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Abstract—The metamaterial slab with low refractive index exhibits
directive properties which make it suitable to work as antenna.
The characteristics of such a device are affected under the presence
of a conducting rod of arbitrary shape placed over the slab. A
qualitative and quantitative approach is presented which is possible
by implementing the method of auxiliary sources. For the evaluation
of the far field quantities the method of stationary phase is employed.
A validation example considering a circular rod is solved rigorously
with use of the method of moments. Several numerical results are
shown and discussed.

1. INTRODUCTION

During the last years an increasing amount of attention has been
attracted by artificial materials synthesized by inserting suitable
periodic structures in usual host media, which are known as
metamaterials. This surge of interest reflects the numerous practical
applications in which metamaterials can be employed. In [1]
transmission lines constructed by metamaterial structures (with
negative refractive index) are used for the design of a compact,
broadband balun for two wire antennas, while in [2] a compact
resonator which is partially occupied by a metamaterial ring is
analyzed and proven to have interesting properties. Metamaterials can
also reduce drastically the total scattering cross section of electrically
large objects in case they are used as coatings [3].

Metamaterial slabs in particular, have been the subject of many
publications examining waveguiding and radiation properties of these
structures. For example in [4] a metamaterial grounded slab is



60 Valagiannopoulos

investigated. The supported propagation constants are extracted and
the waveguiding conditions lead to the suppression of a guided–wave
regime for both polarizations. Similar analyses are presented in [5–7]
where surface and guided waves are observed and examined. Moreover
in [7] slabs of metamaterials are studied by solving the related electric–
type integral equation via the method of moments.

One basic application of a metamaterial slab is the directive
property demonstrated when its refraction index is close to zero. The
idea applies Snell’s law [8] for rays inside a low index metamaterial
(LIM). Because of the small refractive index the transmission angle is
forced to have values close to zero. Therefore the exiting ray from the
substrate will be normal to the surface. This property can be used to
control the direction of emission and thus is extensively exploited in
designing radiation devices. In [9] an antenna with LIM substrate is
proposed while in [10–13] there are several analyses concerning similar
structures and certain numerical results indicating their good radiation
characteristics.

Such high directivity devices are useful for both signal
transmission and object detection. In the present paper, the effect
of an arbitrary obstacle placed in the near field of these antennas
is examined. Suppose that a small (and almost invisible) object is
located close to the radiation emitter. It will probably negatively
influence the device’s properties by “blinding” the radar operation or
“jamming” the emitted directive field and in this sense such a study can
have military applications. But apart from negative effects we think
that a qualitative and quantitative description may be useful even for
improving the radiation features of the device in certain cases. An
investigation for similar purposes but concerning a different directive
emission is presented in [14].

We specifically regard a perfect electric conducting (PEC) rod of
arbitrary shape placed over a LIM substrate backed by a PEC plane.
The structure is excited by a source placed inside the LIM substrate.
We first determine the Green’s function of this configuration and the
incident field in the absence of the scatterer; this is achieved with the
use of spectral integrals and enforcement of the necessary boundary
conditions.

In view of the arbitrary shape of the rod an analytical approach
is not possible and a numerical procedure is utilized instead. We
implement the method of auxiliary sources (MAS) for estimating the
scattering field by the cylinder. In this process the computed Green’s
function is necessary. As we refer to an antenna the basic quantity we
are interested about is the far field and this is derived by estimating
asymptotically the spectral integrals through the method of stationary
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phase.
In order to verify the results of the numerical method, we solve

analytically the problem in the special case of a circular cylindrical
PEC scatterer. The surface current on this is expressed in modal form
as a sum of harmonics and computed by solving the related integral
equation rigorously. Several analytic formulas with Bessel functions
are used.

A satisfactory coincidence between the results of the two methods
and a very low error in the boundary condition are observed (for
circular cross section). For the general case the error is kept below a
small upper limit for all the applications. After assuring the validity of
the proposed method we study features such as the surface current, the
maximum radiation power, the 3 db beamwidth, the radiation pattern
and the relative radiation power. The variations of the above quantities
are depicted as functions of the azimuthal angle, the shape and the size
of the scatterer, the thickness of the substrate and the position of the
excitation source.

