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Abstract—Stacked microstrip antennas deserve special attention due
to their advantageous properties like dual frequency operation and
wide bandwidth. In the present communication a theoretical model
for single stacked microstrip disc antenna is proposed using extended
cavity model. The method of analysis by this model is easier and
intuitive than the full wave analysis. Single stacked microstrip disc
antenna with co-axial feed locations at different radial positions is
analyzed with this model taking different ratios of patch sizes. Antenna
properties like return loss, input impedance, gain and radiation
efficiency are calculated with the proposed model different cases and
compared with the simulated and experimental results. The results
are in fairly good agreement.

1. INTRODUCTION

Microstrip patch antennas are widely used antennas due to their
many desirable features. However due to resonant behavior, the
narrow bandwidth of the antennas is a concern. Stacking the
antenna in multilayered configuration introduces additional resonance
in the frequency resulting in the wide bandwidth and dual frequency
operation. Stacked patch solution also presents many degrees of
freedom (feeding point, gap between patches, dielectric constant etc.)

Several techniques have been appearing in the last years to
improve the bandwidth and to have dual frequency operations in the
microstrip antennas by stacking the microstrip antenna. Different
methods were employed to analyze the stacked microstrip antenna
like Method of Moments [1], Hankel Transform Domain Analysis [2],
Coupled cavity methods [3], wave guide mode analysis [4] FDTD [5, 6].
These approaches were used for analysis of different types of microstrip
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antennas [7, 8]. Apart from stacking the elements different techniques
were employed to analyze microstrip antennas of different shapes for
wide bandwidth or dual frequency techniques either by loading L-C-
R circuit across a selective location in the disc via a thin shorting
pin [9] or by T-strip loaded rectangular patch [10]. In the present
article, a methodology is proposed by which the input impedance seen
by a coaxial line feeding a probe exciting a stacked circular patch
is evaluated for radial locations of feed probe. The outline of the
method of evaluation of input impedance had been presented by De
[11]. The expressions for the amplitudes of the excited fields in the
resonant cavity are derived by taking the effect of wall admittance,
dielectric loss and conductor loss into account. The expression for
wall admittance has been derived following [12, 13]. The expression
for electric field appearing in the formulation of input impedance is
given as superposition of perturbed eigen-modes in the circular patch.
The number of higher order modes used for computation is suitably
truncated. Truncation however does not introduce any error in the
computation of real value of input impedance. The radiation pattern
for the loaded patch is evaluated by considering the magnetic current
density at the electrical equivalent edge of the circular patch. Since
the height of the substrate is very small and the current density is
uniform along the z direction, we can approximate this by a filamentary
magnetic current. The numerical and experimental results obtained by
this model are compared with the simulated results and the results are
fairly matching. The simulation is done by the Method of Moments
based software IE3D which is commercially available.

2. THEORY

Consider a circular disk antenna with a radius r1 and a thickness h,
excited by a line current I0(z′) on the feed pin. The feed pin has
diameter df and is located at (r0, φ0) and the current density on the
pin is given as �J(r).

The input impedance of the antenna seen by a coaxial probe is
given by [14]

Zin = − 1
I2
0

∫
S0

�E · �J∗dS (1)

where the surface integral is over the feed pin surface S0.
This expression for Zin has been derived in [12] and is given as

Zin = − 1
I2
0

∑
n

∑
p

(jω + A)p2
n

(jω − C)(jω + A) + ω2
np

(2)
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where ωnp corresponds to the resonance of eigen-mode corresponding
to TMnp mode. The parameters A & C are given as

A = Zs

∫
se

|Hi|2dS (3)

C = −Yw

∫
sm

|Ei|2dS (4)

where ‘se’ corresponds to top & bottom surfaces & ‘sm’ corresponds
to side walls. Zs and Yw are the surface impedance of the conductor
and wall admittance on the side walls, respectively. In expression (2),
pn is given as

pn =
∫
s0

EiJ
∗dS

Since the current in the feed pin and fields in the patch radiator are
uniform along z-axis, the above expression reduces to the form

pn =
I0h

2

2π

2π∫
0

Ei · dβ (5)

Consider the stacked circular patch configuration the geometry of
the stacked patch is shown in Fig. 1.

Figure 1. Geometry of a stacked antenna.

