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Abstract—This paper presents a simple and alternative approach
for the analysis of inductive waveguide microwave components. The
technique uses a surface integral equation formulation, in which the
contours of the waveguide walls and of the inner obstacles are all
discretized using triangular basis functions. In order to avoid the
relative convergence problem of other techniques based on mode
matching, an alternative port treatment is used. The technique is
based on the application of the extinction theorem using the spatial
representation of the Green’s functions in the terminal waveguides. In
addition, the Fast Multipole Method is proposed in order to reduce the
computational cost for large problems. Different complex structures
are analyzed, including microwave bandpass filters with elliptic transfer
functions, waveguide bends and T-junctions. Results show the high
accuracy and versatility of the technique derived.

1. INTRODUCTION

The study of waveguide inductive structures, due to its practical
interest in many microwave applications, has been reflected in an
important number of technical papers during the last decades [1]. For
the analysis of this type of structures, several approaches were derived
in the past, including the finite elements method [1] and techniques
based on modal analysis [2, 3]. The techniques based on modal
analysis expand the electromagnetic fields as a series of modes inside
the waveguide, and then the boundary conditions for the fields are
imposed at junctions and discontinuities. The form in which these
boundary conditions are enforced leads either to mode matching [2]
or to integral equation formulations [3], including multimode network
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approaches [4]. In general, methods based on modal analysis are very
efficient, but they are limited to simple or canonical geometries, where
the modes can be calculated analytically [4].

In addition, modal analysis can be combined with integral
equation formulations, if the spectral representation of the Green’s
functions inside a parallel plate waveguide is used [5]. An important
limitation of this technique is that all obstacles or coupling windows
must be placed inside the parallel plate waveguide considered. Also the
input and output ports must be lined-up, sharing the based parallel
plate waveguide. This limits the possibility to analyze other useful
waveguide components such as bends, filters with elliptic responses [6]
or T-junctions.

To overcome these difficulties, other authors have used integral
equations formulations based on the free space Green’s functions. In
this case the contour of the base waveguide needs to be discretized,
in addition to the inductive posts and windows. The difficulty in this
approach is how to model the ports exciting the structure. In [7-9], this
problem was solved by applying a mode matching procedure between
the waveguide ports and the internal circuit structure. While these
approaches are valid, it is well known that care must be taken to avoid
relative convergence problems. On the other hand, these approaches
open the possibility for the analysis of the more complex microwave
devices mentioned above (see Fig. 1).

In this work we present an integral equation technique based on
the free space Green’s functions, with an alternative port treatment.
The extinction theorem is used to separate the internal finite circuit
structure from the access ports. Two ground planes are placed at
the reference port positions, and are connected through the external
problem to infinite waveguide sections. The technique uses the Green’s
functions with respect to one port-ground plane (the excitation port),
to model the internal finite circuit problem. The Green’s functions in
this case are easily formulated using the classical image theory. On the
other hand, for the external port problem a spatial representation of
the parallel plate Green’s functions is used to model the semi-infinite
port waveguides. The spatial representation of the Green’s functions
is very convenient in this case, since complex basis functions can be
used in the discretization of the ports. The spatial representation of
the Green’s functions that we have used is based on the convergence
acceleration technique of series presented in [10]. Other approaches
based on spectral representations need specific type of basis functions
[11], therefore losing the flexibility of the technique proposed in this
contribution.

Another contribution of this paper is the application of the Fast



Progress In Electromagnetics Research, PIER 68, 2007 73

Multipole Method (FMM) to the analysis of waveguides components
using the above IE strategy. It is known that the FMM can be used
to reduce the computational cost for large problems. In the past it
has been employed to solve large scattering problems [12, 13]. In
this work we apply for the first time the FMM to the analysis of
inductive waveguide components, where the near field must accurately
be obtained in order to recover the electrical behavior of the device.
Results for several useful microwave circuits employing both direct
and FMM approaches will be presented, showing the high accuracy and
flexibility of the alternative technique developed in this paper.