2. PROBLEM FORMULATION

The configuration of the problem is shown in Fig. 1. Both the
cartesian (x, y, z) and cylindrical (ρ, φ, z) coordinate system are used
interchangeably. A time dependence of the form ejωt is suppressed.
Consider a slab of finite thickness D−d constructed by a homogeneous
LIM backed by a ground plane and posed inside vacuum. In this
example the medium can be characterized by a plasma frequency
close to the operating one ω = 2πf . Its intrinsic parameters are
denoted by (ε1ε0, µ1µ0) where (ε0, µ0) are the ones of the vacuum and
0 < ε1, µ1 � 1. For the local wavenumbers and impedances are used
the symbols k1 = k0

√
ε1µ1, ζ1 = ζ0

√
µ1

ε1
(for LIM area 1) and k0, ζ0 (for

vacuum area 0).
The excitation is an infinite filamentary electric current of constant

magnitude I Amperes located across the axis (x = 0, y = −t) with
0 < d < t < D, that is into the metamaterial slab which occupies the
region between planes y = −d,−D. Due to Snell’s law all the exiting
rays from the slab will be close to normal to the surface. Therefore not
only directivity but also control of the emission direction is achieved.
The emitted field is scattered by a PEC infinite (in the z direction)
cylinder with arbitrary shape. The origin of the coordinate system is
located inside the cylinder. The outer surface of the scatterer is defined
by an arbitrary polar function ρ = R(φ) > 0. As the configuration of
the device is invariant across z axis and so is the excitation, it is natural
for the response of the system to own the same property. Hence all
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Figure 1. The physical configuration of the investigated structure.
The slab of low index metamaterial (LIM) is backed by a perfectly
electric conducting (PEC) plane and excited by current I. The
produced field is scattered by the PEC cylinder of arbitrary shape.

the field quantities are independent of z (functions of x, y or ρ, φ only).
Furthermore, due to the source which is an electric current, the only
nonzero field components will be Ez (single axial electric component)
and (Hx, Hy) or alternatively (Hρ, Hφ) [16].

The purpose of the present analysis is to estimate the effect of the
PEC scatterer (rod) to the radiation pattern of the antenna in the far
field.

3. GREEN’S FUNCTION AND INCIDENT FIELD

The aims of this section are two: the derivation of the electric
type Green’s function of the problem and the determination of the
incident field developed due to the excitation source inside the slab
antenna. Both quantities are computed in the absence of the cylindrical
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scatterer. The Green’s function of electric type is a solution of the
two–dimensional problem concerning the axial electric field produced
by a filamentary electric current with magnitude j/(kζ) in Amperes
(with the adopted time dependence) [16]. The wavenumber and the
impedance of the area into which the Green’s source lies are denoted by
k and ζ respectively. The axis of the filament is referred with capitals:
(x = X, y = Y ) or (ρ = P, φ = Φ) instead. As the arbitrary rod is
placed into area 0, the same should be true for the Green’s source, that
is Y > −d. It is well–known [17] that the free–space Green’s function
is given by

G0,singular (x, y,X, Y ) = − j

4
H

(2)
0

(
k0

√
(x−X)2 + (y − Y )2

)
(1)

where H
(2)
0 is the cylindrical Hankel function of zeroth order and second

type. The same function can be written as a spectral integral

G0,singular (x, y,X, Y ) =
1
4π

∫ +∞

−∞

e−µ0(β)|y−Y |

µ0 (β)
e−jβ(x−X)dβ (2)

where µ0(β) =
√
β2 − k2

0 is the so–called radiation function of area 0.
Note that the integration path on complex β plane is the real axis.

As opposed to the singular free–space function, the quantity
expressing the reaction of the area 0 will be smooth. A similar
integral representation is utilized corresponding to the solution of the
homogeneous Helmholtz equation in a semi–infinite area.

G0,smooth (x, y,X, Y ) =
1
4π

∫ +∞

−∞
C0 (β)

e−µ0(β)(y+d)

µ0 (β)
e−jβ(x−X)dβ (3)

In order for the y–dependent component to fulfill Sommerfeld’s
radiation condition, both parts of µ0(β) should be positive (or zero):
�[µ0(β)],�[µ0(β)] ≥ 0. As far as the area 1’s expression is concerned,
the two y–dependent components cancel so that the total quantity is
vanishing at y = −D (PEC plane).

