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EQUIVALENT CIRCUIT MODEL FOR ANALYSIS OF
INHOMOGENEOUS GRATINGS

M. Khalaj-Amirhosseini

College of Electrical Engineering
Iran University of Science and Technology
Tehran, Iran

Abstract—A general circuit model is proposed for frequency domain
analysis of inhomogeneous two-dimensional periodic gratings. Each
component of electromagnetic fields is expressed by several spatial
harmonic plane waves. Then, two differential equations and two
boundary conditions are obtained for the electric and magnetic vectors.
Finally a circuit model is introduced for the obtained equations.
The circuit model consists of loaded and excited nonuniform coupled
transmission lines (CTL).

1. INTRODUCTION

Laterally periodic planar layers (gratings) are used in many areas such
as electromagnetics [1–3], integrated optics [4], electron beams [5],
holography and so on. On the other hand, inhomogeneous planar
layers are widely used in electromagnetics as optimum shields and
filters and so on [6, 7]. Therefore, many efforts have been done
to analyze gratings [1–3, 8–10], inhomogeneous planar layers [11–
13] or inhomogeneous gratings [14, 15]. The subject of this paper
is to introduce a circuit model for analysis of inhomogeneous two-
dimensional periodic gratings. First, each component of TM or
TE polarized electromagnetic fields is expressed by several spatial
harmonic plane waves. Then, two differential equations and two
boundary conditions are obtained for the electric and magnetic vectors.
Finally, a circuit model is introduced for the obtained equations. The
circuit model consists of a loaded and excited nonuniform coupled
transmission lines (CTL). The reflection and transmission coefficients
can be obtained through analysis of the CTL model.
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Figure 1. A typical inhomogeneous grating illuminated by a plane
wave.

2. THE GRATING STRUCTURE

Figure 1 shows a typical inhomogeneous two-dimensional periodic
grating with the relative electric permittivity εr = ε′r − jε′′r = ε′r − j σ

ωε0

and periods of a and b, whose thickness is d. It is assumed that the
incident plane wave propagates obliquely towards positive x, y and z
direction with an angle of incidence ϕi and θi, electric filed strength
of Ei and the angular frequency of ω. Regard to the periodicity of
the geometry shown in Fig. 1, the electric and magnetic fields are
pseudo-periodic functions in x and y with a period of a and b. So, one
can use the following Fourier series expansion for an arbitrary three-
dimensional function F (x, y, z), which is periodic with respect to x and
y with a period of a and b, respectively.

F (x, y, z) =
∞∑

m=−∞

∞∑
n=−∞

(F )m,n|z=z
exp(−j(Umx+ Vny)) (1)

(F )m,n|z=z
=

1
ab

b/2∫
−b/2

a/2∫
−a/2

F (x, y, z) exp(j(Umx+ Vny))dxdy (2)

in which

Um =
2πm
a

(3)
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Vn =
2πn
b

(4)

In fact, (F )m,n = (F )m,n(z) denotes the m,n-th Fourier coefficients
of F (x, y, z). Of course, in a numerical computation, it is better
to truncate the Fourier series expansion of electromagnetic field
components by setting

(F )m,n = 0, if |m| > M or |n| > N, (5)

where M and N are two positive integers. We use such a truncation
(−M ≤ m ≤M, −N ≤ n ≤ N) in the following sections.

3. THE INCIDENT WAVE

The incident wave is an electromagnetic plane wave consisting of two
different polarizations, TE and TM. Thus we can write like as following

�Ei = Ei (αTE âTE + αTM âTM ) exp(−j(kx0x+ ky0y + kz0z))
= (Eixâx + Eiyây + Eizâz) exp(−j(kx0x+ ky0y + kz0z)) (6)

in which

kx0 = k0 sin θi cosϕi (7)
ky0 = k0 sin θi sinϕi (8)
kz0 = k0 cos θi (9)

where k0 = ω
√
µ0ε0 is the wave number in the free space. Also, αTE

and αTM are the weighting coefficients of TE and TM polarizations,
respectively, when 0 ≤ αTE , αTM ≤ 1 and α2

TE + α2
TM = 1.