2. THEORETICAL OUTLINE

The analysis of a general inductive waveguide multiport structure
shown in Fig. 1 is analyzed using an integral equation formulation. The
technique is based on the evaluation of the admittance parameters (Y)
of the multiport structure. This is done by alternatively considering
an incoming excitation wave on each port (j), and short-circuiting
all others (7). For each case the electric and magnetic fields on
the ports have to be evaluated. Then, the final Y-parameters are
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Figure 1. Typical multiport inductive waveguide problem studied in
this paper, containing N metallic obstacles.
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For the computation of the fields an integral equation is formulated.
The integral equation is applied to arbitrarily shaped inductive
structures, by discretizing the contour of the base waveguide and of the
inner obstacles (see Fig. 1), using triangular roof-top type functions
defined on linear segments. The excitation input port is isolated
from this analysis using the extinction theorem. The original problem
is divided in the two classical internal and external problems. The
internal circuit problem is discretized using the above defined mesh,
placing in addition equivalent magnetic current densities at the port
position (—M ). A ground plane is placed at the reference plane to
short-circuit any electric currents, as shown in Fig. 2.
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Figure 2. Internal circuit problem resulting from the application of
the extinction theorem.

For the solution of this problem the Green’s functions to be used
are those in the presence of an infinite ground plane. The Green’s
functions can therefore be easily formulated using image theory [14].
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In Section 2.1 a procedure is outlined for the calculation of the Green’s
functions in the presence of an arbitrarily oriented ground plane. This
has proved useful in the analysis of inductive bends and Y-junctions,
when one port can be placed at reference axis with different slopes.
On the other hand, the external port problem assumes an
incoming wave in a semi-infinite waveguide as shown in Fig. 3. The
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Figure 3. External port problem resulting from the application of the
extinction theorem.

coupling to the internal problem is accomplished by placing equivalent
magnetic currents at the reference plane. In this case, a magnetic
current density equal to (2 M) is assumed in order to eliminate the
ground plane. The resulting problem is, therefore, reduced to the
evaluation of the Green’s functions for magnetic currents inside an
infinite parallel plate waveguide. The main difficulty for the evaluation
of these Green’s functions is that they are formulated either as
modal series or as spatial images series, both exhibiting very slow
convergence behaviors. Some approaches in the past have used spectral
representations of the series with a particular choice of the basis
functions to accelerate convergence [11]. Instead, in this work we have
preferred to obtain a representation of the Green’s functions directly in
the spatial domain. We have done this by using the series acceleration
techniques presented in [10], together with a proper combination of the
spectral and spatial formulations of the series [15]. The advantage of
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having the Green’s functions in the spatial domain, is that the same
discretization scheme used for the internal circuit problem can also be
used in the characterization of the ports. This strategy has shown
to increase the flexibility of the technique, allowing for the analysis
of complex inductive waveguide devices without loosing accuracy or
efficiency. In addition, the relative convergence problem of other mode
matching techniques [7, 8] is avoided with the proposed technique.
After imposition of the boundary conditions for the fields in the
structure, the following coupled integral equations are obtained:
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+i V x [E(jn” ® f] } ; at port on sy, (2a)
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where superscript (ext) is used to denote the Green’s functions of
the external problem, and (int) denotes the Green’s functions of
the internal problem. Moreover, H(ez9) s the magnetic field of the
TF1 p mode in the excitation waveguide, and ® denotes a convolution
(superposition) integral. Also, note that for the inductive waveguide
problems treated in this work there are no contributions from the
electric scalar potential. This is because its gradient is orthogonal
to the induced electric currents in the metallic areas of the structure.

2.1. Green’s Functions in the Presence of Arbitrarily
Oriented Ground Plane

As already discussed, the integral equation solution of the internal
circuit problem involves the two dimensional Green’s functions in the
presence of an infinite ground plane with arbitrary orientation. This is
specially useful in the analysis of inductive bends and Y-junctions,
where the axis ports can have different slopes. In this section a
simple geometrical procedure to determine the Green’s functions in
this situation is presented.