G1 (x, y,X, Y ) =
1
4π

∫ +∞

−∞
C1 (β)

sinh (µ1 (β) (y + D))
µ1 (β)

e−jβ(x−X)dβ

(4)
where µ1(β) =

√
β2 − k2

1 is the radiation function of area 1 and
C0(β), C1(β) determinable functions not only of the integration
variable β but of the Green’s source position (X,Y ) as well.
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After the enforcement of the proper boundary conditions at
y = −d, one reaches the explicit formula of G0,smooth in cylindrical
coordinates:

G0,smooth (ρ, φ, P,Φ) =∫ +∞

−∞
CG (β) e−ρ(jβ cosφ+µ0(β) sinφ)e−P (−jβ cos Φ+µ0(β) sin Φ)dβ (5)

where:

CG (β) =
1
4π

e−2dµ0(β)

µ0 (β)
k1ζ1µ0 (β) − k0ζ0 coth ((D − d)µ1 (β))µ1 (β)
k1ζ1µ0 (β) + k0ζ0 coth ((D − d)µ1 (β))µ1 (β)

(6)

The total Green’s function for area 0 is denoted without the second
subscript

G0 (ρ, φ, P,Φ) = G0,singular (ρ, φ, P,Φ) + G0,smooth (ρ, φ, P,Φ) (7)

For the derivation of the incident electric field a similar procedure
will be followed. Now the singular component belongs to area 1
(x = 0, y = −t) and thus the corresponding reaction quantity does
not by itself ensure the demand for vanishing electric field at y = −D.
After trivial algebraic manipulations the incident electric field into area
0 is found to be

E0,inc (ρ, φ) =
∫ +∞

−∞
CE (β) e−ρ(jβ cosφ+µ0(β) sinφ)dβ (8)

where

CE (β) =
Ik0ζ0k1ζ1

2πj
e−µ0(β)d ·

sinh ((D − t)µ1 (β))
k0ζ0 cosh ((D − d)µ1 (β))µ1 (β) + k1ζ1 sinh ((D − d)µ1 (β))µ0 (β)

(9)

As area 0 is semi–infinite the integrand functions of the fields in all
regions to possess the branch points of the function µ0(β), namely β =
±k0 [18]. The same functions are even with respect to µ1(β), a property
indicating the finite thickness of area 1. In the integral representation
of G0,smooth, the branch points are also singular, constituting integrable
poles.

4. AUXILIARY SOURCES AND FAR FIELD

The method of auxiliary sources (MAS) is a numerical technique
suitable for a variety of scattering problems. It is based on the
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principle of imposing the boundary conditions only on a finite number
of discrete points of the physical boundaries [19], called collocation
points. The fields in each area satisfy the Helmhotz equation as they
are weighted sums of the local Green’s functions corresponding to
singular elementary sources (auxiliary sources) posed on a set of points.
It should be stressed that for the estimation of the field in a region,
it is supposed that the remaining area is filled with the same material
with the investigated one. The auxiliary sources are placed outside the
region whose field they represent so that the inner field is smooth, as
a result of scattering. The same procedure is repeated for each region
of the problem. Sometimes it is convenient to group adjacent regions
and to employ the modified Green’s functions which incorporate the
additional boundary conditions [20].

In the investigated problem we regard the entire configuration
in the absence of the scatterer as one region and the scatterer itself
as another (that is why we computed G0 in the previous section).
Given the fact that the cylinder is perfectly conducting we simply
have to find the field in the surrounding region. This can be
approximately produced by a finite distribution of discrete electric
filamentary currents in the interior region of the rod (after this has
been temporarily removed). The surface on which the auxiliary sources
are posed, is called the auxiliary surface and usually is similar to the
boundary [21]. In our case the bound is defined through ρ = R(φ) and
therefore the auxiliary surface is chosen to have the polar equation
ρ = sR(φ) with 0 < s < 1. When it comes to the distribution
of the auxiliary sources, the most common choice is to place them
on equispaced points [22]. Such a recipe can be followed in our
case of arbitrary shape under the condition that function R(φ) is not
rapidly varying with respect to φ. Otherwise more sources should be
located near regions with abrupt variation of curvature. We choose
N equispaced points (sR(Φn),Φn) for n = 0, ..., N − 1. This implies
that the length of the curve between each adjacent auxiliary sources
should be equal to the total length of the line (auxiliary surface in two
dimensions) divided by N . If one supposes Φ0 = 0 the other auxiliary
polar angles Φn are found via the following equation [23]∫ Φn+1

