points (t = 0, π) despite the mentioned singular behavior of the
surface current function ϕ̄. The scattered field can be rewritten then
as

Esc(x, y) =
π∫

0

H
(2)
0 (kR̃(x, y, t′))ψ(t′)dt′ (15)
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with
R̃(x, y, t) =

√
(x− x̃(t′))2 + (y − ỹ(t′))2.

Summarizing, we eliminate the singular behavior of a solution to
the EFIE for screens and this procedure leads automatically to a new
domain of integral equation, viz., [0, π]. Now we can seek a solution to
(10) in L2, using the Fourier representation of unknown function

ψ(t) =
∑
n≥0

an cosnt. (16)

The widely known procedure yields the traditional MoM equation
in the space of sequences:

Ka = f (17)

with matrix elements of K and f :

Kmn =
π∫

0

cosmtdt

π∫

0

H(t, t′) cosnt′dt′, (18)

fm =
π∫

0

f(t) cosmtdt, (19)

and
H(t, t′) = H

(2)
0 (kR̃(t, t′)). (20)

Prove that this equation can be transformed to a Fredholm one
with the aid of equivalent transformations making use of special
operator (regularizer) �, which has the following matrix elements:

�mn =
π∫

0

cosmtdt

π∫

0

◦
H(t, t′) cosnt′dt′,

with
◦
H(t, t′) = −2j

π
ln

∣∣∣2e−1(cos t− cos t′)
∣∣∣ . (21)

These matrix elements can be evaluated analytically making use of the
known integral [20, 21]:

− 1
π

π∫

−π

ln
∣∣∣∣2e−1/2 sin

t− t′

2

∣∣∣∣ ejnt′dt′ = ρne
jnt (22)
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with ρn = (δ0n + |n|)−1 and δmn being the Kroneker delta. With the
aid of (22), we can obtain the following form of the regularizer:

�mn = πj
1 + δ0m

δ0m + m
δmn. (23)

Using the operator �, we can transform the traditional MoM
Equation (17) as follows:

�a + Ta = f (24)

with
T = K −� (25)

having the matrix elements:

Tmn =
π∫

0

cosmtdt

π∫

0

P (t, t′) cosnt′dt′. (26)

Here, the function

P (t, t′) = H(t, t′) −
◦
H(t, t′) (27)

is nonsingular, and more, P ∈ C∞(Ω × Ω) with Ω = [0, π] for smooth
boundary of the mentioned properties. This one can be easily seen
from the following representation:

P (t, t) = 1 − 2j
π

(1 + C − 2 ln 2 + ln ka) − 2j
π

ln
Λ(cos t)

a
(28)

where Λ(σ) = ( ˙̄x2+ ˙̄y2)1/2 with pointed quantities being the derivatives
of (8) with respect to σ, C = 0.577 . . . the Euler constant, and a being
a half of maximum size of a scatterer. For ∂L ∈ C∞, there exists
such an ε, that Λ ≥ ε > 0, and then P (t, t) ∈ C∞(Ω), analogously
to the static case [20]. Such behavior of the function P permits us
to integrate by parts in (26) that, in turn, permits one to prove the
decay rate of matrix elements Tmn as being O(m−2n−2) with harmonic
numbers (m and n) increasing. At the same time, both the traditional

GMoM matrix elements (Kmn) and auxiliary matrix ones (
◦
Kmn) decay

separately only as O(m−1n−1). This is the point that permits us to
transform the traditional MoM Equation (17) of the first kind to a
Fredholm one. To this end, let us apply the operator S−1 with matrix
elements

S−1
mn = (1 + m)δmn (29)
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to the both sides of Equation (24). Then, it becomes

S−1�a + S−1Ta = S−1f, (30)

which is no other than a Fredholm equation. It is worthwhile to note
that one can also use the inverse operator �−1 instead of S−1. It is
just simpler from theoretical point of view but gives larger condition
number when solving this equation numerically. Let us prove that
the Equation (30) is Fredholm. Using the decay rate of Tmn as being
O(m−2n−2) and asymptotic behavior of S−1

mn as O(m) which follows
from (29), we can see that (S−1T )mn = O(m−1n−2) and then, the
operator S−1T is compact in l2. We can easily see that the operator
S−1� is Fredholm in l2 as well because its matrix elements can be
written as

(S−1�)mn = πj(1 + δ0m)δmn + πj(1 + δ0m)
1 − δ0m

δ0m + m
δmn.