For a unitary current of magnetic type, the geometrical image
problem is shown in Fig. 4. The direction of the image dipole can be
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Figure 4. Source and image magnetic dipoles for an arbitrarily
oriented ground plane.

found by first casting the source dipole into two components. One is
oriented along the unitary vector tangential to the ground plane (%),
while the other along the normal direction to the plane (7). Following
this decomposition, the relevant components of the dyadic magnetic
and electric vector potentials Green’s functions take the following form:

@) = [P holg— ") — B holp = D)) (3a)

GF (p.7") = j—j.{Hé%ap*— 7) + [ HE kol = i) (- )
B (kol7 = fil) (- 7)) :c} (3b)

GF#(7.0") = %{HSQ)(kolﬁ— 7+ [HE (holg = 7)) (P 2)
—HY? (kolg = i) (- 2)7) - } (3¢)

where only simple vector operations involving the tangent and normal
unitary vectors are needed. The position of the image dipole is found
to be: p; = p’ +2dn.
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It is important to note that, if the excitation port is slanted
with respect to the vertical axis, then cross components for the
vector potentials are generated by the image dipole. Using the
same geometrical considerations as before, we easily find the cross
components as:

GE (. 7") = G (7, 7)
< 0 0 AN = P A AN A ~
- i{ [Hé%(ko\p—m\)(t : x)t_H(gQ)(kolp—piD(n'x)n} , Z}

(4)

Similar calculations can be done with point charges for the magnetic
scalar potential Green’s functions, obtaining:

1

Gw (7, 7') = = B (holi = 1) + HEY (ol = 7)) (6)

Since the electric scalar potential does not contribute to inductive
structures, this last step completes the formulation of all the
Green’s functions components of the internal problem, needed in our
formulation. These Green’s functions are used for the internal problem,

and are coupled to those derived in [10] for the external problem
(waveguide port).

3. APPLICATION OF THE FAST MULTIPOLE METHOD

The image theory used to formulate the Green’s functions for the
internal problem, splits each interaction into two free-space based
Green’s functions [16]. Due to this fact, the Fast Multipole Method
(FMM) acceleration technique [17], can be applied for solving the
internal problem of the previous section. FMM allows a decomposition
of the free space Green’s function and its derivatives, which reduces the
computational cost for big problems, saving at the same time memory
requirements. The method has been applied in the past to the analysis
of large scattering problems in two and three dimensions [18, 12], but
here we show a new application of the technique with the analysis of
inductive waveguide components.

The main new features that differ from other applications of the
FMM are the treatment of the interactions of the spatial images, and
also the usage of triangular basis functions instead of the classical
Point Matching approach, as applied to two-dimensional problems. For
previous scattering applications the important quantity was the far-
field scattered by the large object. For this new application accuracy
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must also be preserved during the calculation of the near field. This is
of primary importance, since the electrical behavior of the waveguide
device is extracted from this near field, as stated in equation (1).

Another interesting issue concerning the application of the FMM
with this formulation is how to treat the external problem. For this
external problem the parallel plate Green’s functions are computed
using the spectral domain series with the technique derived in [10].
Consequently, the FMM cannot be applied directly to this external
problem. Instead, the corresponding interactions will be calculated
using a direct Method of Moments (MoM) implementation. However,
this does not represent a major drawback, since the external problem
only contains the unknowns associated to the exciting port, and this
represents just a small part of the total amount of unknowns. Once
the external problem is computed, it can be easily incorporated to the
nearest neighbours matrix, which is one of the components of the FMM
technique itself.