Φn

√
R2 (φ) + R′2 (φ)dφ =

1
N

∫ 2π

0

√
R2 (φ) + R′2 (φ)dφ (10)

where R′(φ) is the derivative of R(φ) with respect to φ.
The scattered electric field is

E0,scat (ρ, φ) =
N−1∑
n=0

AnG0 (ρ, φ, sR (Φn) ,Φn) (11)
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where An are unknown complex constants expressed in V/m. The
boundary condition of the vanishing tangential electric field upon the
PEC surface E0,inc(R(φ), φ) +E0,scat(R(φ), φ) = 0 will be imposed for
N discrete collocation points. These are chosen to be the points of the
scatterer’s outer surface located at the same polar angles Φm). In this
way the following linear N ×N system is formulated (from which An
are determined):

N−1∑
n=0

AnG0 (R (Φm) ,Φm, sR (Φn) ,Φn) = −E0,inc (R (Φm) ,Φm) (12)

The issue of choosing s, in other words “how close to the outer surface
should the auxiliary one be placed?” has attracted attention [24] as it
is significant for the proper implementation of the method. In our case
where auxiliary sources and collocation points are located on the same
azimuthal angles Φn, the condition number of the system’s matrix
gets lower as s gets close to unity with fixed N . That is because
for s → 1 the matrix is close to diagonal (always s < 1 because for
s = 1 the Green’s function is singular). On the other hand for fixed s
the condition number of the matrix is increasing with N (size of the
matrix). We thus use a high enough N in order to obtain convergent
results (satisfying the boundary condition) with an s suitably close to
1 so that the matrix of the system is numerically invertible.

As it stated above we are mainly interested in the effect of the
arbitrary cylinder in the radiation pattern of the slab antenna. For
this reason we need to compute the Green’s functions and incident
field as ρ → +∞ for 0 < φ < π. Both E0,inc and G0,smooth are of the
form

w (ρ, φ) =
∫ +∞

−∞
W (β) e−ρ(jβ cosφ+µ0(β) sinφ)dβ (13)

In the investigated region sinφ > 0 and it is also imposed that
�[µ0(β)] ≥ 0. Therefore in the limit ρ → +∞ the integration interval
should be restricted to (−k0, k0). Now the phase of the exponential
term is purely real (as the integration path is also real) and defined by

p (β) = β cosφ +
√
k2

0 − β2 sinφ (14)

For 0 < φ < π the only stationary point of the phase is β = k0 cosφ.
By applying the stationary phase technique [25], one arrives at the
asymptotic expansion:

w (ρ, φ) ∼ πk0 sinφW (k0 cosφ)

√
2

πk0ρ
e−jk0ρ+j

π
4 , ρ → +∞ (15)
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From (8) and (13) with use of (15), the far field expression of E0,inc is

E0,inc (ρ, φ) ∼ πk0 sinφCE (k0 cosφ)

√
2

πk0ρ
e−jk0ρ+j

π
4 , ρ → +∞ (16)

The asymptotic formula for the free–space Green’s function at large
radial distances is well–known [26]

G0,singular (ρ, φ, P,Φ) ∼ − j

4
ejk0P cos(φ−Φ)

√
2

πk0ρ
e−jk0ρ+j

π
4 , ρ → +∞

(17)
By combining (17) and (15) for G0,smooth and substituting into (7) the
total Green’s function is evaluated in the far field.

G0 (ρ, φ, P,Φ) ∼
√

2
πk0ρ

e−jk0ρ+j
π
4

·
(
πk0 sinφCG (k0 cosφ) ejk0P cos(φ+Φ)− j

4
ejk0P cos(φ−Φ)

)
, ρ →+∞(18)

From (11) through (18), one readily finds the asymptotic expansion of
the scattered electric field E0,scat.

5. VALIDATION EXAMPLE

The solution presented above is not a rigorous one and that is why it is
necessary to compare the results with those derived by a more accurate
method for a simpler case. In this section we determine the surface
current upon the infinite cylindrical scatterer for the special case that
its cross section is circular with radius R(φ) = a. The procedure,
for the most part, is fairly analytic. If one denotes the electric axial
current upon PEC surface by K(φ) then the scattered field is written
as [16]:

E0,scat (ρ, φ) = −jk0ζ0a

∫ 2π

0
K (Φ)G0 (ρ, φ, a,Φ) dΦ (19)

This integral equation for the surface current can be solved by
expressing K(φ) as a Fourier sum K(φ) =

