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Abstract—In this paper a new technique for the evaluation of the
Green’s functions of filament sources in layered media, is presented.
The technique is based on the annihilation of the asymptotic and
singular behaviors of a spectral Green’s function. The remaining
function, after annihilation, is treated using a two levels discrete
complex image method (DCIM). The application of the proposed
technique, provides a complete analytical expression for the spatial
Green’s function, in terms of the iterative value of the propagation
constant. This expression consists of the annihilating functions and
a number of complex images. In order to validate the proposed
technique, microstrip lines and slotlines are analyzed and the obtained
results are found to agree very well with those obtained using a
commercial software.

1. INTRODUCTION

Green’s functions are a very important concept in electromagnetics.
They are analogous to the impulse response in systems and automatic
control theory. Green’s functions are the solution of the problem
excited with a hypothetical unit source. Mathematically speaking,
Green’s functions provide the required electromagnetic fields due to a
general shape source through a convolution integral. The evaluation
† Also with K. U. Leuven, ESAT/TELEMIC, Kasteelpark Arenberge 10, B-3001 Leuven,
Belgium
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procedure of the Green’s functions always starts in the spectral domain.
In this domain, several recursive techniques can be employed to
calculate the required Green’s functions [1–5].

Green’s functions are the kernel of the integral equation
formulation. Formulating the integral equation in the spatial domain,
requires the calculation of the Green’s functions in that domain. The
spatial domain Green’s function is obtained from its spectral equivalent
using the inverse Fourier transform operator. Unfortunately, this
inverse Fourier transformation results in an integral of the Sommerfeld
type [6] whose integrand is a highly oscillatory and slowly decaying
function. Consequently, the numerical evaluation of the Sommerfeld
integral is very time consuming. Recently, considerable interest has
been given to the efficient calculation of the Sommerfeld integrals. A
spectral domain Green’s function shows an asymptotic behavior at high
spectral values. As a first step towards an efficient evaluation of the
Sommerfeld integral, this asymptotic behavior should be removed from
the spectral Green’s function. Most of the techniques presented in the
literature are approximating this asymptotic behavior using analytical
functions whose inverse Fourier transform are known analytically. The
approximating functions are subtracted from the spectral Green’s
function and their inverses are added analytically in the spatial domain
[2, 4, 5, 7].

In addition, the spectral Green’s function shows singular behavior
due to the existence of poles and branch points located along the real
axis. The physical interpretation of a pole is a surface wave mode,
which can be considered as an eigen solution to the unloaded dielectric
layer structure. The behavior of the poles can also be analytically
approximated, subtracted from the spectral functions and their inverse
counterparts are analytically added in the spatial domain [2, 4, 5, 7].

The remaining singular behavior is due to the branch points which
are associated with the existence of half-spaces in the layer structure
under investigation. Most of the techniques presented in the literature
avoid these branch points by deforming the Sommerfeld integration
path from the real axis to another path in which the branch point
singularities do not appear [4, 7]. Since the fast variation in the spectral
Green’s functions are essentially dominating at large spatial values, the
technique presented in [2] provides more accurate Green’s functions at
high spatial values. In this technique, the branch point singularity is
also analytically approximated and subtracted in the spectral domain.
Using Fourier transform identities, the inverse Fourier transform is
obtained analytically and added. The remaining spectral function
along the real axis is a smooth and fast decaying function, which can
be integrated numerically [2] over a finite interval.



Progress In Electromagnetics Research, PIER 62, 2006 23

Alternatively, the remaining spectral function can be integrated
more efficiently using the Discrete Complex Image Method, DCIM. The
idea of the DCIM was initiated in [8], and developed numerically in
[4, 7, 9–11]. It is based on approximating the spectral Green’s function
using short series of exponentials. This can be achieved by uniformly
sampling the spectral function and applying the Generalized Pencil
Of Function (GPOF) technique [12], on the samples. The resulting
exponentials can be analytically inverse Fourier transformed, using
appropriate identities, which results in another series in the spatial
domain. A two level DCIM approach is introduced in [13], and used
in [14]. It overcomes the difficulties associated with the conventional
DCIM approach in selecting the efficient sampling parameters. DCIM
can be applied by sampling the remaining spectral function on a
modified path if the branch point singularities have not been subtracted
[4, 7, 14], or along the real axis if these singularities are subtracted. The
latter approach is adopted, for the first time, in this paper.