3.1. Separation of the Interactions in Two Parts

As shown in (3a), the spatial images technique splits each single
interaction into two parts, namely the observation-source point
interaction, and the observation-image point interaction. For example,
in the case of dyadic component (G%’) for two points, from source cell
1 to observer cell j, we have:

oM S (s S (s
Gif/(pj,m>=4—§ HS (ko |55 — 5)) — HY (ko |35 — 5i®D)| (6)

where (s,) denotes the original source and (s;) the corresponding image
source. Moreover, p; denotes a point inside the observer cell and p; is
a point inside the source cell.

Now, let us consider the case of an interaction between elements
of two different metallic posts, on which the dyadic component (6) is
needed. Using supperposition, the MoM matrix element Z;; can be
decomposed into two parts, obtaining:

Zp = ju /C G (5, 30) J-() de;
— /C H (kolgy — 51©)) J.(57) dey

—j“’/CHo(Q)(ko\pZ' = 5i)) J(i) de;

_ lso) o lsi)
= 7"+ Z; (7)
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Figure 5. Agregation, translation and disagregation stages for both
source and image points in an interaction between two posts.

The key of FMM consists on dividing the spatial geometry of the
problem into groups, assigning each discretization (mesh) cell to the
closest group. Then, the method applies, for each interaction between a
pair of basis and test functions, a decomposition process in three stages.
The first one is called aggregation, and serves to pass the information
from the source point to the center of the corresponding group, by
means of the operator V,4q. The second is the translation, and it is
used to transfer the information from the center of the source group to
the center of the observation group, using the operator &. Finally, the
third stage is called disaggregation, and it is the opposite operation to
the aggregation (the operator Vg4, recovers the information from the
center of the group to the final observation point).

Now, this decomposition can be applied independently to each
one of the parts in (7), as shown in Fig. 5. In the case of the image
point, as it is located in the opposite side of the ground plane, an
imaginary group is needed to evaluate the corresponding aggregation



Progress In Electromagnetics Research, PIER 68, 2007 81

and translation processes. Since the observation point does not change
for the original and for the image sources, the disaggretation operator
will be the same in both cases, avoiding new calculations. Applying the
decomposition as described above, the expression for the MoM matrix
element (7) would turn into:

2
Zij = | Vagg(@) Gyeen (@) o) (@) da
21
-/ Viagg(a) Gy (@) V3D () dov (8)

where &) (a) is a diagonalized translator operator [17] between the

centers of the observer group (I) and source group (I'®)) (in our case
for both original and image sources: £ = s,, s;). This operator can be
written as:

Oéll (5) Z H ]’CIO” (5)) p COS(Oc ¢ll/(§)) (9)

where ¢/, denotes the angle of the spatial vector (p), ) with respect
to the origin, and P is a truncation parameter which controls the
accuracy of the approximation of the Hankel function’s actual value.

The aggregation and disaggretation operators have the following
general expression:

79 (a) = /C Biog(a) o) - g des;  E=sos  (10)

Vagg(er) = /C Bui(@) filpy) - de; (10b)

with:
Buoye (@) = Cagg e Fi01@ =00/ ©) (11a)
ﬁlj(a) = C’dgg e_jkplj cos(a—;) (11b)

In equation (11a), ﬁ, ﬁ, are the test and basis functions respectively,
and Cygg, Cygg are expressions that depend on the kind of interaction
computed (generated either by an electric or by a magnetic current
source). For example, for an interaction between two metallic posts
(electric-electric interaction) we have Chgq = 1 and Cygy = wp/4Q,
being () the number of quadrature points employed in the integral
along the group circumference.
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If we use this formulation combined with a Point Matching
formulation of the MoM (employing delta functions for test and pulse
as basis functions), the original expressions in (10a) turn into:

¥ —jk 1o COS(Q— o\ 1
Vigg(a) = wp/4Qe TFP1se cosla=du) (12b)

which are the expressions for aggregation and disaggregation that can
be found in the literature for two-dimensional problems [17, 18]. In the
above equation, i., j. are the centers of the cells 7 and j respectively,
and A; is the length of the i-th cell.