Here, the first matrix corresponds to an invertable operator, and the
second one corresponds to a compact one. Further, according to [22],
for existence of a solution to the Equation (30) the RHS vector S−1f
has to be square summable. Let us prove that it is really so. Integrating
by parts in (19), one can obtain the asymptotic behavior of fm as
fm = O(m−2), and then, using (29): (S−1f)m = O(m−1). Because of
that, S−1f ∈ l2. All these prove that the Equation (30) is Fredholm
and has a unique solution if the determinant of the MoM system is
nonzero. In this case, as has been proved in [23], a ∈ l2 and the
approximate solution

ψN (t) =
N∑

n=0

an cosnt (31)

converges to an exact solution of integral Equation (10) in L2. The
uniqueness of a solution is guaranteed by the determinant of Kmn, and
hence of (S−1� + S−1T )mn, being nonzero. Let us prove this issue.
As has been proved in [24], the homogeneous integral Equation (10)
has trivial solutions only. Because of that, the corresponding integral
operator has no eigenvalue that equals to zero. Further, because of
the spectrum of integral operator in (10) coincides with that of its
discretized counterpart (17), and hence (30), if we use the Galerkin
method [23], the determinant of the system in (17), and hence in (30),
is nonzero. All these prove the convergence of the Galerkin MoM
solution to the EFIE in L2.

Summing, it is worthwhile to note that trivial operation of adding
and subtracting the regularizer � from the main operator K in (24)
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leads to completely nontrivial result exclusively due to using of a
complete set of trigonometric functions as bases functions and general
property of the Fourier integrals. Due to the latter one, the more
smoother is the integrand of a Fourier integral (P in (26)) the more fast
diminish the matrix elements Tmn. It is namely this issue that permits
one to obtain a Fredholm matrix equation for modal coefficients instead
of the common MoM equation with a compact matrix operator.

3. ACTUAL ERROR

One of the main problems of the EFIE solving procedure is the
estimation of an actual error of an approximate solution with the aid
of residual error computed in L2. The latter stands for the boundary
condition’s error and can be easily computed in practice. This problem
has been considered in [1–5] in the energy Sobolev space. However,
actual error estimation has been obtained in the form, which does not
permit to obtain a magnitude of actual error if we know a magnitude
of discrepancy. Recently, authors solved this problem in familiar L2

space for closed cylinders [16, 17] and H-screens [18]. Here, we consider
this problem for E-screens.

The completeness of basis functions used permits us to obtain a
rigorous relationship between actual and residual errors. To this end,
let us write down an actual error as a function

ε(t) = ψ(t) − ψN (t). (32)

One can easily see that this function satisfies the integral equation

π∫

0

H(t, t′)ε(t′)dt′ = dN (t), t ∈ Ω (33)

where

dN (t) = f(t) −
π∫

0

H(t, t′)ψN (t′)dt′ (34)

is a residual error function. Let us derive the actual error function
from (33). This equation is exactly the same as (10) except the RHS.
As is clear from the above, the developed Galerkin MoM procedure
for solving the Equation (33) converges if the RHS function (34) is
continuous on Ω. It is really so. The first addend in (34) is obviously
continuous. The second one is continuous as well because it is a single-
layer potential. Hence, we can use the abovementioned technique to
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obtain a convergent MoM solution for the error function

ε(t) =
∑
n≥0

αn cosnt (35)

in L2. As is clear from (30), the corresponding solution in l2 for the
Fourier coefficients can be written then as

α = (S−1 ◦
K +S−1T )−1D, (36)

where vector D has the coordinates

Dm = (1 + m)
π∫

0

dN (t) cosmtdt. (37)

