
Progress In Electromagnetics Research, PIER 60, 107–117, 2006

ANALYSIS OF COUPLED OR SINGLE NONUNIFORM
TRANSMISSION LINES USING TAYLOR’S SERIES
EXPANSION

M. Khalaj-Amirhosseini

College of Electrical Engineering
Iran University of Science and Technology
Tehran, Iran

Abstract—A method is proposed for analysis of arbitrarily loaded
lossy and dispersive nonuniform single or coupled transmission lines.
In this method, all the per-unit-length parameters or matrices of the
single or coupled lines and also the voltages and currents along the
length of them are expanded in Taylor’s series. The solutions of
voltages and currents are obtained after finding unknown coefficients
of their series. The accuracy of the method is studied using analysis
of some special types of single and coupled transmission lines.

1. INTRODUCTION

Single and coupled nonuniform transmission lines (NTLs) are widely
used in RF and microwave circuits as resonators, impedance matching
[1], size matching [2], delay equalizers [3], filters [4], wave shaping
[5], analog signal processing [6], VLSI interconnect [7] and etc. The
differential equations describing these structures have non-constant
coefficients because their per-unit-length parameters or matrices vary
along their length. The most used method is subdividing the
nonuniform lines into many short sections [8–13]. In each section
a uniform [8–11], linear [12], exponential [13] or other types of lines
may be inserted. These type of differential equations have been solved
analytically and without approximation only for a few special types of
NTLs such as linear [12], exponential [13], power-law [14, 15], binomial
[16], exponential power law [17] and hermite [18] types.

The subject of this paper is using Taylor’s series expansion to
analyze coupled or single NTLs. In this method, all the per-unit-
length parameters and also the voltage and current distributions along
the structure are expanded in Taylor’s series. First, the unknown
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coefficients of the series are obtained from some recursive relations.
Then the voltages and currents of the lines along the structure will be
obtained. The solutions obtained from this method are exact but they
are expressed by means of infinite linear equations. This method is
applicable to many arbitrarily loaded lossy and dispersive coupled and
single NTLs. The accuracy of the method is studied using analysis of
some special kinds of single and coupled NTLs.

2. THE EQUATIONS OF NTLS

In this section, the frequency domain equations of loaded coupled or
single NTLs are reviewed. It is assumed that the principal propagation
mode of the lines is TEM or quasi-TEM. This assumption is valid
when the widths in the cross section are small enough compared to the
wavelength. Figure 1 shows typical coupled and single NTLs consisting
of M (M = 1 for single NTLs) lines with length of d and with arbitrary
terminal loads of ZS,m(ω) and ZL,m(ω), in which m = 1, 2, . . . , M .

The partial differential equations describing lossy and dispersive

 
(a) 
 

 
(b) 

Figure 1. A typical nonuniform transmission line terminated by
arbitrary loads a) Coupled NTL with M lines b) Single NTL.
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NTLs in the frequency domain are given by

dV (z, ω)
dz

= −Z(z, ω)I(z, ω) (1)

dI(z, ω)
dz

= −Y (z, ω)V (z, ω) (2)

in which V and I are M × 1 voltage and current vectors, respectively.
Also we have

Z(z, ω) = R(z, ω) + jωL(z, ω) (3)
Y (z, ω) = G(z, ω) + jωC(z, ω) (4)

In (3)–(4), R,L,G and C are the per-unit-length matrices of the
coupled transmission lines, whose dimensions are M × M . These
matrices are reduced to the distributed primary parameters R, L, G
and C, for the single transmission lines. Also, the characteristic
impedance and the propagation coefficient of the single lines will be as
follows, respectively

ZC(z, ω) =

√
Z(z, ω)
Y (z, ω)

=

√
R(z, ω) + jωL(z, ω)
G(z, ω) + jωC(z, ω)

(5)

γ(z, ω) = α(z, ω) + jβ(z, ω) =
√

Z(z, ω)Y (z, ω)

=
√

[R(z, ω) + jωL(z, ω)][G(z, ω) + jωC(z, ω)] (6)

Combining (1) and (2) with each other, gives the following differential
equations for the voltage and current vectors of NTLs.

d2V (z, ω)
dz2

− f(z, ω)
dV (z, ω)

dz
− g(z, ω)V (z, ω) = 0 (7)

I(z, ω) = −Z−1(z, ω)
dV (z, ω)

dz
(8)