The Lower Circular Patch (LCP) of radius ‘a’ is loaded with
Upper Circular Patch (UCP) of radius ‘b’ located on top of LCP
with intermediate air gap of “h”. The LCP radiator is excited by
coaxial probe of diameter df . The expression (2) is used for evaluation
of input impedance. The use of the expression requires evaluation
of normal mode fields. The normal mode fields are evaluated by
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assuming YW = 0. While formulating the basic theory concerning the
computation of input impedance around a given resonant frequency
fnp corresponding to the excited mode TMnp, it is important to
differentiate the notations for wave propagation constant. These are
given as below.

k = ω
√
µ0ε0εeff for measurement frequency f = fnp ± ∆f.

knp = ωnp
√
µ0ε0εeff

and
k0 = ω

√
µ0ε0

For thin microstrip antenna (h/λg < 0.02), εeff ∼= εr
In Region I (LCP), the expressions for electric field and magnetic

field are given as

Ez = −jωnpµC
(1)
n F (1)

n (k · r) cosnφ (6)

Hr = −(n/r)C(1)
n F (1)

n (k · r) sinnφ (7)

and
Hφ = −knpC

(1)
n F (1)′

n (k · r) cosnφ (8)

where

C(1)
n is a constant

F (1)
n (knpr) = Jn(k · r)

and
F (1)′
n (knpr) = J ′

n(k · r)
For such cases, application of boundary condition leads to

Jn′(knpa) = 0

Application of the boundary condition gives the resonant frequency.
In order to evaluate the constant C(1)

n , the normalization condition
[15] is used. ∫

V

ε|E|2dV = 1

For the entire volume the normalization condition for the problem
under consideration assumes the form

h∫
0

2π∫
0

a∫
0

ε|Ez|2rdr = 1
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From this

C(1)
n =

1
k
·
√

1
πhµ[I1]

(9)

In Eq. (9)

I1 =
a∫

0

J2
n(k · r)rdr

The different parameters appearing in expression for input impedance
(2) for the problem under consideration assumes the following form.

A = Zs

2π∫
0

a∫
0

{
|Hφ|2 + |Hr|2

}
rdr (10)

where surface resistance Zs is given as

Zs =
{
πfµ

σ

} 1
2

and

C = −Yw

h∫
0

2π∫
0

|Ez|2rdφdz

at r = a (11)

From this
A = ZsπC

(1)2

n

[
k2I3 + n2I4

]
. (12)

where

I3 =
a∫

0

J2′
n (k · r)rdr

I4 =
a∫

0

J2
n(k · r)
r2

rdr

The expression of “A” corresponds to the copper loss in the microstrip.
Consider a loaded microstrip patch radiator excited by a coaxial

line feeding a probe located at (r0, φ0, 0).
Using the transformation [16]

r = r0 +
df
2

cosβ
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and expanding the Bessel function in Taylor series, the function
F

(1)
n (k · r) is obtained as

F (1)
n (k · r) = Jn(k · r0) +

k · df
2

J ′
n(k · r0) cosβ (13)

where the higher order terms of the Taylor series expansion are
neglected.

Using the transformation

φ =
df
2r0

sinβ

and expanding cos(nφ) & sin(nφ) in series of Bessel function it is found

cos(nφ) = J0

(
ndf
2r0

)
+ 2

∞∑
q=1

J2q−1

(
ndf
2r0

)
cos(2qβ) (14)

sin(nφ) = 2
∞∑
q=1

J2q−1

(
ndf
2r0

)
sin[(2q − 1)β] (15)

substituting in Eq. (5) and carrying out the integration

pn = −jωµhI0C
(1)
n Jn(k · r0)J0

(
ndf
2r0

)
(16)

substituting Eq. (16) in Eq. (2), we get

Zin = µ2h2
∑
n

∑
p

(jω + A)C(1)2
n ω2

[
Jn(k · r0)J0

(
ndf
2r0

)]2

(jω −A)(jω + A) + ω2
np

(17)

3. FORMULATION OF COMPUTATION OF
RADIATION PATTERN

The magnetic current density evaluated at the electrical equivalent
edge re of the circular patch can be written as

�Ms = −2n̂× Ez|ρ′=re (18)

Since the height of the substrate is very small and the current density
given by (18) is uniform along the z-direction, we can approximate
(18) by a filamentary magnetic current of

Im = h �Ms = âφ2h(−jωµ)C(1)
n F (1)

n (k · re) cos(nφ) (19)



Extended cavity model analysis 7

In the far-field the total �E fields can be written as [17]