Section 2 presents the problem under investigation. The
evaluation of the Green’s functions in the spectral domain is presented
in Section 3. In Section 4, the techniques used to transform the Green’s
functions to the spatial domain are presented. The implementation of
the proposed technique is validated by analyzing microstrip lines and
slotlines in Section 5. The conclusions are given in Section 6.

2. THE PHYSICAL STRUCTURE

The geometry of the layer structure is shown in Fig. 1. The region
consists of a number of flat homogeneous dielectric layers extending
infinitely in the lateral xy plane. Each layer, say the jth layer, is
characterized by its relative permittivity, εrj , relative permeability,
µrj , and thickness, dj . The top-most and the bottom-most layers are
either a half-space or a Perfect Electric Conductor (PEC). These layers
are referred to as the shielding layers.

Arbitrary number of electric and magnetic filaments are embedded
in the layer structure. Electric filaments can be located on any interface
except for an interface of a shielding layer representing a PEC. On the
other hand, magnetic filaments can only be located on a shielding
layer representing a PEC. The filaments extend infinitely along the y-
axis. A common phase factor e−jηy is assumed and suppressed to all
sources and fields, where η is the unknown propagation constant to be
determined. The evaluation of η is based on an iterative method [14].
Laterally, the filament source is expressed by a Dirac impulse function.
The electromagnetic fields to be observed due to these unit filament
sources, i.e., the Green’s functions, are the tangential electric field on
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Figure 1. Geometry of a stratified dielectric media carrying filament
sources.

the interfaces carrying electric filaments and the tangential magnetic
field on the interfaces carrying magnetic filaments. Time harmonic
fields with time dependent factor of e−jωt, where ω is the radial
frequency, are assumed and the time factor is suppressed throughout.

3. SPECTRAL DOMAIN GREEN’S FUNCTIONS

In the spectral domain, Maxwell’s equations are transformed to the
well-known transmission line equations. In these equations, the
dependency along the axis of stratification is expressed in terms of two
waves propagating in opposite directions and multiplied by unknown
expansion coefficients. These coefficients are carrying the dependency
along the remaining axes. They can be obtained using the recursive
technique presented in [1] and used in [2]. The details of this technique



Progress In Electromagnetics Research, PIER 62, 2006 25

can be found in [1] and [2], only the main equations are stated in
this section. In [1], the authors select e+

ix, e+
iy, e−ix, and e−iy as the

independent field coefficients in the ith layer. In this paper, the
coefficients e+

iz, h+
iz, e−iz, and h−

iz are going to be used, which are more
convenient in the decomposition of the field into TE-to-z and TM-to-z
systems. For the TE system, the coefficients e+

iz and e−iz are vanish,
and the field components in the ith layer can be written as follows:

hTE
iz = h+,TE

iz

(
e−γiz + ΓTE

i eγiz
)

(1)

eTE
ix =

ηωµi

β2
h+,TE

iz

(
e−γiz + ΓTE

i eγiz
)

(2)

eTE
iy =

ξωµi

β2
h+,TE

iz

(
e−γiz + ΓTE

i eγiz
)

(3)

hTE
ix =

jξγi

β2
h+,TE

iz

(
e−γiz − ΓTE

i eγiz
)

(4)

hTE
iy =

jηγi

β2
h+,TE

iz

(
e−γiz − ΓTE

i eγiz
)

(5)

where ξ is the spectral counterpart of the spatial variable x, β =√
ξ2 + η2, and γi =

√
β2 − ω2µiεi is the propagation constant in the

ith layer along the direction of stratification. ΓTE
i = h−,TE

iz /h+,TE
iz

is defined as the reflection coefficient in the ith layer for the TE
system. It is clear from Equations (1)–(5), that all field components
of the TE system can be expressed in terms of h+,TE

iz and ΓTE
i only.