Because dN (t) is continuous and its derivative is integrable, one can
easily prove by integrating by parts that integral in (37) decays
asymptotically as m−2 with m. Then, Dm = O(m−1) and hence,
D ∈ l2. This is sufficient for the Galerkin MoM convergence in L2, and
this one permits us to use the Parseval equality

||ε||L2 = ||α||l2 ,

which permits one to relate the actual and residual errors in the form
of

||ψ − ψN ||L2 = ||(S−1� + S−1T )−1D||l2 , (38)

if we account for (32), (34), (36), and (37).

4. NUMERICAL RESULTS

A. E (TM) – case

Noting that a suitable reference solution for testing practically
used MoM algorithms in L2 is not found to date, we give here the
adequacy verification of the presented Galerkin MoM that can be used
as such a reference solution. To this end, we use the canonical geometry
of a circular screen. Such a canonical problem has been solved semi-
analytically with the aid of the Riemann-Hilbert technique developed
in [19, 25]. The Riemann-Hilbert technique solution we use in the form
outlined in [25] with the aid of the computational code pleasantly given
us by one of the authors of this paper. The excellent agreement between
the two solutions is demonstrated in Fig. 2. The both solutions are
within 0.1% rms error for the considered case when the scattering plane
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Figure 2. Monostatic RCS for scattering from semicircle screen
computed with the aid of the Galerkin MoM (solid curve) and series
solution [14] (dotted curve) within 0.1% rms error if the scattering
plane E-wave impinges normally on the slot (i0 = 0).

E-wave impinges normally on the slot (i0 = 0). Presented investigation
and favorable comparison of results, permits us to be sure in adequacy
of the reference solution.

With the new reference solution in hand, we investigate the widely
used MoM algorithms, viz., that in which the collocation points are
shifting from the nodal points (MoM with PS), and that in which
the singular integrals are evaluated more rigorously with the aid of
the singularity extraction method [26] (MoM with SE), for solving
E-scattering from screens. The first algorithm is more economical
because it requires not any efforts the logarithmic singularities to
overcome. Naturally, it is less accurate than more complex algorithm,
the MoM with SE, with exact evaluation of singular integrals, but it is
interesting to what degree? Such a question to answer, we investigate
the mentioned MoM algorithms with the aid of the proposed reference
solution. We are interesting here in the scattering amplitude rms error
diminishing rate (as in [9]) and error dependence on the incidence
angle. The latter issue was pointed out in [9], and arises from the
dependence of surface current behavior along the scatterer on the
incidence angle. We demonstrate in Fig. 3 the current function features
for two specific incidences, frontal and oblique, for the strip, semicircle
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screen and right triangle screen, all of electric size 10. Graphics show
that current function oscillates more rapidly for frontal incidence, and
hence the rms scattering amplitude error may be larger in this case
than that for oblique incidence.
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Figure 3. Current function in the RS within 0.1% actual error for
ka = 10 and mesh density 30. (a) strip as a degenerated elliptic screen;
(b) semicircle screen; (c) strip as a degenerated triangle screen; (d)
right triangle screen.

The scattering amplitude rms error diminishing rate for the MoM
with PS we demonstrate in Fig. 4 for the semicircle screen and strip
of electric size 10, for frontal and oblique incidence. With the aid
of the reference solution, we investigate here the diminishing rate of
the angle-averaged scattering amplitude error (dotted curve) and the
discrepancy of the MoM-with-PS solution (asterisked curve). We see
that for this algorithm the discrepancy behavior is very close to that of
scattering amplitude error, but the magnitude of discrepancy is far less
than that of scattering amplitude error. Because of that, the estimation
of a MoM algorithm’s accuracy with the aid of discrepancy may give a
significant error. It is worthwhile to note that, as has been noted in [9],
the rate of diminishing does not depend practically on the incidence
angle but it is not so for an error magnitude. Particularly, this issue is
most noticeable for strip.
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Figure 4. Scattering amplitude rms error diminishing rate of tested
MoM algorithm, viz., the Galerkin collocation on pulse basis with
nodal points shifting, computed by comparing with the reference
solution (RS). For the tested MoM: dotted curve — the angle-averaged
scattering amplitude rms error; asterisked curve — discrepancy of the
MoM solution. The both scatterers are of electric size 10.