Er = 0 (20)

Eϑ ∼= −jk0
e−jk0r

4πr
Lφ (21)

Eφ ∼= +jk0
e−jk0r

4πr
Lϑ (22)

where

Lφ =
∫
S

∫
Mφ cos(φ− φ′)e+jk0r′ cosΨds′ (23)

Lϑ =
∫
S

∫
Mφ cosϑ sin(φ− φ′)e+jk0r′ cos Ψds′ (24)

In Eqs. (23) & (24)

r′ cos Ψ = ρ′ sinϑ cos(φ− φ′)
ds′ = ρ′dρ′dφ′

Using the following two relations
2π∫
0

cos(φ′ − φ)ejmφ
′
ejkρ

′ sinϑ cos(φ′−φ)dφ′

= πjmejmφ
{
j

[
Jm+1(kρ′ sinϑ) − Jm−1(kρ′ sinϑ)

]}
and

2π∫
0

sin(φ′ − φ)ejmφ
′
ejkρ

′ sinϑ cos(φ′−φ)dφ′

= πjmejmφ
[
Jm+1(kρ′ sinϑ) + Jm−1(kρ′ sinϑ)

]
we obtain for TM11 mode

Eϑ = −e−jk0r

r

(
h

π

)(
ωµ0√
εr

)
C(1)
n [J0(k0re sinϑ)−J2(k0re sinϑ)] {cosφ}

(25)
and

Eφ = +
e−jk0r

r

(
h

π

) (
ωµ0√
εr

)
C(1)
n cosϑ

× [J0(k0re sinϑ) + J2(k0re sinϑ)] {sinφ} (26)
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3.1. Radiated Power

The power radiated by a shorted patch is estimated as

Pr =
1

2η0

2π∫
0

π/2∫
0

(
|Eϑ|2 + |Eφ|2

)
r2 sinϑdϑdφ (27)

For TM11 mode expression (27) can be rewritten as

Pr =
2π
η0

(
E0

k0re

)2 [
(k0re)2I7 + I8

]
(28)

where

η0 = 120π

E0 =
h

π

(
ωµ0√
εr

)
C(1)
n

I7 =

π/2∫
0

[
J ′

1(k0re sinϑ)
]2 sinϑdϑ

I8 =

π/2∫
0

[J1(k0re sinϑ)]2
(cosϑ)2

sinϑ
dϑ

4. EVALUATION OF WALL ADMITTANCE YW

In order to determine the input impedance of the loaded circular patch,
it is necessary to take into account the reactive power due to the electric
and magnetic stored energy in the fringe of the disk and the real
power due to radiation. These reactive and active powers are given
by equivalent boundary admittance at the disk edge.

The boundary admittance YW is given by [18, pp. 107–109]

YW = gn + jbn (29)

where
gn =

PT
1
2

∫
Sm

|Ez|2ds|ρ=re
(30)
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and
bn =

−Pi
1
2

∫
Sm

|Ez|2ds|ρ=re
(31)

where Pi is the reactive power & PT is the total power given by the
following set of expressions

PT = Pr + Pc + Pd

where Pr is the radiated power, Pc and Pd are the copper loss and
dielectric loss respectively. Pc is same as “A” and the dielectric loss is
given as

Pd =
1
2
hωεrε0 tan δπ(ωµ)2C(1)2

n [I1]

Thus
gn =

h

η0re

[
(k0re)2I7 + I8

]
· 1
effnp

(32)

where effnp is the efficiency of the antenna when TMnp mode is excited
and is given as

effnp =
Pr
PT

(33)

Estimation of the reactive power, is made by computing the fields at
the edge of the disk Substituting, we get the expression for bn

bn =
1
η0

ε0εrωπr
2
1

h

[{
1 +

2h
πr1εr

(
ln

(
πr1

2h

)
+ 1.7726

)}1/2

− 1

]
(34)

Using Eqs. (32) and (34), one can compute YW .
From expression (34), it is evident that wall susceptance accounts

for the fringing fields which increases the physical radius to an effective
radius re. It is important to note that while computing the input
impedance around resonance, the resonant frequency ωnp is to be given
as input value. This “ωnp” already accounts for the fringing field using
re as the effective radius of the patch. Therefore, to avoid multiple
corrections due to fringing fields, bn is taken to be zero.

In general, since the substrate height is small compared to the
wavelength, it can be assumed that the fringing field is extended up to
a distance from the edges so a magnetic wall can be set at that region.
The effective radius can be calculated as follows.