Furthermore, α̂TE and α̂TM are the unit vectors related to TE and
TM polarizations, respectively, given by

âTE = − sinϕiâx + cosϕiây (10)
âTM = cos θi cosϕiâx + cos θi sinϕiây − sin θiâz (11)

From the Faraday and Amper Laws, the other components of the
incident wave can be written versus only x and y components of the
electric field, as follows

Eiz = −
(
kx0

kz0
Eix +

ky0

kz0
Eiy

)
= −αTM sin θiEi (12)

Hix =
−1
ωµ0

[
kx0ky0

kz0
Eix +

(
k2

y0

kz0
+ kz0

)
Eiy

]
(13)
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Hiy =
1
ωµ0

[(
k2

x0

kz0
+ kz0

)
Eix +

kx0ky0

kz0
Eiy

]
(14)

Hiz =
1
ωµ0

(−ky0Eix + kx0Eiy) (15)

These relations can be written in matrix form given by

eiz = Aizxeix +Aizyeiy (16)
hix = Yixxeix + Yixyeiy (17)
hiy = Yiyxeix + Yiyyeiy (18)
hiz = Yizxeix + Yizyeiy (19)

in which the [(2M + 1) × (2N + 1)] × 1 column matrices

f iw = [0 · · · Fiw · · · 0]T (20)

(f = e,h, F = E,H and w = x, y, z) represent the Fourier coefficient
(the same as the amplitude) of the incident electric and magnetic fields
components. Also, Yiww and Aiww are coefficients obtained from (12)–
(15).

4. THE REFLECTED AND TRANSMITTED WAVES

The electric and magnetic fields reflected or transmitted from the
gratings, can be represented as �Fr = Frxâx + Fryây + Frzâz and
�Ft = Ftxâx + Ftyây + Ftzâz, respectively, where F denotes E or
H (F = E,H). Each component of these fields are expressed by infinite
spatial harmonic plane waves (modes), given by

Frw(x, y, z) =

[
m=∞∑

m=−∞

n=∞∑
n=−∞

(Frw)m,n exp(−j(Umx+ Vny) + γm,nz)

]

× exp(−j(kx0x+ ky0y)) (21)

Ftw(x, y, z) =

[
m=∞∑

m=−∞

n=∞∑
n=−∞

(Ftw)m,n exp(−j(Umx+Vny)−γm,n(z−d))
]

× exp(−j(kx0x+ ky0y)) (22)
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where w represents x, y or z (w = x, y, z) and also

γm,n =




√
(kx)2m + (ky)2n − k2

0 = αm,n;

when k0 <
√

(kx)2m + (ky)2n

j
√
k2

0 − ((kx)2m + (ky)2n) = j(kz)m,n;

when k0 >
√

(kx)2m + (ky)2n

(23)

in which

(kx)m = kx0 + Um (24)
(ky)n = ky0 + Vn (25)

are the transverse wave numbers. From the Faraday and Amper Laws,
the Fourier coefficients of the other components of the reflected and
transmitted waves can be written versus the Fourier coefficients of only
x and y components of electric field, as follows

(Esz)m,n =
±j
γm,n

[(Um + kx0)(Esx)m,n + (Vn + ky0)(Esy)m,n] (26)

(Hsx)m,n =
±j
ωµ0

[
(Um + kx0)(Vn + ky0)

γm,n
(Esx)m,n

+

(
(Vn + ky0)2

γm,n
− γm,n

)
(Esy)m,n

]
(27)

(Hsy)m,n =
∓j
ωµ0

[(
(Um + kx0)2

γm,n
− γm,n

)
(Esx)m,n

+
(Um + kx0)(Vn + ky0)

γm,n
(Esy)m,n

]
(28)