In our formulation, however, we have implemented a Galerkin
scheme with triangular functions for both basis and test [19], combined
for the first time with the FMM for two-dimensional problems.
Therefore, we have evaluated directly equation (10a) by doing a simple
numerical integration along the cells.

3.2. Building the MoM Matrix

The same strategy showed to reduce equation (7) into (8) can be
followed for the rest of interactions in the problem (port to metal,
metal to port or port to port). This can be done by simply adjusting
the corresponding C' expression in the aggregation/disaggregation
operators, and by taking into account for the sign that appears in
the image point. As shown in Section 2.1, this sign depends on the
specific type of dyadic component involved in each case.

The FMM decomposition cannot be applied when the source and
the observation points are very close to each other (in order to fulfill the
addition theorem of the Hankel functions on which the FMM is based).
Therefore, for a self-group and its nearest neighbours the interactions
must be computed directly as in a normal MoM problem. As explained
above, due to the nature of the Green’s function employed in the
external problem (spectral domain series), FMM cannot be applied in
that case neither. Therefore, the corresponding calculations for that
part will also be performed through a direct MoM process. Taking
into account this final consideration for the definition of the nearest
neighbours, the whole MoM matrix for this problem can be expressed
as:

Z = 28k + Zi5hns (13)

In equation (13), ZI%; is a sparse matrix containing all the
interactions between nearest neighbours. This matrix must also include
all the interactions between elements of the excitation port. If the
groups are chosen so that the excitation port mesh is included in less
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than three groups, this condition will be automatically fulfilled. On
the other hand, the final Zf;’]f/‘, )7 Matrix is obtained as:

Z¥nm = Zl(v'sf/}M + Zg‘sli\/)IM
— Vg a0 V(20 | Vigg-a®) V0 (14)

where Vagg, a, and Vdgg are all sparse matrices that include the
aggregation, translation and disaggregation operators showed above
for all the interactions of the problem. As before, the superscripts
(so) and (s;) denote the cases of the original source and the spatial
image respectively. Applying the decomposition in equation (13),
the MoM linear system can be solved with an iterative solver, such
as the biconjugate gradient, reducing the computational cost from
O(N?) to O(N'9), without losing appreciable accuracy. This fact is
demonstrated with the results that we present in the next section.

4. RESULTS

The software developed based on the technique presented finds
applications in the analysis of many useful microwave circuits. First,
we present two examples of inductive filters designed for satellite
communications designed in [20]. The will show the results obtained
employing both direct and FMM cases. Fig. 6 and Fig. 7 show
the excellent agreement between the two approaches, and also with
measurements included in [20]. The internal circuit is discretized with
346 segments for the 4-poles filter, and 408 for the 5-poles filter. Then,
the coupling to the waveguide ports is modeled using 15 basis functions
for both filters. On a PC computer with 2 GHz clock, the software takes
12.3 and 16.2 seconds per frequency point for the two cases respectively.

Another useful structure is a fourth order double rod filter
composed of 10 circular posts, presented in [1], and shown in figure
Fig. 8. In this case, 200 basis functions have been used for the internal
problem and 24 for the ports. Again, good results between the direct
and the FMM methods are observed. Also the agreement is very good
with respect measurements presented in [1]. The software takes 11.7
seconds per frequency point on the same computer as before.

The next interesting structure that we investigate is the all
inductive elliptic filters presented in [6]. Since all the cavities of the
resonators have different widths, this structure can not be analyzed
using a simple parallel plate Green’s functions approach [5]. However,
we can easily use the technique presented in this contribution, proving
its versatility for practical microwave problems. As a first result, we
present a filter with one dual mode cavity. The internal circuit is
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Figure 6. Scattering parameters of a filter with 4 cavities. Dimensions
are shown in ref. [20].
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Figure 8. Scattering parameters of a filter with one dual mode cavity.
Dimensions are shown in [6]-Fig. 4.

discretized with 175 segments, and then the coupling to the waveguide
ports is modeled using 15 basis functions. Fig. 9 shows the results
obtained for the scattering parameters of the filter. Measured results
presented in [6], and simulations obtained with HFSS are also given,
showing good agreement with our new technique. For this structure
the software takes 5.8 seconds per frequency point.