∆CLCP = ln
(

a

2h

)
+ 1.41εr + 1.7726 +

h

a
(0.286εr + 1.65) (35)

re = a

√
1 +

2h
πaεr

∆CLCP (36)
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The electric and magnetic energies stored inside the lower cavity
becomes

We =
Pd

2ω tan δ
(37)

and
Wh =

1
4
µ0h

Pc
Rs

(38)

5. APPLICATION OF END-CORRECTION NETWORK
OF A COAXIAL PROBE

The theory developed in the previous sections for a shorting post
loaded circular microstrip antenna assumes the use of a coaxial probe.
For validating this theory through experimental verification, it is
necessary to properly model the coaxial probe. A survey of analytical
models used for evaluating the input impedance of probe-fed microstrip
antenna is given in reference [19]. In the present work, for purpose
of computing input impedance, the end-correction network suggested
by Zheng et al. [20] is used. Zheng suggests that TEM aperture field
approximation can provide an accurate result of input admittance, and
there is no need to introduce a specific correction network for most
applications. Constant current probe model is valid only when both
k1d 
 1 and a′/d 
 1 are satisfied (where d is the substrate height
and a′ is the radius of the centre conductor of the coaxial probe).
An end-correction network consisting of a series inductor and a shunt
capacitance should be used for higher accuracy. Using this correction
network the input impedance for the probe-fed microstrip antenna is
given as

YTEM ≈ 1
[Rp + jω(Lp + L0)]

+ jωC0 (39)

where

C0 = ε0εr
[
6d ln2(b′/a′)

]−1 {
3π

[
b′

2 − a′
2 − 2b2 ln(b′/a′)

]
+4πh2 ln(b′/a′) − 12h3(π2b′)−1 ·X0

}
(40)

where

X0 = ξ(3) −
∞∑
n=1

n−3 exp
[
−2nπ(b′ − a′)/h

]
L0 = −µ0hk

2
1

[
4π ln(b′/a′)

]−1 ·
[
(b′2 + a′

2) ln(b′/a′) − b′
2 + a′

2
]

×
[
ln(k1a

′/2) + γ
]

(41)
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the Riemann zeta function and ξ(3) = 1.202 and b′ is the radius of the
outer conductor of the probe.

The Rp + jωLp in (39) is the same input impedance derived from
the constant current probe approximation. The end-correction network
formed by C0 and L0 can be used even when the input impedance Zp
associated with the infinite parallel plates is replaced with that of a
finite size patch when the probe is not located very close to the edge.

The expression for input impedance resembles the form of a
parallel RLC circuit, although in this case each element can be
considered as frequency dependent.

Based on the analogy with a parallel resonant circuit the input
impedance for a probe free circular patch can also be re-written as

Zin =
1

2PT
|V |2 + j

4ω
|V |2We − j

4ω
|V |2Wh

(42)

where
V = −dEav

and

Eav =
1
2d

2π∫
0

E2
z (r1, φ)dφ

6. THEORY OF STACKED CIRCULAR PATCH

The cavity model developed for a single circular patch (LCP) can
now be extended for a stacked geometry. In this case the stacked
antenna has to be considered as two coupled cavities. It is necessary
to accurately predict the upper and lower cavity resonant frequency;
next the electric fields generated inside the upper and lower cavities
are added together using the correct effective values of the dielectric
constant.

The Green’s function is obtained for the LCP and the UCP. The
main difference lies in the effective dielectric constants and the patch
dimensions. The resulting total electric field inside the cavities can
be calculated by adding together the contributions of the field in the
superstrate and in the substrate. This assumption can be supported by
the fact that the cavity model assumes no “z” variations of the electric
field. The assumption gets invalidated if the height of the superstrate
is large as compared to wavelength.

The lower cavity can be considered to be loaded by a dielectric
material, ignoring the upper patch. This is valid since the fields are
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concentrated between the lower patch and the ground. The superstrate
on the other hand will alter the effective dielectric constant. However in
the present case there is a substantial air-gap between the substrate and
the superstrate. For this case exact computation of effective dielectric
constant is not necessary since height of air-gap� d. If the air-gap is
reduced, it will be necessary to replace εr by εr,eff = p · εr where “p”
is an empirical correction factor less than one.