These coefficients can be obtained by applying the recursive technique
presented in [1] and shown in Fig. 2. Starting from ΓTE

i = 0, in
the top-most layer, and moving inward while applying the continuity
conditions of the tangential fields on the source free interfaces until the
jth interface, results in the calculation of all ΓTE

i , where i < j, and
the jth interface is the interface carrying the source filament. Similarly
starting from ΓTE

n = ∞, in the bottom-most layer, and moving inward,
results in the calculation of all ΓTE

i , where i > j. This recurrence
sequence is referred to as the inward recurrence, as shown in Fig. 2.
At the jth interface, solving the two equations expressing the field
discontinuity, results in the evaluation of h+,TE

jz and h+,TE
(j+1)z. Using

these two coefficients and applying an outward recurrence sequence, see
Fig. 2, towards the top-most and the bottom-most layers, respectively,
results in the evaluation of h+,TE

iz for all the layers.
Similarly, for the TM system, h+

iz = h−
iz = 0 and the field

components can be written as follows:

eTM
iz = e+,TM

iz

(
e−γiz − ΓTM

i eγiz
)

(6)
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Figure 2. Inward and outward recurrence techniques.
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eTM
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where ΓTM
i = −e−,TM

iz /e+,TM
iz is the reflection coefficient in the ith

layer for the TM system. Applying the inward and the outward
recurrence sequences, as for the TE case, the coefficients e+,TM

iz and
ΓTM

i can be calculated for all the layers. The total lateral fields are
obtained by recombining the TE and the TM systems [1]:
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where ke
jx and ke

jy are the x- and y-component of the electric filament
current source located at the jth interface, while km

jx and km
jy are the

magnetic current components. Practically, the jth interface can carry
either electric or magnetic filaments. However, it is assumed that both
kinds of sources are present in order to mathematically treat both
cases simultaneously. The function gij is the spectral domain Green’s
function representing a field observed on the ith interface due to a
unit filament source located on the jth interface. The superscript of
any spectral Green’s function in Equations (11)–(14) consists of three
letters. The first letter indicates the type of field to be observed, e
for electric and m for magnetic field. The second and third letters
are related to the source. The second letter indicates the type of the
current, e for electric and m for magnetic. The third letter is set to k
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if the current source is directly used, while it is set to q if the charge
derived from the current source is used.

It is worth mentioning here that all Green’s functions in Equations
(11)–(14) are depending on β, and independent on ξ separately. The
field components in the spatial domain can be obtained by performing
inverse Fourier transform operations on Equations (11)–(14). The
resulting spatial domain field components are related to the spatial
current components and spatial Green’s functions through convolution
integrals. It is our objective in the following section to evaluate the
spatial equivalent of the spectral Green’s functions obtained in this
section.

4. SPATIAL DOMAIN GREEN’S FUNCTIONS

After evaluating the spectral Green’s functions, an inverse Fourier
transform is performed in order to transform them to the spatial
domain. Making use of the fact that the spectral Green’s functions are
dependent on β, and independent on ξ separately, the inverse Fourier
transform can be written as follows:

FT−1(g(ξ)) = G(x) =
1
π

∞∫
0

g

(√
ξ2 + η2

)
cos(ξx)dξ (15)

where G and g are the spatial and spectral domain Green’s functions,
respectively. FT−1 is the inverse Fourier transform operator. The
integral in (15) is a typical Sommerfeld cosine integral, which is
quite time consuming to be evaluated numerically owing to its highly
oscillating and slowly decaying integrands. Several authors have given
their interest towards the efficient evaluation of Sommerfeld integrals.
The technique presented here is a combination between an extended
version from the technique in [2] and a modified version of the technique
presented in [14]. Consequently, it is highly recommended to consult
these works.

4.1. Annihilation of the Asymptotic and Singular Behaviors

The technique presented in [2], is based on subtracting a number
of analytical, annihilating, functions from a spectral domain Green’s
function. These functions are representing the asymptotic and the
singular behaviors of the function. The asymptotic functions are
approximating the Green’s function at high spectral values. The
singular functions are approximating the Green’s function around a
pole or a branch point. The annihilating functions are selected such
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Table 1. Fourier transform pairs for the annihilating functions.

category Spectral Domain spatial Domatin
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that their inverse Fourier transforms are known analytically. In [2], the
spatial counterparts of the annihilating functions are given for the case
of dipole sources. For the filament source problem under investigation,
the same annihilating functions are used in the spectral domain, while
their spatial counterparts are different due to the fact that different
inverse Fourier transform operator is used.