∑+∞
u=−∞ Fue

juφ (modal
solution). Imposing the boundary condition at ρ = a, multiplying
by e−jvφ for each integer v and integrating over (0, 2π), yields

+∞∑
u=−∞

Fu

∫ 2π

0

∫ 2π

0
G0 (a, φ, a,Φ) ej(uΦ−vφ)dΦdφ =

− j

k0ζ0a

∫ 2π

0
E0,inc (a, φ) e−jvφdφ (20)
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If one uses the well-known relation for Hankel function originating from
addition theorem [27]

G0,singular (ρ, φ, P,Φ) =

− j

4

+∞∑
r=−∞

H(2)
r (k0 max (ρ, P ))Jr (k0 min (ρ, P )) ejr(Φ−φ) (21)

the sum of double integrals involving G0,singular is promptly evaluated.

+∞∑
u=−∞

Fu

∫ 2π

0

∫ 2π

0
G0,singular (a, φ, a,Φ) ej(uΦ−vφ)dΦdφ =

− j

4
(2π)2 Jv (k0a)H(2)

v (k0a)Fv (22)

With Jr we denote the Bessel function of order r.
As far as operations involving G0,smooth and E0,inc are concerned,

the components dependent on φ or Φ are separated and expressed
in exponential form. Those quantities can be integrated analytically
through the formula

∫ 2π

0
e−g(±jβ cos c+µ0(β) sin c)e∓jhcdc = 2πj∓h

(
β+µ0 (β)

k0

)−h
Jh (k0g) (23)

where h is integer. This expression is derived with the change of
variable k0 sin q = jµ0 (β) and k0 cos q = β. Also the logarithmic
expressions of inverse harmonic functions [28] are utilized and the well–
known integral representation of Bessel functions [17] is employed. If
(23) is used twice, one obtains
∫ 2π

0

∫ 2π

0
G0,smooth (a, φ, a,Φ) ej(uΦ−vφ)dΦdφ =

(2π)2 ju−vku+v0 Ju (k0a)Jv (k0a)
∫ +∞

−∞
CG (β) (β + µ0 (β))−u−v dβ (24)

∫ 2π

0
E0,inc (a, φ) e−jvφdφ =

2πj−vkv0Jv (k0a)
∫ +∞

−∞
CE (β) (β + µ0 (β))−v dβ (25)

The linear system (with unknowns the complex Fu Fourier coefficients)
is then truncated so that: u, v = −U, ..., U . It is noticeable that after
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the substitution of (22), (24) and (25) into (20) the function Jv(k0a)
is factored. The (2U + 1) × (2U + 1) system is given by:

− j

4
2πH(2)

v (k0a)Fv +

2πku+v0

U∑
u=−U

Fuj
u−vJu (k0a)

∫ +∞

−∞
CG (β) (β + µ0 (β))−u−v dβ =

− j

k0ζ0a
j−vkv0

∫ +∞

−∞
CE (β) (β + µ0 (β))−v dβ (26)

As stated in [29], matrices of this form as the above guarantee
numerical stability even for quite high U . For this reason the value
of U will be determined exclusively by the convergence of the solution
(unlike N which was dependent on other considerations as well).

The asymptotic expression of the scattered field for ρ → +∞ is
deduced through (18) and (19):

E0,scat (ρ, φ) ∼ −2πjk0aζ0

√
2

πk0ρ
e−jk0ρ+j

π
4 ·

U∑
u=−U

FuJu(k0a) ju
(
πk0 sinφCG (k0 cosφ) e−juφ− j

4
ejuφ

)
, ρ →+∞ (27)

For the derivation of (27), (23) for β = k0 was used twice.

6. NUMERICAL RESULTS

A set of programs has been developed to evaluate effectively the
values of the scattered and incident electric field and compute their
asymptotic expressions in the far region. The implementation of
formulas such as (5), (8) and (26) requires the numerical computation
of integrals whose functions possess branch points and poles. In
particular, the expressions are dependent on the double valued quantity
µ0(β) =

√
β2 − k2

0 in such a way that its branch points and the shape
of its branch cuts carry over to the aforementioned expressions. It
is well–known that µ0(β) has a real part of constant sign (positive
or negative) for all complex β only when its branch cuts are chosen
suitably. When k0 > 0 the proper shape of branch cuts is shown
in Fig. 2. These orthogonal lines are limiting forms of hyperbolas
[30]. It is convenient to suppose that µ0(β) possesses a positive real
part. Moreover, the integrals with smooth functions at β = ±k0 are
computed by numerical integration across the real axis with slight
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vertical shifts to remain on the same Riemann sheet. The functions
with integrable singularities will be integrated by bypassing β = ±k0

(otherwise the numerical procedures will be ruined) through a well–
shaped path which is depicted in Fig. 2. The integral is, of course,
independent of the wells’ depths which were varied as a check. Also
the integrals are of infinite integration path and therefore it should
be truncated. This is feasible as all the integrands are decaying
exponentially.