The upper patch can be considered in isolation as uncoupled cavity
with an air gap. For such the expression for effective dielectric constant
is given as [21]

εre =
εr(1 + h/d)
(1 + εrh/d)

(43)

where h is the air-gap and d is the superstrate height.
The resonant frequency is obtained from

fnp =
χnp · 300

2πbeff
√
εef

(44)

where
εef =

4εreεr,dyn(√
εre + √

εr,dyn
)2 (45)

Here

εr,dyn =
Cdyn(ε = ε0εre)
Cdyn(ε = ε0)

(46)

where Cdyn is the dynamic capacitance defined as

Cdyn = C0,dyn + Cε,dyn (main and fringing capacitances) (47)

The dynamic capacitances are related to static capacitances as

C0,dyn = 0.3525C0,stat (48)
C0,dyn = (1/2)Cε,dyn (49)

The static capacitances are evaluated as follows.

C0,stat =
(
ε0εreπb

2
)
/hT (50)

Here hT = d + h + d = The total height over the ground plane

Cε,stat = C0,stat · q (51)
q = u + v + uv

u =
1 + εre
εre

4
πb/hT
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Figure 2. Variation of real input impedance {Re[Zin]} with frequency
for single patch r0 = 20 mm.

v =
2
3t

(
ln(p)

8 + πb/hT

)
+

(
1
t
− 1

)
/g

t = 0.37 + 0.63εre

p =
1 + 0.8(b/hT )2 + (0.31b/hT )4

1 + 0.9b/hT
g = 4 + 2.6b/hT + 2.9hT /b

The effective radius of the microstrip disk is

beff = b
√

1 + m · q (52)

The upper patch has to be analyzed like an uncovered microstrip
patch. However lower patch does not provide sufficient ground plane
and this fact will introduce errors. The effects of coupling between
the substrate and the superstrate will change the effective dimensions
of the upper ring and thus will increase the resonant frequency as
compared to the case without substrate. It is necessary to accurately
account for the interaction between fringing fields in the lower and the
upper patch by changing the effective radii of the upper patch.

Once the effective dielectric constant is obtained for the upper
patch, the effective dimension r2eff is obtained. Here “m” is an
empirical correction factor.

Next, the input impedance of upper patch with probe location
on the edge is obtained using expression (42) with suitable changes
in the various parameters. Thus each cavity is studied separately as
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Figure 3. Variation of imaginary input impedance {Im[Zin]} with
frequency for single patch r0 = 20 mm.

though they are uncoupled. The coupling is done through mutual
capacitance between the two patches. Since impedance of each cavity
is obtained using normalized voltage of 1 V, the coupled impedance
is again normalized to 1 V by considering half of impedance value
obtained using expression (42).

Though the resonance of the cavities is studied in uncoupled mode,
the radiated fields are strongly coupled. Therefore in the formulation
mentioned above, Pr remains a single expression taking into account
both the uncoupled fields.

7. RESULTS

For designing of broadband antenna, the stacked approach is being
considered using the present model. The stacked antenna consists of
a circular patch of a radius “a” on the lower substrate of dielectric
thickness “d” & dielectric constant εr. Another circular patch of radius
“b” is placed on top of the lower patch on identical dielectric with an
air gap of “h” between these two. With the help of present model
different radiation properties of the stacked antenna are analyzed. For
numerical calculation and simulation of the antenna input parameters
taken are a = 22.65 mm, d = 0.787 mm, h = 9 mm and the ratio of
patch sizes b/a = 1, 1.05, and 1.1.

In this paper, the problem of stacked patch is considered as
two uncoupled impedances coupled through capacitive coupling. To
demonstrate the accuracy of the proposed model, the theoretical and
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Figure 4. Variation of Im[Zin] with frequency for the ratio of patch
sizes b/a = 1 and r0 = 12 mm.
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Figure 5. Variation of Re[Zin] with frequency for the ratio of patch
sizes b/a = 1 and r0 = 12 mm.

simulated impedances are compared for single LCP.
It is seen that very good agreement is observed in the resonant

frequency as well as magnitudes of impedances. Now the UCP is
placed and the problem is both numerically solved and compared with
simulated results. The following figures [Fig. 4–Fig. 11] display the
real and imaginary part of input impedances for b = 1.1a & b = a
and feed point location (r0) at 12 mm and 20 mm along the radial
direction. This model is suitable for computation when the height is
taken to be lower than proposed. As the value of hλ0 > 0.02 the cavity
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Figure 6. Variation of Re[Zin] with frequency for the ratio of patch
sizes b/a = 1 and r0 = 20 mm.
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Figure 7. Variation of Im[Zin] with frequency for the ratio of patch
sizes b/a = 1 and r0 = 20 mm.

model starts failing. However since the measurement result showed an
enhanced bandwidth at h = 9 mm, the same was used for comparison.