(Hsz)m,n =
1
ωµ0

[−(Vn + ky0)(Esx)m,n + (Um + kx0)(Esy)m,n] (29)

in which s represents r or t (s = r, t) and the upper and lower signs
stand for s = r and s = t, respectively. These relations can be written
in matrix form given by

esz = Aszxesx + Aszyesy (30)
hsx = Y sxxesx + Y sxyesy (31)
hsy = Y syxesx + Y syyesy (32)
hsz = Y szxesx + Y szyesy (33)
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in which s = r, t and

f rw = [(Frw)−M,−N (Frw)−M,−N+1 · · · (Frw)−M,N · · · (Frw)0,0

· · · (Frw)M,−N (Frw)M,−N+1 · · · (Frw)M,N ]T (34)
f tw = [(Ftw)−M,−N (Ftw)−M,−N+1 · · · (Ftw)−M,N · · · (Ftw)0,0

· · · (Ftw)M,−N (Ftw)M,−N+1 · · · (Ftw)M,N ]T (35)

(f = e,h, F = E,H and w = x, y, z) represent the Fourier
coefficients of the reflected and transmitted electric and magnetic fields
components, respectively. Also, Y sww and Asww are diagonal matrices
obtained from (26)–(29).

5. THE INSIDE WAVES

From the Faraday and Amper Laws, the following equations are
obtained for the electric and magnetic fields inside the gratings.

∂zEx = −jωµ0Hy + ∂xEz (36)
∂zEy = jωµ0Hx + ∂yEz (37)
∂zHx = jωε0εr(x, y, z)Ey + ∂xHz (38)
∂zHy = −jωε0εr(x, y, z)Ex + ∂yHz (39)

Ez =
1
jωε0

ε−1
r (x, y, z)(∂xHy − ∂yHx) (40)

Hz =
−1
jωµ0

(∂xEy − ∂yEx) (41)

The electric and magnetic fields inside the inhomogeneous grating
can be written as �F = Fxâx + Fyây + Fzâz, (where F = E,H and
w = x, y, z) in which

Fw(x, y, z) ≈


 m=M∑

m=−M

n=N∑
n=−N

(Fw)m,n|z=z exp(−j(Umx+ Vny))




× exp(−j(kx0x+ ky0y)) (42)

Using the Fourier series expansion of the field components and that
of the permittivity functions in (36)–(41), the following differential
equations are obtained for the Fourier coefficients of the fields.

de(z)
dz

= −Z(z)h(z) (43)

dh(z)
dz

= −Y (z)e(z) (44)
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where e(z) = [ex(z) ey(z)]T and h(z) = [hy(z) − hx(z)]T are the
electric and magnetic fields vectors, respectively, in which

fw(z) = [(Fw)−M,−N (Fw)−M,−N+1 · · · (Fw)−M,N · · · (Fw)0,0

· · · (Fw)M,−N (Fw)M,−N+1 · · · (Fw)M,N ]Tz=z (45)

(f = e,h, F = E,H and w = x, y, z) represents the Fourier
coefficients of the electric and magnetic field components. Also, the
matrices Z(z) and Y (z) in (43)–(44) are defined as follows

Z(z) =

[
W 1(z) W 2(z)
W 3(z) W 4(z)

]
(46)

Y (z) =

[
W 5(z) W 6

W 7 W 8(z)

]
(47)

where their sub-matrices have been defined as the following

W 1(z) = jωµ0Id −
j

ωε0
KxQ(z)Kx (48)

W 2(z) =
−j
ωε0

KxQ(z)Ky (49)

W 3(z) =
−j
ωε0

KyQ(z)Kx (50)

W 4(z) = jωµ0Id −
j

ωε0
KyQ(z)Ky (51)

W 5(z) = jωε0P (z) − j

ωµ0
KyKy (52)

W 6 =
j

ωµ0
KyKx (53)

W 7 =
j

ωµ0
KxKy (54)

W 8(z) = jωε0P (z) − j

ωµ0
KxKx (55)

In (48)–(55), Id is an identity matrix and also

P (z) =




(εr)0,0 · · · (εr)−2M,−2N
...

. . .
...