Analogous investigations have been provided for the MoM-with-
SE, where singular integrals have been calculated more exactly with
the use of the singularity extraction method (SE), [26]. The results
are shown in Fig. 5. We see here the more substantial dependence
of scattering amplitude error magnitude on the incidence angle, and
drastically difference between the scattering amplitude rms error
diminishing rate and discrepancy rate, particularly for the strip,
graphics (c)–(d). This issue and that of obtained above shows that one
would not use the discrepancy as an estimate of scattering amplitude
error for any MoM algorithm in the L2 function space.

Consider now the most important practical question of how to
use the reference solution obtained for picking out the needed mesh
density for commonly used MoM algorithms in L2. This really may be
done if we account for the independence of scattering amplitude error
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Figure 5. Scattering amplitude rms error diminishing rate of tested
MoM algorithm, viz., the Galerkin collocation on pulse basis with
exact evaluating of singular integrals, computed by comparing with
the reference solution (RS). For the tested MoM: dotted curve —
the angle-averaged scattering amplitude rms error; asterisked curve —
discrepancy of the MoM solution. The both scatterers are of electric
size 10.

diminishing rate from the frequency of scattered field (or equally, from
the electric size of a scatterer) mentioned in [9]. This one means that
if we calculate the scattering amplitude error of any MoM algorithm in
L2 for any mesh density with the aid of the RS at moderate frequencies,
the difference between errors will be the same at high frequencies. If,
additionally, the errors’ magnitudes are independent from the field
frequency as well, we can forecast the MoM algorithm’s accuracy at
the microwave range by simulating procedure carried out at moderate
frequencies.

As for the independence of scattering errors from field frequency,
we can note that if not accounting for the possible wrong evaluation
of functions used in the MoM algorithm, there is only one cause that
can increase the errors at high frequencies. This one is the increasing
of condition number of a MoM matrix in l2 space with electric size of
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scatterer. The physical cause of this effect has been outlined in [6–
10]. To eliminate the influence of this point, one can use the special
iterative methods solution of MoM matrix equations. If so, we can
reckon that the scattering errors are independent from the frequency
of incident wave.
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Figure 6. Comparing of the two MoM algorithms with respect of
theirs accuracy for scattering from the right triangle screen of electric
size 50 for frontal incidence (i0 =0◦) and incidence on the rib (i0 = 45◦),
which permits to choose the appropriate MoM algorithm for a given
accuracy at microwave range by testing the algorithm for moderate
scatterer’s electric size (ka= 50), graphics (a) and (b). Graphics (b),
(c) and (d) demonstrate the independence of the scattering amplitude
error form the electric size of a scatterer. In the (d) all three curves
(for ka = 50, 70, 100) are overlapped to exhibit this issue.

This issue is demonstrated in Fig. 6, where we consider the
scattering from the right triangle screen of moderate electric size 50
for two incidence angles: i0 = 0◦ (frontal incidence) and i0 = 45◦
(incidence on the rib). Scattering amplitude rms errors calculated
by comparing to the RS for some values of the mesh density (5–
20) are exhibited in this figure for two MoM algorithms (with PS
and with SE) with the goal of demonstrating the possibility of
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Figure 7. Scattering amplitude rms error behavior for the tested
MoM algorithm — the MoM with PS, which permits to choose the
needed mesh density for a given accuracy at microwave range by testing
the algorithm for moderate scatterer’s electric size (ka = 50).