Table 1 lists the spectral and the spatial pairs of each annihilating
function. In this table, ∆ is the z-separation between the source and
the observation point, t = 1/κm and κm = κ0

√
εr,m is the maximum

propagation constant in the layer structure, κ0 = ω
√

µ0ε0 is the
free-space propagation constant, and εr,m is the maximum relative
permittivity in the layer structure. P and K are the spectral points,
along the real axis of β, representing a pole and a branch point,
respectively. Kn is the modified Bessel function of the second kind
and of the nth order. In Table 1, the terms used to annihilate the
asymptotes are those representing the direct term between the source
and the observer. For most of the layer structures, these terms are the
dominant terms. However, for layer structures containing very thin
film, like in the multichip module-deposition (MCM-D) technology [14],
the indirect terms resulting from the multiple reflections may become
significant. Consequently, for these special cases, the annihilation of
the direct terms only, leave the function with residual asymptotes.
These residual asymptotes are treated numerically in this paper via
the application of a two level discrete complex image method, DCIM.

In order to demonstrate the annihilation procedure, an electric
filament located on top of an alumina substrate, with εr = 9.9



30 Soliman and Vandenbosch

Figure 3. Electric filament source on top of an alumina substrate
backed by a PEC.

and thickness of 500 µm, backed by a PEC plane is considered, see
Fig. 3. The integral equation formulation of this problem, requires
the evaluation of two Green’s functions, namely ge,ek

11 and ge,eq
11 which

correspond to the electric field observed on the air-dielectric interface
due to the current and charge, respectively, of the electric filament
source located on the same interface. As a representative example,
only ge,eq

11 will be treated, it will be referred to as g throughout. The
other function can be treated in a similar way. Fig. 4 shows the
function g versus β/κ0, calculated at frequency f = 5 GHz. The figure
clearly shows both the asymptotic and the singular behaviors of the
Green’s function. Subtracting the annihilating functions listed in the
second column of Table 1, results in the modified Green’s function, gmo,
which is plotted in Fig. 5. It is clear that the modified function is free
from any asymptotic or singular behaviors. It is suitable to be treated
numerically along the real axis of β using DCIM.

4.2. Discrete Complex Image Method (DCIM)

In [2], the modified function is inverted numerically over a finite
interval. In this paper, the two level discrete complex image method,
DCIM, introduced in [13] is applied on the modified function. Unlike
[14], the application of the DCIM technique is carried out along the
real axis of β, in both the first and second levels. This selection is a
consequence of the complete annihilation of the singularities along the
real axis.

The first and second levels are defined in the spectrum β2 → β1

and κ0 → β2, respectively, where κ0 is the free-space propagation
constant. The values of β1 and β2 are not strictly specified. Numerical
investigations on several layer structures, have shown that β1 = 100 κ0

is enough to extract any residual asymptotic behavior of the spectral
Green’s function in the first level. β2 is selected such that it is higher
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Figure 4. Spectral charge Green’s function for the electric filament
source of Fig. 3, f = 5 GHz.
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Figure 5. Modified spectral charge Green’s function after subtracting
the annihilating functions.
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than κm, where κm is the maximum total propagation constant in the
layer structure under investigation. This selection is based on the fact
that any residual singular behavior, which could not be annihilated
perfectly, should be located in the spectrum below κm. The function
in the first level is sampled with low sampling rate, while in the second
level, higher sampling rate is required to pick-up the relatively faster
variation of the function.

The parametric equation of the first level, according to which the
samples are taken, can be written as follows:

β = β2 + (β1 − β2)t, t : 0 → 1 (16)

Using GPOF [12], the spectral domain Green’s function in the first
level can be written as follows:

g1 =
N1∑
i=1

a1ie
α1it

N1∑
i=1

a1ie
α1i(β−β2)/(β1−β2) (17)

where g1 is the spectral Green’s function in the first level, N1 is the
number of exponentials required to approximate the function in the
first level, a1i and α1i are the complex residue and exponent of the
ith exponential term, respectively. The approximated function, g1,
matches the original function in the first level, β : β2 → β1, where
the function shows an asymptotic behavior. Although the Green’s
function asymptote associated with the direct term has been removed,
the investigation of the function in the first level is performed in order
to extract the asymptote associated with the indirect terms appearing
in thin film layer structures. The extrapolation of the function g1 in the
second level does not match the original function, g. Another DCIM
procedure should be applied in the second level to approximate the
difference between the original function, g, and the extrapolation of g1