(εr)2M,2N · · · (εr)0,0




z=z

(56)
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and

Q(z) =




(ε−1
r )0,0 · · · (ε−1

r )−2M,−2N
...

. . .
...

(ε−1
r )2M,2N · · · (ε−1

r )0,0




z=z

(57)

are the convolution matrices associated with εr(z) and ε−1
r (z),

respectively. Also,

Kx = diag([{(kx)−M · · · (kx)−M}2N+1 · · · · · ·
{(kx)0 · · · (kx)0}2N+1 · · · · · · {(kx)M · · · (kx)M}2N+1]) (58)

Ky = diag([{(ky)−N · · · (ky)0 · · · (ky)N} · · · · · ·
{(ky)−N · · · (ky)0 · · · (ky)N}]2M+1) (59)

are diagonal matrices containing the transverse wave numbers. The
indices in (58)–(59) represent the number of repetition of the internal
terms.

6. THE BOUNDARY CONDITIONS

From the continuity of transverse components of electric and magnetic
fields, there will be four boundary conditions as follows on the surface
z = 0

ex(0) = erx + eix (60)
ey(0) = ery + eiy (61)
hx(0) = hrx + hix (62)
hy(0) = hry + hiy (63)

and also other four boundary conditions as follows on the surface z = d.

ex(d) = etx (64)
ey(d) = ety (65)
hx(d) = htx (66)
hy(d) = hty (67)

Using (60)–(67) and (31)–(32) (for s = r and t), we can obtain the
following main boundary conditions.

hx(d) = Y txxex(d) + Y txyey(d) (68)
hy(d) = Y tyxex(d) + Y tyyey(d) (69)
hx(0) = Y rxxex(0) + Y rxyey(0)

+(YixxId − Y rxx)eix + (YixyId − Y rxy)eiy (70)
hy(0) = Y ryxex(0) + Y ryyey(0)

+(YiyxId − Y ryx)eix + (YiyyId − Y ryy)eiy (71)
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7. EQUIVALENT CIRCUIT MODEL

We see that two matrix relations (43)–(44) are similar to the differential
equations of the lossy or lossless Coupled Tansmission Lines (CTL),
whose number of lines is equal to the number of spatial harmonics
(modes), if we consider V (z) = e(z) = [ex(z) ey(z)]T and I(z) =
h(z) = [hy(z) − hx(z)]T as the voltage and current vectors,
respectively. With this assumption, the per-unit-length matrices of
the CTL model will be as the following

R(z) = Re (Z(z)) (72)
G(z) = Re (Y (z)) (73)

L(z) =
1
jω

Im (Z(z)) (74)

C(z) =
1
jω

Im (Y (z)) (75)

These matrices are dependent to z if the gratings are inhomogeneous.
It is seen from (46)–(59) that the matrices R and G will be zero
(lossless CTL), only if the electric permittivity of the grating is being
a real value. Furthermore, the boundary conditions (68)–(71) can be
written similar to two following relations

I(d) = Y LV (d) (76)
I(0) = IS − Y SV (0) (77)

where

IS =

[
YiyxId − Y ryx YiyyId − Y ryy

−YixxId + Y rxx −YixyId + Y rxy

]
[eix eiy]T (78)

Y S = Z−1
S =

[
−Y ryx −Y ryy

Y rxx Y rxy

]
(79)

Y L = Z−1
L =

[
Y tyx Y tyy

−Y txx −Y txy

]
(80)

are the current source vector, source admittance matrix and load
admittance matrix, respectively. Figure 2 shows the resulted equivalent
circuit model considering (76)–(77) as the boundary conditions. Of
course, one can write the relation (77) as the following form

V (0) = V S − ZSI(0) (81)

where
V S = Y −1

S IS = ZSIS (82)
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Line End

Line 1

Ground
z

d0

1−= LL YZ

1−= SS YZ

IS1

IS,End

Figure 2. Equivalent circuit model for inhomogeneous gratings using
current sources.