choosing the appropriate mesh density for these two at the microwave
range (graphics (a), (b)). In the same figure, we demonstrate the
independence of errors from the electric size of the scatterer (graphics
(b)–(d)). To this end, all three curves, namely for ka = 50, 70,
and 100, are overlapped in (d) for each MoM algorithm. As we can
see from all these, the errors really are practically independent from
ka and this one gives the opportunity of appropriate choosing the
mesh density for achieving needed accuracy of tested MoM algorithms.
Thus, analyzing the scattered field errors for specified configuration
and various incidence angles, one can choose the appropriate mesh
density, which may be far less than that given by the commonly used
rule of “ten points on the wavelength”. It is worthwhile to note that
the ten-points-mesh has no remarkable features, which could justify
its wide implementation in practice, as we can see in Fig. 6 and
further. For judiciously choosing of a mesh density for any MoM
algorithm, one would investigate carefully the scattering errors for
some specific geometries. For 2-D screens, such specific configurations
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Figure 8. Scattering amplitude rms error behavior for the tested
MoM algorithm — the MoM with SE, which permits to choose the
needed mesh density for a given accuracy at microwave range by testing
the algorithm for moderate scatterer’s electric size (ka = 50).

would be: a right triangle screen, a semicircular screen and a strip.
Error behaviors for the last two are shown in Fig. 7 for the MoM with
PS, and in Fig. 8 for the MoM with SE. All these graphics permit to
choose judiciously the appropriate mesh density by carrying out the
simulations at moderate frequencies and extrapolate obtained results
to the microwave range.

B. H (TE) – case

A rigorous Galerkin solution in L2 for scattering of an H-polarized
plane wave by a 2-D screen has been developed in [18]. As for the E-
case, this solution can be used as a reference solution (RS) for testing
MoM algorithms in L2, commonly used in practice for simulating
H-scattering from screens. To demonstrate such possibilities, we
investigate the MoM algorithm with triangle expansion and testing
functions [27], in which the hypersingular integrals are evaluated as a
finite part in the sense of Hadamard with the aid of special quadrature
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formula. Using the RS, we calculate the scattering amplitude rms
error for scattering from semicircular screen of electric size 10 for
some specific incidence angles. With these calculations in hand, we
investigate the scattering amplitude error diminishing rate for this
MoM algorithm. Its dependence on the incidence angle can be noticed
in Fig. 9, too. As for the E-case (Fig. 5), we see that in the H-case
the scattering amplitude error diminishing rate may be not the same
as that for discrepancy, and hence the latter should not be used as a
performance of accuracy of any MoM algorithm in L2 as well. Noting
that there is no appropriate reference solution to date for computer
simulation of H-scattering from screens, the RS obtained in this paper
gives the only opportunity to estimate the scattering amplitude error
of any MoM algorithm in L2 and choose an appropriate mesh density
for parsimonious calculations. The latter can be done exactly in the
same manner as that for the E-case outlined above.
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Figure 9. Scattering amplitude rms error diminishing rate of tested
MoM algorithm for H-scattering from semicircular screen, viz., the
MoM on triangle basis with evaluating of singular integrals in the
sense of Hadamard, computed by comparing with the reference solution
(RS). For the tested MoM: squared curve — the angle-averaged
scattering amplitude rms error; dotted curve — discrepancy of the
MoM solution. The scatterer is of electric size 10.
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5. CONCLUSION

A rigorous Galerkin MoM solution for scattering from E-screens,
convergent in L2, which permits to estimate the magnitude of an
actual error, and, hence, a scattering amplitude error, with the aid
of evaluated discrepancy, has been proposed as a reference solution
for testing practically used MoM algorithms in L2. Comparing
tested algorithm with the RS, practitioner can estimate the scattering
amplitude error and its diminishing rate with mesh density and electric
size of scatterer. The proposed method simulation is more cheap and
convenient than widely used methods of experimental benchmarking,
and more correct than methods based on comparing with physical
optics approximation, or with the same but high mesh density MoM
solution.

Using the reference solution obtained in this paper for E-case
and previously for H-case, practitioner can investigate not only the
scattering amplitude error convergence of the MoM algorithm used,
but additionally choose an appropriate mesh density which may be far
less than the common used ten points on the wavelength.
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