[13]. The parametric equation of the second level is:

β = κ0 + (β2 − κ0)t, t : 0 → 1 (18)

Applying GPOF on the difference: g2 = g − g1, allows one to write:

g2 =
N2∑
i=1

a2ie
α2it =

N2∑
i=1

a2ie
α2i(β−κ0)/(β2−κ0) (19)

where N2 is the number of exponentials required to approximate the
difference function in the second level, a2i and α2i are the complex
residue and exponent of the ith exponential term, respectively. Being
the difference between the original and the approximated function
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Figure 6. Exact and DCIM approximation of the modified spectral
charge Green’s function.

in the first level, the extrapolation of the approximated function,
g2, should vanish in the first level. Hence, over all the investigated
spectrum, β : κ0 → β1, the modified spectral Green’s function can be
approximated as follows:

gmo(β) = g1 + g2 =
N1∑
i=1

a1ie
α1i(β−β2)/(β1−β2) +

N2∑
i=1

a2ie
α2i(β−κ0)/(β2−κ0)

(20)
The exact and the two levels DCIM approximation of the modified
charge function gmo, of the example in Fig. 3, are plotted in Fig. 6.
The figure shows very good approximation for the modified function
in both the first and second levels. Using a Fourier transform identity
[15], the modified spectral Green’s function in Equation (20) can be
written in the spatial domain as follows:

Gmo(x) =
η

π(β1 − β2)

N1∑
i=1

±α1iα1i

ρ1i
K1(ηρ1i)e

α1iβ2
β1−β2

η

π(β2 − κ0)

N2∑
i=1

±α2iα2i

ρ2i
K1(ηρ2i)e

α2iκ0
β2−κ0 (21)

where ρ1i =
√

(α1i/(β1 − β2))2 + x2 and ρ2i =
√

(α2i/(β2 − κ0))2 + x2.



34 Soliman and Vandenbosch

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

x 0

|   gol
G

|   
01

o
m

1.79
2.59

0

0

0

=
=

=

/

η
η
η

κ
κ
κ

λ

Figure 7. Modified spatial charge Green’s function.

The + and the − signs are used if Re(αi) > 0 and Re(αi) < 0, respec-
tively. Equation (21) shows that we can look at the modified spatial
Green’s function Gmo as constructed from the contribution of several
sources, images, located at complex distances ρ. Fig. 7 shows the mod-
ified spatial Green’s function versus x/λ0, where λ0 is the free-space
wavelength. Three values for the iterative propagation constant η are
used: κ0, 1.79κ0, and 2.59κ0. The last value of η is the propagation
constant of a microstrip line of width 500µm located on the same
interface as the filament source in Fig. 3.

4.3. Recombination Procedure

The last step towards obtaining the spatial Green’s function is to
add the spatial equivalent of the annihilating functions to the spatial
modified Green’s function of Fig. 7. The spectral annihilating functions
have been subtracted in Section 4.1. The third column of Table 1 lists
these functions in the spatial domain. Obviously, the subtracted and
added functions in the second and third column, respectively, of Table 1
should be multiplied by suitable coefficients [2]. After recombination,
the required spatial Green’s function is obtained and plotted in Fig. 8.
The same three values of η are used: κ0, 1.79κ0 and 2.59κ0.
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Figure 8. Spatial charge Green’s function.

5. VALIDATION RESULTS

In this section, two types of planar guiding structures are analyzed,
namely: microstrip lines and slotlines. The analysis of these guiding
structures is carried out using a method of moment (MoM) formulation
similar to that presented in [14]. The core of this MoM uses the spatial
domain Green’s functions calculated via the proposed approach in this
paper. The analysis of the structures under investigation is carried out
using Agilent-Momentum [16] as well. Comparison between ours and
Momentum’s results is performed.