Figure 2. The proposed integration path for the numerical
computations of the spectral integrals. The integrand function can
exhibit integrable singularities at the branch points β = ±k0 (marked
by X). Its branch cuts are the same with the radiation function’s µ0(β).
The integral is independent of the radii of semi-circular circumventions.

Before proceeding to the numerical applications, certain checks
assuring the validity of the proposed method should be made. In
Fig. 3a we consider a circular rod and both presented methods are
used for the computation of the scattering electric field across the
boundary of the cylinder. The percent difference between the results
of the two methods is presented. We assume a radius of a = 1.5 cm
and a substrate having a thickness of D − d = 4 cm (D = 8 cm and
d = 4 cm) with the source posed in the middle t = 6 cm inside a
material with relative parameters ε1 = 0.01 and µ1 = 0.01. Three
operating frequencies are examined f = 8, 10 and 12 GHz. We also
chose a unitary excitation current for simplicity I = 1 A. Only half the
azimuthal extent is studied −π/2 < φ < π/2 owing to the symmetry
of the configuration. We notice that the method of auxiliary sources
is in good agreement with the rigorous modal solution of the integral
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Figure 3. Validation quantities as function of azimuthal angle for
various operating frequencies f . Only the variation for −π/2 < φ <
π/2 is presented due to symmetry. The rod is circular with radius
a = 1.5 cm. Other parameters: ε1 = 0.01, µ1 = 0.01, I = 1 A,
D = 8 cm, d = 4 cm, t = 6 cm. (a) Percent difference of the scattered
electric field on the surface computed by both methods. (b) Percent
error of the boundary condition computed by rigorous method.
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equation as the difference remains in all cases below 2%. The quantity
in average is greater for 0 < φ < π/2. As a rule of thumb N = 100
auxiliary sources per wavelength of scatterer’s radius are sufficient for
a convergent result and a tolerable difference equal or less than the
above. It should be combined with a choice of s close to unity such
as s = 0.93 − 0.97. In Fig. 3b the percent error of the boundary
condition with use of modal method is shown for the same configuration
parameters. This method is very accurate as the maximum error does
not exceed 0.2%. We remark that with increasing operating frequency
the error becomes greater. That is because the same number of modes
U is used, while the scatterer gets electrically larger. For excellent
results U = 15 azimuthal harmonics per wavelength of scatterer’s
radius are adequate. In applications with non circular cross sections,
convergence checks with respect to all the truncation parameters are
made and a final confirmation of the boundary condition is performed
with a maximum permissible error of 1%.

In order to examine the characteristics of the device under the
presence of non circular scatterers, we regard an ellipse centered at the
origin with semi major axis a = 2 cm and semi minor axis b = 1 cm.
The ellipse is rotated by angle δ with respect to x axis (with δ=0 the
ellipse’s major axis is parallel to the antenna plane). It can be shown
that the polar equation of such a curve is given by

R (φ) =
ab√

(b cos (φ− δ))2 + (a sin (φ− δ))2
(28)

In Fig. 4a the radiated power lim
ρ→+∞

[
ρ|E0,scat(ρ, φ) + E0,inc(ρ, φ)|2/ζ0

]
(in W/m) in the far field over the upper half plane is presented as
function of the azimuthal angle 0 < φ < π. The operating frequency
is taken equal to f = 10 GHz, the other parameters are the same with
the previous example and five cases of rotation angles are considered
(δ = 0, π/6, π/4, π/3, π/2). In all the investigated examples the
maximum radiated power is exhibited at φ = π/2 . The magnitude of
the radiated power at φ = π/2 is higher for δ = π/4 while for δ = 0, π/2
and for δ = π/6, π/3 the maximal quantity is similar. One could
also point out that the sidelobes are stronger in the second quadrant
(π/2 < φ < π) than in the first one. In Fig. 4b the relative radiation
quantity lim