Where

g(z, ω) = Z(z, ω)Y (z, ω) (9)

f(z, ω) =
dZ(z, ω)

dz
Z−1(z, ω) (10)

Furthermore, the terminal conditions for loaded NTLs are as follows

V (0, ω) + ZS(ω)I(0, ω) = V S(ω) (11)
V (d, ω) − ZL(ω)I(d, ω) = 0 (12)

Where ZS and ZL are diagonal source and load matrices, respectively.
One sees from (7)–(12) that, solving analytically the equations of
general type coupled or single NTLs is a very hard problem.
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3. ANALYSIS OF NTLS USING TAYLOR’S SERIES

In this section, the analysis of arbitrary coupled or single NTLs using
Taylor’s series expansion is proposed. It is assumed that each of four
per-unit-length matrices existing in (3)–(4), could be expressed by
Taylor’s series as follows

L(z, ω) =
∞∑

n=0

Ln(ω)(z/d)n (13)

C(z, ω) =
∞∑

n=0

Cn(ω)(z/d)n (14)

R(z, ω) =
∞∑

n=0

Rn(ω)(z/d)n (15)

G(z, ω) =
∞∑

n=0

Gn(ω)(z/d)n (16)

The frequency dependent matrices Ln, Cn, Rn and Gn are assumed
to be known. These matrices are related to the n-th differential of
their own matrices with respect to z. We also consider the voltage and
current vectors of NTLs in Taylor’s series as follows

V (z, ω) =
∞∑

n=0

V n(ω)(z/d)n (17)

I(z, ω) =
∞∑

n=0

In(ω)(z/d)n (18)

Where the frequency dependent coefficients V n(ω) and In(ω) are
unknown M×1 vectors, which have to be determined. Using (13)–(18)
in (1)–(2), the following relations are obtained.

∞∑
n=0

(n+1)V n+1(ω)(z/d)n = −d
∞∑

k=0

∞∑
m=0

Zm(ω)Ik(ω)(z/d)k+m (19)

∞∑
n=0

(n+1)In+1(ω)(z/d)n = −d
∞∑

k=0

∞∑
m=0

Y m(ω)V k(ω)(z/d)k+m (20)

In (19)–(20), we have

Zm(ω) = Rm(ω) + jωLm(ω) (21)
Y m(ω) = Gm(ω) + jωCm(ω) (22)
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Also, using (17)–(18) in terminal conditions (11)–(12), the following
relations are obtained.

V 0(ω) + ZS(ω)I0(ω) = V S(ω) (23)
∞∑

n=0

(V n(ω) − ZL(ω)In(ω)) = 0 (24)

Equating the coefficients of the same power terms in two sides of (19)–
(20), gives us the following recursive relations for n = 0, 1, 2, . . .

V n+1(ω) =
−d

n + 1

n∑
k=0

Zn−k(ω)Ik(ω) (25)

In+1(ω) =
−d

n + 1

n∑
k=0

Y n−k(ω)V k(ω) (26)

To find the unknown coefficients V n and In in a specified angular
frequency ω, we truncate the maximum power in Taylor’s series to N ,
i.e., n ≤ N at first. Consequently, there will be 2N + 2 equations of
(23)–(26) to find 2N + 2 unknown coefficients. From mathematical
theorems, one may conclude that to converge the solutions (17)–(18),
the Taylor’s series of each of the matrices in (13)–(16) have to be
converged at all points on the interval z = [0, d].

4. EXAMPLES AND RESULTS

In this section, three special types of single and coupled transmission
lines (uniform and linearly nonuniform) are analyzed both using
analytical formulas and using the proposed method.

Example 1: (Uniform Single Transmission Line)
Consider a lossless and uniform single transmission line (M =

1, R = G = 0). Assume Z0 =
√

L/C = 50 Ω, γ = jβ = jω
√

LC =
jω/c (c is the velocity of the light), d = 20 cm, f = 1.0 GHz,
ZS = 50 Ω, ZL = 100 Ω and VS = 1 V. Figure 2, compares the
magnitude of voltage of the line, obtained from analytical formulas
and from the introduced method with N = 10 and N > 15 coefficients.
One sees an excellent agreement between the results from analytical
solution and the results from the introduced method with N > 15
coefficients. It is seen and also evident that, as the number of
unknown coefficients, N , increases, the accuracy of the obtained
solution increases. Furthermore, for insufficient number of unknown
coefficients (such as N = 10 in this example), the obtained voltages
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Figure 2. The magnitude of the voltage of uniform single line,
obtained from exact formulas and from the introduced method with
N = 10 and N > 15 coefficients.

of all points degrade from the exact ones. Also, Fig. 3 shows the
absolute of the unknown coefficients Vn for two cases of (d = 20 cm, f =
1.0 GHz) and (d = 40 cm, f = 1.0 GHz) or (d = 20 cm, f = 2.0 GHz).
One sees that, as the length of the line or equivalently the source
frequency increases, the necessary number of unknown coefficients, N ,
increases.