5.1. Microstrip Lines

The microstrip line studied in this sub-section is built on an Alumina
substrate with dielectric constant of εr = 9.9, and thickness of 500µm.
The substrate is backed by a perfect electric conductor (PEC) plate.
On top of the substrate a thin film of BenzoCycloButene (BCB)
is deposited. The dielectric constant of this layer is 2.7, and its
thickness is d. Above the BCB film, a microstrip line made of copper
(σ = 58 × 106 1/Ωm) with width of 500µm and thickness of 2µm, is
placed. Another thin film of BCB with thickness of 10µm, is placed
on top of the microstrip line. The deposition of the BCB thin films is
a typical feature of the MCM-D technology [14]. These films are used
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Figure 9. Effective dielectric constant versus frequency for the
microstrip line using 3 uniform segments along the width (all
dimensions are in µm).

to isolate the layers of interconnects of the MCM.
The effective dielectric constant versus frequency obtained using

both our solver and Momentum is plotted in Fig. 9. The cross section
of the microstrip line is also shown in Fig. 9. Three uniform segments
are used to model the width of the microstrip line. The thickness
of the bottom BCB film takes the values: 0, 10 µm, and 20 µm.
Very good agreement between our results and those of Momentum is
observed. This agreement validates indirectly the proposed technique
for calculating the spatial domain Green’s functions.

It is clear from the figure that as the thickness of the bottom
BCB film increases, the effective dielectric constant of the microstrip
line decreases. This means that the phase velocity increases and the
propagation delay decreases. Consequently, we can conclude that
microstrip lines in the MCM-D technology are performing better than
those fabricated with the conventional technology. The thickness of
the top BCB film is found to have a negligible effect on the effective
dielectric constant of the microstrip line. This comes from the fact
the most of the power is concentrated in the high dielectric constant
substrate below the microstrip line. Hence, the thickness of the top
BCB film is held constant at 10 µm.
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Figure 10. Effective dielectric constant versus frequency for the
slotline using 3 uniform segments along the width (all dimensions are
in µm).

5.2. Slotlines

In this subsection, a slotline of 50 µm width is studied. The slotline is
embedded in the same dielectric layer structure used for the microstrip
line. The PEC plate is removed from the bottom of the substrate
and placed between the two BCB films. The slotline is etched in
the PEC plate. The effective dielectric constant of the slotline, as
calculated using both our solver and Momentum, is plotted versus
frequency in Fig. 10. The figure shows also a cross-section for the
slotline. Three uniform segments are used to model the width of the
slotline. Fig. 10 shows the results for three different values for the
thickness of the bottom BCB film: 0, 10 µm, and 20 µm. Very good
agreement is observed between our results and those of Momentum.
Increasing the thickness of the bottom BCB film results in decreasing
the effective dielectric constant. This is attributed to the decrease in
the value of the shunt capacitance, per unit length, of the equivalent
circuit of the slotline. Consequently, the phase velocity increases
and the propagation delay decreases. It has been found that the
thickness of the top BCB film has a negligible effect on the propagation
characteristic because of the fact that most of the power is concentrated
below the slotline. The Green’s functions derived in the previous
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sections are used in the calculation of the propagation characteristic
of the slotline. Consequently, the agreement between our solver and
Momentum validates the theory and the implementation of the Green’s
functions.

6. CONCLUSIONS

In this paper, a modified technique for the evaluation of the
Green’s functions of filament sources in layered media is presented.
It generalizes the technique in [2] to be suitable for applications
containing wire-like sources. Moreover, it also generalizes the two levels
DCIM technique presented in [13] to the problem under investigation.
This generalized two levels DCIM is used to replace the conventional
numerical integral used in [2] for inverting the modified spectral
Green’s function. The mixture of the two generalized techniques
allows complete analytical representation for spatial Green’s functions
of filament sources embedded in layer structure containing thin films.

Since the solution procedure of the planar guiding structure
problems is iterative and requiring the evaluation of a new set of
spatial Green’s functions at each iteration. The technique presented
in this paper is found to be numerically efficient. This comes from
the fact that after the first iteration, the spectral Green’s functions
are expressed as number of analytical functions: the annihilating
functions, and number of complex images. Consequently, the spatial
domain Green’s functions are also expressed analytically as a function
of the iterative value of the propagation constant. Then for the next
iterations, the new set of spatial Green’s functions is obtained by
simple substitution in the analytical expressions with a new value of
the iterative variable.

The technique presented in this paper provides higher accuracy
than that presented in [14], specially at large spatial distances. This is
a consequence of the careful treatment of the singular behaviors whose
contributions are known to dominate at these distances. The accuracy
of proposed technique is validated by analyzing a number of microstrip
lines and slotlines. Our results are compared with those obtained using
a commercial software. Very good agreement is observed.
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