ρ→+∞

[
|E0,scat(ρ, φ) + E0,inc(ρ, φ)|2/|E0,inc(ρ, φ)|2

]
(in db) is

presented for the same parameters. This quantity normalizes the far
field of the antenna to the far field in the absence of the scatterer in
order to express the effect of the rod to the operation of the device. It
should be stressed that almost for all the azimuthal angles the value
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Figure 4. Variation of far field radiation quantities as function of
the azimuthal φ for various rotation angles δ of the elliptical scatterer
with semi axes a = 2 cm and b = 1 cm. Other parameters: ε1 = 0.01,
µ1 = 0.01, I = 1 A, f = 10 GHz, D = 8 cm, d = 4 cm, t = 6 cm.
(a) Radiated power (W/m) (b) Radiated power normalized by the
corresponding power in the absence of the rod (db).
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is positive indicating that the rod is converted to a secondary antenna
which amplifies the radiation field of the initial structure for almost
any direction. This is not beneficial for the antenna designer because
the directivity is decreasing as the relative radiation quantity is much
greater far from the maximum angle than in the vicinity of it (φ ∼= π/2).
One can additionally point out that the graphs for δ = 0, π/2 are
symmetrical with respect to y axis. This is due to the symmetry and
does not hold for general values of δ.

As mentioned above, the angle of maximum radiated power
remains invariant in every numerical example (φ = π/2) and therefore
a noteworthy quantity will be the magnitude of maximum power (in
W/m) as function of the rotation angle of the ellipse δ. In Fig. 5a we
consider five different operating frequencies (f = 8, 9, 10, 11, 12 GHz).
One can observe that the curves corresponding to f = 8 and 11 GHz
are decreasing contrary to the one of f = 9 GHz which is increasing.
The other two curves possess a maximum in the middle of the interval.
In the case of f = 9 GHz little variation of the power is noticed, while
a very large maximum appears at δ = 0 for f = 8 GHz approaching
200 W/m. In Fig. 5b the 3 db beamwidth variance is presented with
respect to the same parameters. The differences between the curves
are initially (for δ = 0) quite large and as δ increases the antenna’s
pattern has a 3 db extent between 15 and 20 degrees for all the regarded
frequencies. Despite the presence of the scatterer which scrambles the
radiation signal, the beamwidth for f = 9 GHz remains remarkably
low at 11.5 degrees for δ = 0. Another point to be noted is that both
maximum power and 3 db angle has similar variations with respect to
δ.

The effect of the rod’s shape on the characteristics of the device
is worth examining. We consider an ellipse with constant semi minor
axis b = 1.5 cm (normal to the antenna plane) and variable eccentricity
ε. The polar function representing such a curve is given by:

R (φ) =
b√

(1 − ε2) cos2 φ + sin2 φ
(29)

The operating frequency is taken equal to f = 10 GHz. In Fig. 6a we
present the radiated power as function of azimuthal angle for various
eccentricities (ε = 0, 0.5, 0.7, 0.8, 0.85). An obvious conclusion is that
the maximum power (at φ = π/2) is increasing as ε increases. To
put it alternatively larger surfaces develop higher currents and thus
substantial fields are produced. The sidelobes have relatively low
magnitudes and also are symmetrical with respect to y axis as the
ellipse is not rotated. In Fig. 6b the normalized radiation quantity
is presented with respect to the same variables. For constant φ this
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Figure 5. Variation of far field radiation quantities as function of
the rotation angle δ of the elliptical scatterer with semi axes a = 2 cm
and b = 1 cm for various operating frequencies f . Other parameters:
ε1 = 0.01, µ1 = 0.01, I = 1 A, D = 8 cm, d = 4 cm, t = 6 cm. (a)
Maximum radiated power (W/m) at φ = π/2. (b) Three db beamwidth
(degrees) from both sides of φ = π/2.
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Figure 6. Variation of far field radiation quantities as function of the
azimuthal φ for various eccentricities ε of the elliptical scatterer with
semiminor axis b = 1.5 cm. Other parameters: ε1 = 0.01, µ1 = 0.01,
I = 1 A, f = 10 GHz, D = 8 cm, d = 4 cm, t = 6 cm. (a) Radiated
power (W/m) (b) Radiated power normalized by the corresponding
power in the absence of the rod (db).
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quantity is increasing as ε increases. As this happens for each azimuthal
angle, large ε does not improve the features of the antenna.