Line End

Line 1

Ground
z

d0

1−= LL YZ1−= SS YZ
VS1

VS,End

- +

+-

Figure 3. Equivalent circuit model for inhomogeneous gratings using
voltage sources.

Figure 3 shows the resulted equivalent circuit model considering (76)
and (81) as the boundary conditions. It is noted that for the short-
end gratings (gratings which are coated by a perfect electric conductor
and are usually utilized as the walls of anechoic chambers), the load
impedance will be ZL = 0. The analysis of uniform CTLs is simple
[16], in contrary with nonuniform ones. Of course, there are some
methods to analyze nonuniform CTLs, which the most straightforward
one is subdividing them into many short sections [16, 17]. Also, all
softwares designed for high frequency and microwave circuits can be
utilized for the analysis of nonuniform gratings, if we use the introduced
CTL model.
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8. SOME SPECIAL CASES

The equivalent circuit models obtained in the previous section are
simplified in a special case. In this section some of the special cases
are mentioned considering (46)–(59).

8.1. Homogeneous Gratings

For homogeneous gratings, in which the function εr is independent of
z, the coupled lines will be uniform and simple to analyze.

8.2. Inhomogeneous Planar Layers

For inhomogeneous planar layers, in which the function εr is
independent of x and y, only a single nonuniform transmission line
will be existed.

8.3. Conductive Gratings

For the gratings consisting of periodic conductors, in which σ � ωε0ε
′
r,

the coupled lines will be uniform and lossy with the following matrices.

Z(z) = jωµ0

[
Id 0
0 Id

]
(83)

Y (z) =




(σ)0,0 · · · (σ)−2M,−2N
...

. . .
...

(σ)2M,2N · · · (σ)0,0


 (84)

If the thickness of the conductive gratings tends to zero thin Freuency
Selective Surfaces (FSS) will be appeared. The equivalent circuit of
a thin FSS has been proposed in [18], which is a special case of that
of the gratings, proposed in this paper considering (83)–(84) and that
σ → ∞, d→ 0.

9. TRANSMISSION AND REFLECTION COEFFICIENTS

After determining the electric and magnetic fields on the surfaces of
grating (or equivalently the voltages and currents at the end of lines
of the CTL models), the co- and cross-polarized reflection and the
transmission coefficients for propagating (not evanescent) TE and TM
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modes will be determined as follows

(ΓTX,TY )m,n =

{
[((Ex)m,nâx+(Ey)m,nây+(Ez)m,nâz) |z=0

−(Eixâx + Eiyây + Eizâz)εm,n] · âTX

}

αTYEi
(85)

(ΓTX,TY )m,n =
((Ex)m,nâx+(Ey)m,nây+(Ez)m,nâz)|z=d · âTX

αTYEi
(86)

in which X,Y represent E or M and εm,n is equal to zero except for
m = n = 0, which is equal to one. Also,

(âTE)m,n =
1√

(kx)2m + (ky)2n
(−(ky)nâx + (kx)mây) (87)

(âTM )m,n =
∓1

k0

√
(kx)2m + (ky)2n

[
(kx)m(kz)m,nâx

+(ky)n(kz)m,mây−((kx)2m+(ky)2n)âz

]
(88)

are the unit vectors for the electric field of the m,n-th modes of TE
and TM polarizations, respectively. The upper and lower signs in (88)
stand for calculating the reflection and the transmission coefficients,
respectively.

10. CONCLUSIONS

A general circuit model was introduced for frequency domain analysis
of inhomogeneous two-dimensional periodic gratings. The equivalent
circuit model can be used to give a physical understanding of the
operating of gratings that is not possible from numerical wave solvers.
Also, all softwares designed for high frequency and microwave circuits
can be utilized for the analysis of inhomogeneous gratings, if we use
the introduced circuit model. The equivalent circuit model consists
of a loaded and excited nonuniform coupled transmission lines (CTL).
The excitation of lines is made using current or voltage sources in the
circuit model. The co- and cross-polarized reflection and transmission
coefficients can be obtained through analysis of the circuit model.
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