Example 2: (Uniform Coupled Transmission Lines)
Consider a lossless uniform coupled microstrip structure with

M = 2 strips. The substrate permittivity is εr = 10, the width of
strips and the gap between them are equal to the thickness of the
substrate. This inhomogeneous structure will has the following the
per-unit-length matrices.

L(z) = L0 =
[

425.6 74.83
74.83 425.6

]
nH/m (27)

C(z) = C0 =
[

174.9 −14.25
−14.25 174.9

]
pF/m (28)

R(z) = G(z) = 0 (29)

Assume that d = 20 cm, f = 1.0 GHz, ZS,1 = ZS,2 = 50 Ω, ZL,1 =
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Figure 3. The absolute of the unknown coefficients for two cases
(d = 20 cm, f = 1.0 GHz) and (d = 40 cm, f = 1.0 GHz) or (d = 20 cm,
f = 2.0 GHz).

ZL,2 = 50 Ω, VS,1 = 1 V and VS,2 = 0. The exact voltages of this
structure can be determined using the modal decomposing method [10].
Figure 4 compares the magnitude of voltages of two lines, obtained
from the modal decomposing method and from the proposed method
with N = 25 and N = 50 coefficients. Again, one sees an excellent
agreement between the exact solutions and the solutions obtained from
the proposed method with sufficient number of coefficients.

Example 3: (Linearly Nonuniform Single Line)
Consider a lossless and linearly varied single NTL with the

following distributed primary parameters

L(z) = L0(1 + k(z/d)) (30)

C(z) =
C0

1 + k(z/d)
= C0

∞∑
n=0

(−k)n(z/d)n (31)

R(z) = G(z) = 0 (32)

This type of transmission line will have the following secondary
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Figure 4. The magnitude of the voltage of uniform coupled lines,
obtained from the exact formulas and from the introduced method
with N = 25 and N = 50 coefficients.

parameters defined in (5)–(6)

ZC(z) =
√

L0/C0(1 + k(z/d)) (33)

γ = jβ = jω
√

L0C0 (34)

Assume that ZC(0) =
√

L0/C0 = 50 Ω, β = ω
√

L0C0 = ω/c, d =
20 cm, f = 1.0 GHz, ZS = 50 Ω, ZL = 100 Ω, VS = 1 V and k = 0.5, 1.0
or 1.1. Figure 5 compares the magnitude of voltage of the line obtained
in [12] and from the proposed method with N = 100 coefficients. One
sees the agreement between the results from analytical solution and the
results from the introduced method is excellent, good and bad for the
cases of k = 0.5, k = 1.0 and k = 1.1, respectively. The degradation
in the case of k = 1.1, is due to the divergence of the Taylor’s series of
the primary parameter C(z) in (31) at some points, in which kz/d > 1.

From the above examples, one may conclude that the introduced
method is applicable for all NTLs, whose parameters can be expressed
by a converged Taylor’s series. Also, it is concluded that as the
excitation frequency, the length of the line (with respect to the
wavelength) and the variations of the primary parameters increase,
the necessary number of coefficients increases.
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Figure 5. The magnitude of the voltage of linear nonuniform line,
obtained from exact formulas and from the introduced method with
N = 100 coefficients.

5. CONCLUSIONS

A method was introduced to frequency domain analysis of arbitrarily
loaded lossy and dispersive nonuniform transmission lines. In this
method, all distributed primary parameters of the lines and also the
voltage and current distribution along the line are considered as a
Taylor’s series. It was seen that, as the number of unknown coefficients
increases the accuracy of the obtained solution increases. Also, as the
length of the lines with respect to the wavelength or the variations of
the primary parameters increase, the necessary number of unknown
coefficients increases. The validity of the method was verified using
analysis of some special types of lines. This method is very simple and
fast and can be used for all NTLs, whose primary parameters can be
expressed by a converged Taylor’s series.
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