The influence of the same elliptical scatterer on the functionality
of the device was investigated with varying frequency. In Fig. 7a we
present the variation of the maximum radiated power (at φ = π/2)
as function of the eccentricity of the ellipse. In these diagrams the
interval of parameter ε is not equally divided because the shape of
the scatterer is not significantly affected by variations of small ε and
is substantially changed for large ones close to unity. For f = 8 and
9 GHz a remarkable stability is recorded while for greater frequencies
alterations happen. Especially for f = 10 GHz a rapid increase on
the radiated power is observed for ε > 0.5. In Fig. 7b the represented
quantity is the 3 db beamwidth. It is clear that for increasing frequency
the angle is decreasing, making the antenna more directive. In this case
the electrically larger scatterer improves the antenna.

The effect of the substrate’s thickness on the characteristic
quantities of the device is now investigated. In the example the source
is located at t = 7 cm and four different cases of the substrate thickness
are regarded: d = 6, 5, 4, and 3 cm with D = 8 cm. The scatterer is
of constant curvature with a = 1.5 cm and the operating frequency
is fixed at f = 10 GHz. In Fig. 8a we observe the variation of the
radiated power of the total field as function of the angle φ. When d
is large the radiated power is high but within a broad angular extent
which means poor directivity. When d is small the radiated power is
concentrated in the region of φ = π/2 but the magnitude is reduced.
The most satisfactory result is achieved for d = 4 cm, namely for a
moderate substrate thickness, not too close to the scatterer. In Fig. 8b
the polar plots of the surface current on the cylindrical scatterer are
shown for the aforementioned cases. It is notable that the current on
the bottom half of the scatterer is negligible. In these applications the
cylinder is behaving as another antenna with maximum surface current
at φ = π/2.

The position of the source is another parameter of the problem
the variation of which affects the operation of the device. Now d
is constant equalling to 3 cm. Five cases of different t are observed:
t = 3.5, 4.5, 5.5, 6.5, 7.5 cm. In Fig. 9a the radiated power becomes
greater with decreasing t. The same happens for the surface electric
current in Fig. 9b. These results are natural because if the source is
located close to the PEC plane at D = 8 cm its presence is neutralized
by the opposite image. The farther the electrical current it gets
from the backing plane, the more powerful excitation exercises on the
configuration.
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Figure 7. Variation of far field radiation quantities as function of
the eccentricity ε of the elliptical scatterer with semiminor axis b =1.5
cm for various operating frequencies f . Other parameters: ε1 = 0.01,
µ1 = 0.01, I = 1 A, D = 8 cm, d = 4 cm, t = 6 cm. (a) Maximum
radiated power (W/m) at φ = π/2. (b) Three db beamwidth (degrees)
from both sides of φ = π/2.
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Figure 8. Variation of antenna quantities as function of the azimuthal
φ for various substrate thicknesses (D − d). The rod is circular with
radius a = 1.5 cm. Other parameters: ε1 =0.01, µ1 =0.01, I = 1A,
f = 10 GHz, D = 8 cm, t = 7 cm. (a) Radiated power (W/m) (b)
Surface current (A/m) in polar plot.
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Figure 9. Variation of antenna quantities as function of the azimuthal
φ for various substrate thicknesses t. The rod is circular with radius
a = 1.5 cm. Other parameters: ε1 = 0.01, µ1 = 0.01, I = 1 A,
f = 10 GHz, D = 8 cm, d = 3 cm. (a) Radiated power (W/m) (b)
Surface current (A/m) in polar plot.
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7. CONCLUSION

The scattering of the field developed due to a metamaterial slab
antenna by a PEC cylindrical scatterer located close to it is examined
in the present work. The antenna is excited by a two–dimensional
dipole inside the slab. In the mathematical formulation both method
of auxiliary sources and method of moments are utilized. The case of
rotated elliptical scatterer is examined and the variation of the antenna
quantities as function of the rotation angle is observed. Also elliptical
scatterers with arbitrary eccentricities are considered. Finally various
substrate thicknesses and various source positions are investigated.

Several conclusions are drawn (some of them were expected by
physical intuition) possibly useful for practical applications. They
can also be compared with the corresponding ones emanating from
the study of other similar problems such as the cases of dielectric or
multilayered scatterer and the cases of multiple scatterers or multiple
sources.
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