The error percentage of resonant frequency for both cases of b = a
and b = 1.1a is reported in Table 1. In case of b = 1.1a, there is a
disagreement to the extent of 4% in resonant frequency. While as in
case of a = b the disagreement in the resonant frequency is less than
1.5%. This is due to the fact that LCP which is acting as ground plane
for UCP is not fully covering UCP. Also cavity model exhibits error
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Figure 8. Variation of Im[Zin] with frequency for the ratio of patch
sizes b/a = 1.1 and r0 = 12 mm.
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Figure 9. Variation of Re[Zin] with frequency for the ratio of patch
sizes b/a = 1.1 and r0 = 12 mm.

when height of substrate is thick as in this case.
Now an edge fed stacked antennas is fabricated for dimensions

a = 22.65 mm, h = 9 mm, d = 0.787 mm and b = 1.05a and is tested.
Fig. 12 shows the result. With these values the resultant structure
exhibits input impedance of 50 ohms (characteristic impedance of feed
line). While in absence of stacked element the input impedance is
nearly 270 ohms. The band width in this case is found 200 MHz around
the central frequency of 2.6 GHz.

The theory is applied to single patch with dimensions a =
22.65 mm and r0 = 12 mm and to the stacked elements of dimensions
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Figure 10. Variation of Re[Zin] with frequency for the ratio of patch
sizes b/a = 1.1 and r0 = 20 mm.
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Figure 11. Variation of Im[Zin] with frequency for the ratio of patch
sizes b/a = 1.1 and r0 = 20 mm.

Table 1. Percentage error in resonant frequency for the ratio of patch
size b/a = 1.1 and b/a = 1 for r0 = 12 mm and 20 mm.

Ratio of b/a Radial feed point
location

Percentage error in Resonant
Frequency

ro=12 mm 1.17
1

ro=20 mm 0.78

ro=12 mm 3.77
1.1

ro=20 mm 2.66
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Figure 12. Theoretical and measured return loss for a single element
stacked antenna.

Table 2. Comparison of gain of stacked patch and single patch
antenna.

Antenna Type Frequency in GHz Gain in dB
2.51 2.93
2.55 5.03
2.56 5.23

Single Patch
( Radial feed at 12 mm)

2.62 3.20
2.51 7.72
2.55 8.26

Stacked Patch
( Radial Feed at 12 mm and b/a=1)

2.62 8.11

a = 22.65 mm, r0 = 12 mm and b = a. It is observed that with the
stacking of elements input impedance is considerably reduced to the
feed line impedance (50 ohms) or near it. For this case, the band size
observed is 2.51 GHz–2.62 GHz around central frequency of 2.55 GHz.
In case of patch antenna it is at 2.56 GHz. Comparison of gain of patch
and stacked antenna is calculated numerically Table 1.

It is evident from the table that gain is considerably high in case of
stacked elements even at the edges of the band width. Numerical and
simulated values of the radiation efficiency are reported in Table 3. In
both cases the efficiency is more than 94% and is in good agreement.
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Table 3. Numerical and Simulated values of radiation efficiency of
stacked antenna with radial feed (r0 = 12 mm and ratio of patch size
b/a = 1).

 Radiation Efficiency in Percentage  
Antenna Frequency in GHz Numerical Simulated 

 2.51  97.75 94.20 
 2.55 
 

97.80 94.25 
Stacked Patch 

 
 2.62 97.42 94.16 

8. CONCLUSION

In this article the authors present a theoretical model based on
analytical techniques for computing the impedance of stacked circular
microstrip antenna around fundamental resonance for a probe fed case.
The result for an edge-fed case show 10% bandwidth is achievable.
The results with feed point location at different radial positions also
predict not only the enhancement of bandwidth but improvement in
the radiation characteristics of stacked antenna. A major application
for such antenna is the ease with which a circular polarized array can
be designed with large bandwidth, For some applications it is required
to have two closely spaced resonances for transmit and receive mode
with circular polarization. For such applications, this antenna is very
suitable along with a microstrip diplexer for Tx and Rx isolation.
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