A more complex filter with two dual mode cavities exhibiting
elliptic response was also designed in [6]. Fig. 10 shows the measured
and simulated results calculated with the new approach. Reference
results obtained with HFSS are also included for validation. Again,
good agreement with the new technique can be observed. In this case
a total of 241 basis functions were used for the discretization of the
internal circuit topology, and 15 basis functions for the ports. The
software takes 9.2 seconds per frequency point for this structure.

The multiport nature of the tool developed can be best discussed
with the analysis of a T-junction, where three ports must be treated at
the same time. In this case we have selected a T-junction compensated
by a cylindrical post, presented in [8]. Fig. 11 presents measured and
simulated results for the reflection coefficient at the common port.
Reference results obtained with HFSS are again included for validation.
We can see good agreement with the simulation results obtained with
our new technique, for both direct and FMM cases. For this analysis,
129 basis functions are used for the circuit and 20 for the ports. The
software takes 5.4 seconds per frequency point. In all above examples,
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Figure 11. Reflection coefficient of the common port for the T-
junction presented in [8]-Fig. 2.

the ports are all oriented either horizontally or vertically. In order to
validate the port treatment for different orientations, we have further
analyzed an inductive bend with different bend-angles, as presented
in [8]. Fig. 12 shows the reflection coefficient when the angle of the
bend is varied from 90° to 150°. Results reported in [8] and results
obtained with HFSS are given for comparison. Again good agreement
is obtained for angle bends smaller than 135°. When the angle is 150°,
our results agree better with those obtained using the Finite Elements
technique (HFSS). Again, it can be seen that our FMM approach
works perfectly with ports with arbitrary orientations, without lost
of accuracy with respect to the direct MoM solution. For the analysis
of this structure a total of 83 basis functions were used for the circuit
and 15 for the ports. The software takes 1.9 seconds per frequency
point.

In order to show the advantages of the usage of the FMM
approach, let us consider the examples of the double-rod filter in Fig. 7,
and of the T junction in Fig. 10. For the first case, if the number of
basis functions is increased up to 680, the FMM allows to reduce the
CPU time per frequency point in 22.2%. For the T-junction case,
the FMM allows to save 35.6% of memory for data storage, and up
to 35.7% of CPU time per frequency point when using 1010 basis
functions. These simple examples show the interest in employing the
FMM formulation derived in this paper, when the number of unknowns
increases in a particular application.



88 Soler et al.

0 T
Sim 1
FMM o < AN
- N
re

i e M}x )
-10 105°
,«W%
K
K*/dw

ot
T
=3
£5
d(/1
«

e
7

-20

3|

Reflection Coefficient S11(dB)
—
wt

12 13 14 15 16 17 18
Frequency (GHz)

Figure 12. Reflection coefficient for bends with varying angle o from
90° to 150°. Dimensions are shown in [8]-Fig. 3a.

5. CONCLUSIONS

In this paper an alternative surface integral equation formulation is
proposed for the analysis of complex inductive waveguide microwave
devices. The technique uses the extinction theorem to separate
the internal circuit problem from the input/output ports. A
formulation has been presented to express the Green’s functions of
the internal circuit problem with respect to an arbitrarily oriented
ground plane. For the external port problem the infinite parallel
plate waveguide Green’s functions of magnetic type are used. Unlike
traditional approaches, the Green’s functions are obtained in the
space domain by using series acceleration techniques. Besides, the
FMM decomposition technique has been successfully applied in order
to reduce the computational cost for large problems. Results are
presented for several practical microwave devices, including bandpass
filters with elliptic transfer functions, inductive bends and T-junctions.
Comparisons with measured data confirm the accuracy and the
computational efficiency of the technique presented. The application
of the FMM allows to save both memory and CPU time, when solving
problems with large number of unknowns.
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